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T cells from patients with Candida sepsis
display a suppressive immunophenotype
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Abstract

Background: Despite appropriate therapy, Candida bloodstream infections are associated with a mortality rate
of approximately 40 %. In animal models, impaired immunity due to T cell exhaustion has been implicated in
fungal sepsis mortality. The purpose of this study was to determine potential mechanisms of fungal-induced
immunosuppression via immunophenotyping of circulating T lymphocytes from patients with microbiologically
documented Candida bloodstream infections.

Methods: Patients with blood cultures positive for any Candida species were studied. Non-septic critically ill
patients with no evidence of bacterial or fungal infection were controls. T cells were analyzed via flow cytometry for
cellular activation and for expression of positive and negative co-stimulatory molecules. Both the percentages of cells
expressing particular immunophenotypic markers as well as the geometric mean fluorescence intensity (GMFI), a
measure of expression of the number of receptors or ligands per cell, were quantitated.

Results: Twenty-seven patients with Candida bloodstream infections and 16 control patients were studied.
Compared to control patients, CD8 T cells from patients with Candidemia had evidence of cellular activation
as indicated by increased CD69 expression while CD4 T cells had decreased expression of the major positive
co-stimulatory molecule CD28. CD4 and CD8 T cells from patients with Candidemia expressed markers typical
of T cell exhaustion as indicated by either increased percentages of or increased MFI for programmed cell
death 1 (PD-1) or its ligand (PD-L1).

Conclusions: Circulating immune effector cells from patients with Candidemia display an immunophenotype
consistent with immunosuppression as evidenced by T cell exhaustion and concomitant downregulation of
positive co-stimulatory molecules. These findings may help explain why patients with fungal sepsis have a
high mortality despite appropriate antifungal therapy. Development of immunoadjuvants that reverse T cell
exhaustion and boost host immunity may offer one way to improve outcome in this highly lethal disorder.
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Background
Many Candida spp. are saprophytic fungi that occupy
ecologic niches on human skin and gastrointestinal tract.
In an immunocompromised host, this can lead to an op-
portunistic invasive infection of the skin and mucosa, or
life-threatening infections of the bloodstream [1–3].

Candida ranges from the most common to third most
common genus causing nosocomial bloodstream infec-
tions in the United States [4, 5]. Despite highly active
antifungal medications, mortality remains high [6]. The
mortality in Candida bloodstream infections approaches
40 %, higher than mortality occurring in sepsis due to
most bacterial pathogens [4]. Estimates suggest that
there are between 7,000 and 28,000 nosocomial Candida
bloodstream infections per year, leading to 2,800 and
11,200 deaths per year in the United States [4, 6, 7]. A
large-scale prophylaxis trial was not effective at decreas-
ing the incidence of Candida bloodstream infections or
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improving outcome [8]. The fact that mortality from in-
vasive fungal infections remains elevated despite the use
of antimicrobial agents that are highly active against fun-
gal pathogens, implies that defective host immunity may
contribute to the persistent high mortality. Therefore,
measures that augment host immunity may be funda-
mental to improving survival. This theory is supported
by recent animal studies and a small clinical trial of pa-
tients with fungal sepsis, which demonstrated that ther-
apies that enhance host immunity can restore immune
function and, in the case of the animal studies, improve
outcome [9–11].
T cell activation is carefully regulated by expression of

positive and negative co-stimulatory molecules that pre-
vent unbridled T cell function. CD28 is the classic positive
co-stimulatory receptor that, acting in conjunction with
the T cell receptor (TCR), induces T cells to undergo pro-
liferation and to produce cytokines such as interferon
gamma (IFN-γ) and interleukin-2 (IL-2) that are critical in
controlling infection [12]. To prevent excessive T cell acti-
vation, lymphocytes also express negative co-stimulatory
molecules that suppress and downregulate their function
[13–16]. Programmed cell death 1 (PD-1) is a member of
the B7-CD28 superfamily that functions in an inhibitory
role [14–16]. During T cell activation, PD-1 is rapidly in-
duced and expressed on the surface of CD4 and CD8 T
cells where it interacts with its ligands PD-L1 and PD-L2
[13–17]. PD-L1 is expressed on both hematopoietic and
non-hematopoietic cells and its expression is highly up-
regulated during inflammatory states [16, 18]. Activation
of PD-1 by its ligands causes inhibition of many T cell
functions including cytokine production and cytotoxic ac-
tivity. The critical role of PD-1 in immune regulation is
demonstrated by studies which showed that PD-1-null
mice develop autoimmune diseases including cardiomyop-
athy and a lupus-like syndrome [14–16].
Increased T cell PD-1 expression occurs under condi-

