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Dendritic cells (DC) are uniquely capable of initiating and directing immune responses. The
range of their activities grounds in the heterogeneity of DC subsets and their functional
plasticity. Numerical and functional DC changes influence the development and
progression of disease, and correction of such dysregulations has the potential to treat
disease causally. In this review, we discuss the major advances in our understanding of
the regulation of DC lineage formation, differentiation, and function in the skin. We describe
the alteration of DC in disease as well as possibilities for therapeutic reprogramming with a
focus on tolerogenic DC. Because regulatory T cells (Treg) are indispensable partners of
DC in the induction and control of tolerance, we pay special attention to the interactions
with these cells. Above all, we would like to arouse fascination for this cell type and its
therapeutic potential in skin diseases.
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INTRODUCTION: DC SUBTYPES AND ONTOGENY

In humans, the haematopoiesis is initiated in the yolk-sac around days 16-18 of estimated
gestational age (EGA), followed by the migration of immature hematopoietic stem cells, derived
from the aorta-gonad-mesonephros, to the definitive location of pre-natal haematopoiesis; the fetal
liver (1, 2). The adult myeloid compartment originates from precursor cells within the bone
marrow. Common myeloid progenitors (CMP) have the ability to differentiate towards all adult
myeloid cells in humans. The myeloid progenitor cell loses its capacity to produce megakaryocytes,
erythroid, eosinophil and basophil cells as they become granulocyte macrophage DC progenitors
(GMDP). GMDPs eventually acquire the phenotype of macrophage DC progenitors (MDP), which
give rise to monocytes or CD123+ common DC progenitors (CDP). The latter is capable of
differentiating towards CD141+ DC type 1 (cDC1) or CD1c+ DC type 2 (cDC2), as well as CD123+

plasmacytoid dendritic cells (pDC). Villani et al. (3) identified two distinct populations within cDC2
in blood and showed that CLEC9a could serve as a more suitable marker to identify cDC1 compared
to CD141. Besides the bone-marrow precursors, monocytes can replenish the DC reservoir
especially during inflammation (4). It appears that monocyte-derived DC (moDC) arise
org June 2022 | Volume 13 | Article 9290001

https://www.frontiersin.org/articles/10.3389/fimmu.2022.929000/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.929000/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.929000/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Verena.Raker@ukmuenster.de
https://doi.org/10.3389/fimmu.2022.929000
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.929000
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.929000&domain=pdf&date_stamp=2022-06-28


Scheib et al. DC in Tolerance and Immunity
primarily from CD14+CD16− monocytes and carry the markers
CD1c and CD1a in addition to CD11c (Table 1).

In humans, cDC1 and cDC2 are located in the dermis.
Furthermore, the inflammatory environment in the skin
promotes the development of moDC and the recruitment of
pDC. The epidermis harbours Langerhans cells (LC) which are
marked by the expression of Langerin, CD1a and E-cadherin (5).
Although they demonstrate functional characteristics of DC, LC
have been reclassified as tissue-resident macrophages (6). The
same is true for dermal CD14+ cells, previously defined as DC,
which most likely represent monocyte-derived macrophages (2).
Lineage-tracing experiments in mice deciphered the role of
transcription factors in DC development: cDC1 differentiation
involves the transcription factors IRF8, IRF4, Id2 (7) and Batf3.
Batf3 and IRF8 in particular appear to be indispensable for cDC1
development (5). Differentiation towards cDC2 in mice requires
the expression of Id2 and Zeb2 (8), but IRF4 and Notch2/KLF4
expression is also required (5). Differentiation towards pDC
requires the expression of IRF8 and IRF4 (5). Furthermore,
ZEB2, a protein involved in epithelial-mesenchymal transition,
has been described as a critical factor for the development of
pDC. Deletion of zeb2 in murine bone marrow precursors lead to
a drastic reduction of pDC in vitro and in vivo, presumably
through the abrogation of zeb2-induced repression of id2. Loss of
ZEB2 favours the development of cDC1 above pDC and appears
Frontiers in Immunology | www.frontiersin.org 2
to be of critical importance for the fate choice of CDP. Finally,
moDC formation depends on the transcription factors MAFB
and KLF4 (5) (Table 1).