tions of chronic antigenic stimulation, such as persistent
viral infections, and leads to T cell exhaustion [14–16].
These exhausted T cells are poorly functional, likely to
undergo apoptosis, and ineffective thereby contributing to
the chronic viral infections [14–16]. Antibodies that block
PD-1 restore T cell function, increase antiviral T cell re-
sponses, and decrease viral load in certain viral infections
[15, 16]. Blockade of the PD-1 pathway has also improved
survival in bacterial infections. Three independent investi-
gative teams have demonstrated that blockade of the PD-1
pathway improves survival in clinically relevant animal
models of bacterial sepsis [18–20]. The potential clinical
relevance of these animal studies is highlighted by recent
studies showing that PD-1 overexpression on circulating
T cells from patients with sepsis correlated with decreased
T cell proliferative capacity, increased secondary nosoco-
mial infections, and mortality [21, 22].

Although several studies have shown that PD-1 and
PD-L1 expression is increased on T cells and antigen-
presenting cells from patients with bacterial sepsis,
there are no studies to date that have examined expres-
sion of PD-1 or PD-L1 on immune cells from patients
with Candida bloodstream infections. Thus, the object-
ive of the present study was to assess this expression. In
addition to PD1 and PD-L1, we also examined immune
cell expression of other important receptor/ligands that
have been implicated in regulating T cell function during
infection. These molecules included CD69, an early activa-
tion marker, CD28, a key positive co-stimulatory molecule,
IL-7 receptor (IL-7R), which is decreased in exhausted T
cells, the negative co-stimulatory molecules T cell im-
munoglobulin domain and mucin domain 3 (TIM-3) and
B and T lymphocyte attenuator (BTLA), and CD57 which
has been reported to identify poorly functional “immuno-
senescent” lymphocytes [23–29].

Materials and methods
Study design
This was a prospective observational study conducted be-
tween 2013 and 2015 and approved by the Washington
University Human Research Protection Office.

Inclusion criteria
Patients were included if they were 18 years old or older
and had a blood culture positive for any Candida species.
Potential study participants were identified by the micro-
biology laboratory, which notified investigators of blood
cultures positive for a Candida spp. The control group of
patients was composed of critically ill, non-septic patients
(controls) who were cared for in the intensive care unit
(ICU) following trauma or major surgery, but did not have
fungal or bacterial sepsis.

Exclusion criteria
The exclusion criteria were identical for the Candida
bloodstream infections and control patients. In order to
eliminate potential confounding effects of immunosup-
pressive medications or underlying disease on the immu-
nophenotype of patient lymphocytes, patients with the
following criteria were excluded from study: patients
with human immunodeficiency virus (HIV), patients
who had undergone organ or bone marrow transplant-
ation, patients on high-dose corticosteroids (≥300 mgs/
day of hydrocortisone equivalent) or other immunosup-
pressive medications, patients with viral hepatitis and
autoimmune diseases.

Data and sample collection
Analyses were performed on residual blood remaining
after clinical hematologic testing. Because the tests were
conducted on residual blood remaining in the laboratory
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samples (no patients had venous or arterial blood punc-
ture) the study was granted a waiver of informed consent
and approved by the Washington University Human Re-
search Protection Office. In general, most blood samples
for patients with Candida bloodstream infections were
obtained within 24–48 hours of cultures returning positive
for Candida. Clinical and demographic data was col-
lected at enrollment. Patient survival versus mortality
was followed for 90 days after entry into the study or
until hospital discharge.

Flow cytometry
Flow cytometric data included both the percentage of cells
positive for a particular immunophenotypic marker as well
as the geometric mean fluorescence intensity (GMFI), a
quantitative measure of the expression of receptors or li-
gands expressed on a per cell basis. Antibodies for flow cy-
tometric determinations were purchased from Biolegend
(San Diego, CA, USA), BD Biosciences (San Diego, CA,
USA), or eBiosciences (San Diego, CA, USA). Studies were
performed on cells remaining after red blood cell lysis of
diluted whole blood that had undergone antibody immu-
nostaining as previously described [3]. Lymphocytes were
identified by forward scatter (FSC) and side scatter (SSC)
properties. T lymphocyte subsets were further identified by
CD3+, CD4+, or CD8+ immunostaining. Additional im-
munostaining was performed on CD4 and CD8 T cells to
identify the following:

– CD69, a marker of cell activation [9]
– CD28, a key positive co-stimulatory molecule [12],
– programmed cell death- 1 (PD-1, CD279), a negative

co-stimulatory molecule that is considered a marker
of cell exhaustion [10]

– programmed cell death ligand 1 (PD-L1, CD274),
the ligand for PD-1 that is expressed on T cells and
monocyte/macrophages, dendritic cells [10]

– BTLA, a negative co-stimulatory molecule [11]
– TIM-3, a negative co-stimulatory molecule [17]
– interleukin-7 receptor (IL-7R), signaling through IL-7

is essential for lymphocyte survival and proliferation.
Decreased IL-7R expression is used to identify
“exhausted” T cells [13, 14].

– CD57, a marker used to identify poorly functional
“senescent” T cells [15]

– 2B4, a multifunctional receptor that may have either
inhibitory or stimulatory effects on T cells [16].

Statistical analysis
The data were analyzed using SPSS version 23 (IBM
Corp., Armonk, NY, USA). Scatter plots were made
using Prism (GraphPad Software Inc., San Diego, CA,
USA). All continuous data were analyzed for normality
using a Kolmogorov–Smirnov test with an alpha cutoff

of 0.05. Normally distributed data were reported with
means and standard deviations and analyzed using inde-
pendent samples t tests. Non-normally distributed data
were reported with medians and interquartile ranges and
were analyzed with a Mann–Whitney U test. Categorical
clinical data were compared using chi-square tests, or
Fisher’s exact test, as appropriate. p ≤0.05 was consid-
ered statistically significant.

Results
Clinical and laboratory characteristics
During the study, 27 (62.8 %) eligible patients with Candida
bloodstream infections that met inclusion and exclusion
criteria were included. Sixteen (37.2 %) critically ill non-
septic patients were recruited as controls. Baseline demo-
graphic data were similar between the two groups (Tables
S1A and S1B in Additional file 1). No statistically significant
differences were found between the mean age, gender, race,
acute physiology and chronic health evaluation II (APA-
CHE II) and sequential organ failure assessment (SOFA)
scores, white blood cell counts, respiratory rate, heart rate,
and baseline creatinine. Both of the groups had a 90-day
mortality of approximately 20 %. The absolute neutrophil
count was similar between patient groups, 7.23 × 103 versus
6.43 × 103 cells/mm3, respectively. The mean absolute
lymphocyte count was significantly higher in patients with
Candidemia versus control patients, i.e., 1.13 × 103 cells/
mm3 versus 0.61 × 103 cells/mm3, respectively, ( p = 0.02).
Both the mean absolute lymphocyte count for patients with
Candidemia and for control, critically ill patients were
below the lower limit of normal for Barnes Jewish Hospital,
i.e., 1.20 × 103 cells/mm3 (Table 1).