Yolk-sac derived macrophages serve as transient progenitors
of LC, but monocytes derived from the fetal liver replace them
later on (9). In the adult skin, LC are self-sustaining with no
contribution of bone marrow-derived cells (10). In mice, CSFR-1
receptor engagement (11) as well as transcription of runx3 and
id2 are substantial in the maintenance of LC homeostasis.

In addition to phenotypic/functional classifications, DC
classify by their migratory capabilities and differentiation stage.
Attempts have been made to distinguish resident DC from
migrating DC based on markers. For example, resident DC
(pDC or cDC subgroups such as CD8+ DC or CD8-/CD11b+

DC) in lymphoid organs (12) or migrating DC from peripheral
tissues and non-lymphoid organs (including CD103+/Langerin+/
CD11b+) can be distinguished (13). However, however, all DC
migrate both in steady state and in inflammation. In the blood, a
population of pre-DC forms a subset that is functionally distinct
from pDCs and cDCs. AXL and Siglec6 (CD327) expressing cells
(AS DC) strongly stimulate T cells in lymphoid tissue. AS DC
may also represent a mature cDC2 progenitor and are likely in
transition to this subgroup (3).

The description of immature (iDC) and mature (mDC)
phenotypes primarily refers to the maturation of DC in vitro.
TABLE 1 | Overview of the most important markers of the DC populations.

moDC Pre-pDC/AS DC pDC cDC1 cDC2 LC

Transcription factor MAFB
KLF4

Zbe2
IRF4
KLF4
IRF8
PU.1
Flt3L

IRF8
IRF4
Zeb2
PU.1
Flt3L
E2-2

BATF3
IRF8
Zeb2
PU.1
Flt3L
Zbtb46
ID2

IRF4
Notch2/KLF4
Zeb2
PU.1
Flt3L
Csf-2
Zbtb46
ID2

ID2
RUNX3

Main phenotypic cell
marker

CD1c+
CD1a+
D11b+
CD103-

CD123+
CD303+
CD304+
CD11c+

CD123+
CD11c+
CD303+
CD304+

CD141+
CD103+
CD11b-

CD1c+
CD5+
CD103+
CD11b+

CD1a+
CD207+
E-cadherin
Langerin

Extended phenotypic
cell marker

CD11c
CX3CR1
CD172a
(Sirpa)
CD64(Fcr1)
CD206+

AXL, SIGLEC6
CX3CR1

CD11c
CD4+
Btla
CD26
Cystatin C
CD209
CD17a
(Sirpa)
Ly6c
Clec9a
DR6
FCER1
ILT3
ILT7

CD11c
Langerin
CD24
Btla
C-kit
Xcr1
CD26
CD36
CD205
Clec9a
CADM1
XCR1
BTLA

CD24
Btla
C-kit
CD26
CD172a (Sirpa)
ILT1
DCIR
FCER1
CD11c+

CD11c
CD11b+
EpCAM
CD24
CD205
CX3CR1
CD172a (Sirpa)
CD135+
Trop2

Origin BM-HSC BM-HSC BM-HSC BM-HSC BM-HSC Embryonic progenitor,
may yolk sac

Differentiate Lymphoid and non
lymphoid tissue

Lymphoid and non
lymphoid tissue

BM Lymphoid and non
lymphoid tissue

Lymphoid and non
lymphoid tissue

LN

Migration/Occurence LN, spleen, thymus,
blood

LN, spleen,thymus,
blood

LN,spleen,
thymus

LN, soleen,thymus,
blood

LN,spleen, thymus,
blood

Through dermis into LN
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So-called iDC express CD11c but little major histocompatibility
complex class II (MHC-II) and costimulatory molecules such as
CD80, CD83 and CD86, while mDC show an upregulated
expression of these costimulatory molecules as well as MHC-II
(14). Maturation also occurs in vivo, of course, and the markers
described in vitro are similarly altered.
KEY QUESTIONS AND FUTURE
DIRECTIONS FOR THE FIELD