Flow cytometry findings
Although there was no difference in the percentage of
CD8 T cells that were positive for PD-1 in patients
with Candidemia versus control patients, patients with
Candidemia did have an increase in the geometric
mean fluorescence intensity (GMFI), indicating that
the cells which were positive for PD-1 had an increase
in the number of PD-1 molecules on a per cell basis;
(p <0.05), (Fig. 1). For some signaling molecules or
hormones, the number of cell receptors (indicated by
the MFI) is an important determinant of the cell re-
sponse. There were no differences in either the per-
centage of cells positive for PD-1 or the MFI for PD-1
from CD4 T cells of patients with Candidemia versus
control patients. For PD-L1, both the percentage of CD8
T cells positive for PD-L1 as well as the MFI of the cells
that were positive for PD-L1 was increased in patients
with Candidemia versus control patients; p <0.01, (Figs. 1
and 2). Compared to control patients, the MFI for PD-L1
was increased in CD4 T cells from patients with Candide-
mia; p <0.05. There was no difference in the percentage of
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CD4 T cells that were positive for PD-L1 in patients with
Candidemia versus control patients, (Fig. 1). These re-
sults, showing a more prominent effect of fungal sepsis on
expression of PD-1 and PD-L1 on CD8 T cells compared
to CD4 T cells, have been observed in previous studies of
patients with bacterial sepsis [30].
The percentage of CD8 T cells positive for the early

activation marker CD69 was increased in patients with
Candidemia versus control patients, 13.36 % versus
4.85 %, respectively, (Fig. 3), (p <0.01). Similarly, the
MFI of CD69 in CD8 T cells from patients with Candi-
demia was also increased compared to control patients;
p <0.01. No differences in CD69 expression were ob-
served in patients with Candidemia versus control pa-
tients for CD4 T cells.
In contrast to the increase in inhibitory receptor/li-

gands noted in CD8 T cells, there was a significant de-
crease in the percentage of CD4 T cells expressing CD28,
a major positive co-stimulatory molecule, in patients with
Candidemia compared to controls, 79.8 % versus 92.6 %,
respectively; p <0.05, (Fig. 3). There were no statistical dif-
ferences for either the percentage of cells positive for
CD28 or the MFI for CD28 in CD8 T cells from the two
groups of patients.
Decreased expression of IL-7 receptor (IL-7R) is char-

acteristic of poorly functional CD4 and CD8 T cells that
result from chronic antigenic stimulation [18, 19]. Al-
though the difference did not quite reach statistical signifi-
cance, there was a trend toward a decreased percentage of

CD4 T cells positive for the IL-7R and decreased MFI in
patients with Candidemia compared to controls, p = 0.08
and p = 0.07 respectively (Figs. 3 and 4). There were no
statistical differences in either the percent positivity or the
MFI for other markers of T cell exhaustion, i.e., BTLA,
CD57, TIM-3, or 2B4 for either CD4 or CD8 T cells in the
two groups of patients, (Figs. 1 and 5).

Conclusions
The incidence of Candida bloodstream infection is in-
creasing and Candida is currently one of the most com-
mon nosocomial bloodstream infections in many
intensive care units (ICUs) [1, 2, 4, 5, 20, 21]. The ability
of the host to survive a Candida bloodstream infection
requires a well-coordinated response by the innate and
adaptive immune system, both of which are frequently
impaired in patients with fungal sepsis [22–24]. Many of
the patients acquiring fungal sepsis are immunosup-
pressed due to underlying malignancies and treatment
with chemo or radiation therapy. Patients undergoing
bone marrow or solid organ transplantation are also im-
munosuppressed and have a high incidence of fungal in-
fection. There is increasing recognition that many ICU
patients who are presumed to be immunocompetent
also acquire invasive fungal infections. Many of these pa-
tients are elderly individuals whose immune system is
impaired due to “immunosenescence” [31]. Additionally,
ICU patients with bacterial sepsis have impaired immun-
ity due to a variety of factors including: loss of immune

Table 1 Baseline characteristics of patients with Candida bloodstream infections and critically ill control patients

CBSI N = 27 (%) Critically ill, non-septic patients N = 16 (%) p value

Mean age (±SD), years 56.9 (23.4) 58.9 (18.1) 0.19

Male gender (%) 14 (51.9) 10 (62.5) 0.46

APACHE II score (±SD)* 11.61 (6.7) 8.69 (4.0) 0.11

SOFA score (±SD)* 4.7 (4.2) 2.6 (1.8) 0.06

White blood cell count (±SD), thousand/mm3 11.7 (5.8) 9.9 (3.5) 0.25

Absolute lymphocyte count (±SD), thousand/mm3 1.13 (0.99) 0.61 (0.49) 0.02

Absolute neutrophil count (±SD), thousand/mm3 7.23 (5.76) 6.43 (5.32) 0.77

Heart rate (±SD), beats/min 102.2 (19.9) 109.5 (17.0) 0.23

Respiratory rate (±SD), breaths/min 23.19 (5.6) 24.4 (4.1) 0.46

Baseline creatinine (±SD), mg/dl 1.46 (1.62) 1.1 (0.85) 0.4

90-day mortality (%) 6 (22.2) 3 (18.8) 0.79

Primary diagnosis, n (%) 13 (48) Candida albicans 6 (37) Motor vehicle accident n/a

7 (26) Candida glabrata 3 (18) Fall

3 (11) Candida tropicalis 2 (13) Spinal fusion

3 (11) Candida parapsilosis 2 (13) Coronary artery bypass graft

1 (4) Candida dubliniensis 2 (13) Hemorrhage

1 (6) Spinal cord injury
*SOFA and APACHE II scores were calculated excluding the Glasgow Coma Score
CBSI Candida bloodstream infection, SD standard deviation, APACHE II acute physiology and chronic health evaluation II, SOFA sequential organ failure assessment
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effector cells, increased immunosuppressive cells includ-
ing T regulatory cells and myeloid-derived suppressor
cells, and T cell exhaustion [22]. Patients in the ICU also
may require central venous lines, arterial lines, and Foley
catheters, which compromise the body’s protective barrier.
In this regard, the majority of the fungal infections in the

present study were felt to be related to invasive lines
(Additional file 1: Table S1A) rather than to parenchymal
infections. Also, the present study excluded patients who
had undergone bone marrow or stem cell transplantation,
HIV patients, and patients on high-dose immunosuppres-
sive medication. These factors may explain the relatively
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low mortality in the present study (22 %) compared to
higher mortality figures reported in other studies [4].
The fact that many patients with fungal sepsis die des-

pite being treated with drugs to which the fungal patho-
gens are sensitive suggests that impaired host immunity

is a factor in the poor survival seen in fungal sepsis.
Thus, enhancing host immunity may improve outcome.
This hypothesis is supported by studies of interleukin-7
(IL-7), a pleiotropic cytokine that enhances T cell func-
tion [10, 32–35]. Using a mouse model of fungal sepsis,
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our group demonstrated that IL-7 improved IFN-γ pro-
duction, decreased apoptosis, and increased survival in
mice with Candida sepsis [14]. Furthermore, a report in
which investigators treated patients with invasive fungal
infections and decreased HLA-DR expression, a measure
of impaired immunity, with IFN-γ immunotherapy dem-
onstrated an improvement in patient immune function
[9]. Thus, immunoadjuvant therapy is moving forward
in fungal sepsis and the ability to identify those patients
who are good candidates for immunotherapy is needed.
To our knowledge, this is the first study to investigate

the immunophenotype of lymphocytes of patients with
Candida bloodstream infection. The present results are
consistent with T cell exhaustion, a condition that occurs
following chronic antigenic stimulation in which T cells be-
come poorly functional with reduced cytokine production,
decreased proliferative capacity, and are prone to undergo
apoptotic cell death. An increase in T cell expression of the
inhibitor receptor PD-1 and its ligand, PD-L1 are essential
for mediating T cell exhaustion [16, 17, 19, 25, 26]. In this
study, CD8 T cells from patients with Candida blood-
stream infection had an increase in both the percentage of
cells positive for PD-L1 and in the MFI (a measure of the

number of receptors or ligands on a per cell basis) for PD-
L1 compared to controls (Figs. 1 and 2). Similarly, CD4 T
cells from patients with Candida bloodstream infection
had an increase in the MFI for PD-1 expression compared
to controls.
Another cell phenotypic marker that is consistent with

exhausted T cells is decreased T cell IL-7R expression
[24]. Decreased IL-7R results in decreased concentrations
of Bcl-2, an anti-apoptotic protein that is essential for T
cell survival. The present results showed a non-
statistically significant trend toward a decrease in the per-
centage of CD4 T cells positive for IL-7R (p = 0.08) and in
the MFI (p = 0.07) in patients with Candida bloodstream
infection compared to controls. Although there were no
differences in BTLA, TIM-3, or 2B4, other markers of T
cell exhaustion, in patients with Candida bloodstream
infection versus controls, cellular expression of these
markers is not as frequently abnormal as expression of
PD-1 or PD-L1 in T cell exhaustion [14].
In addition to markers of T cell exhaustion, patients with

Candida bloodstream infection also had another poten-
tially important finding consistent with an impaired T cell
response to pathogens, i.e., a decrease in the percentage of
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CD4 T cells expressing CD28. CD28 is a key co-stimulatory
molecule that is essential for T cell activation and survival
[17]. Stimulation through CD28 activates signaling path-
ways that result in production of various cytokines that
help to combat infectious pathogens. Previous work from
our group has shown that expression of CD28 is decreased
in both animals and patients with sepsis [10, 22]. In this re-
gard, CD4 T cells from animals with sepsis that were
treated with IL-7 had an increase in CD28 expression and
improvement in T cell function.
In contrast to the high mortality, often approaching 40

%, which typically is associated with invasive fungal infec-
tions, the mortality in the present study was only 22 %.
There are several reasons for the relatively low mortality
in the present study. First, the present study excluded pa-
tients who underwent organ or bone marrow transplant-
ation. These patients have a high incidence of fatal fungal
infections because of their severely impaired immune sys-
tems. Second, we also excluded acquired immunosuppres-
sive deficiency syndrome (AIDS) patients and patients
who were taking high-dose corticosteroids ((≥300 mgs/
day of hydrocortisone equivalent) or other immunosup-
pressive medications. These patients are also more likely
to succumb to fungal infections because of their inability
to mount an effective immune response.
This study has a number of limitations. First, although

this study showed that lymphocytes from patients with
fungal bloodstream infections have phenotypic markers
consistent with immunosuppression and T cell exhaus-
tion, no cell functional studies were performed. Thus, we
do not know the degree or intensity of T cell impairment.
Second, these findings do not establish a causal link be-
tween markers of T cell exhaustion and increased morbid-
ity or mortality in patients with fungal sepsis. Although
studies do demonstrate a correlation of increased T cell
exhaustion and decreased outcomes in sepsis, no such
studies exist for patients with fungal sepsis. It is important
to note, however, that previous studies from our group
showed that therapy with anti-PD-1 and anti-PD-L1 anti-
bodies reversed T cell dysfunction and improved survival
in both primary candidiasis and in a two-hit model of fun-
gal infection [11]. These studies do provide support for
the hypothesis that dysfunctional T cells are a key patho-
logic factor in lethal fungal infections.
A second limitation of the study is that we are not able

to determine a reason for the difference in the phenotypic
response of CD4 and CD8 T cells during fungal infection.
The present findings show a greater effect of fungal sepsis
to increase PD-1 and PD-L1 expression (either on the per-
centage positive and/or MFI for PD-1 or PD-L1) on CD8
T versus CD4 T cells. We have previously reported differ-
ential effects of bacterial sepsis on PD-1 and PD-L1 in
CD8 versus CD4 T cells [11, 22, 30]. Although there is no
clear explanation for this different cellular effect, it may be

related to the unique functions of CD4 versus CD8 T cells,
i.e., CD4 T cells having a “helper” function to activate other
immune cells while CD8 T cells act to eliminate pathogens
by cell killing.
In conclusion, the present results demonstrate that T

cells from patients with Candida bloodstream infection
have a phenotype consistent with an immunosuppressive
“exhaustive” state. In the future, examination of these
flow cytometric markers may be useful in identifying pa-
tients with fungal sepsis who have impaired immunity
and thus are candidates for trials of agents which boost
host immunity.

Key messages

� Patients with Candida bloodstream infections
exhibit an immunosuppressed phenotype.

� This phenotype appears to be mediated through the
PD-1 axis.
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