The increasing use of scRNA-seq has led to the description of
additional DC subtypes. Transcriptomes, however, incompletely
reflect the cell state as gene transcription is stochastic,
characterized by transcriptional bursts of varying intensity (15)
and half-lives of individual mRNA molecules vary considerably
(16). Therefore, there is a need to determine whether the putative
heterogeneity of DC, as evidenced by scRNA-seq, also reflects
functional differences.
DENDRITIC CELL FUNCTIONS

DC are versatile cells that act as sensors for pathogens and
gatekeepers of tolerance at the same time. They link innate signals
(pattern recognition and early inflammatory mediators) to adaptive
immune responses (T cell priming and Treg induction). DC
functions are diverse and highly dependent on circumstances
such as cytokines, tissue and cell origin. DC properties, including
surface molecules and secreted soluble mediators, can result in
tolerogenic as well as stimulatory effects. This means that their
function can be beneficial in relation to peripheral tolerance
induction or disadvantageous as in transplant rejection (17).

DC decide on the quality and quantity of the immune
response simply by their degree of activation (Figure 2). As
professional antigen-presenting dendritic cells (APCs), they take
antigens from their environment, process them and provide co-
stimulation that can prime naïve T cells unlike any other
MHCII-carrying cell in the body.

Factors that drive DC activation are hallmarks of infection
and inflammation such as danger (DAMP) or pathogen
associated molecular patterns (PAMP) as well as inflammatory
cytokines. DAMPs are molecules or cellular structures released
because of cell death or trauma, as heat shock proteins, histones
and mitochondrial components. PAMPs are components of
pathogens such as LPS, peptidoglycans or bacterial and viral
nucleic acids. Recognition of PAMPs or DAMPs via toll-like
receptors (TLR), C-type lectins or RIG-I-like receptors or sensing
of inflammatory cytokines such as tumor necrosis factor (TNF)
alpha, interleukins 1 and 6 via cytokine receptors (18) induces a
differentiation program in DC that has been termed “mature”
(18). Such mature DC then express costimulatory molecules,
MHC-II and chemokine receptors, which facilitate migration to
the lymphoid organs and secretion of elevated levels of
inflammatory cytokines. It must be noted, however, that
although a DC exhibits characteristics that are termed
Frontiers in Immunology | www.frontiersin.org 3
“mature”, it may have non-immunogenic functions such as
tolerance maintenance. At specific anatomical sites (thymus)
DC exert tolerogenic functions despite being in a potentially
inflammatory environment. Interesting in this regard is the NF-
kB pathway. NF-kB is known as a target gene of TNF-a
signalling but can also induce TNF- expression during DC
maturation. Earlier reports suggest that NF-kB1 is involved in
the repression of TNF-a expression in immature DCs by itself
(19, 20). Steady-state DC actively induce a tolerance-promoting
state (regulatory T-cell (Treg) induction) or render T-cells
unresponsive (anergy) (21). Tolerogenic maturation has been
shown to depend on IRF4, and ablation of IRF4 in DC impairs
peripheral tolerance induction (22, 23) (Figure 1).

Interestingly, human tolerogenic DC (IL10-DC) matured in
vitro in the presence of interleukin-10 induce functional
regulatory T-cells regardless of their degree of maturation (CD83
low and high) (24, 25). In addition, DC express distinct toll-like
receptors (TLRs), which supports their functional specialization, a
process that is highly context- and thus cytokine-dependent. A
tolerance-promoting function via IL-10 has been reported for (26,
27). Because of its barrier function, the skin also harbours
commensal bacteria, which colonize the barrier and thus protect
the body from colonization by pathogens. The immune system
senses patterns expressed by skin commensals. As previously
shown, CD103+ DC take up antigens or commensals in the skin
or hair follicles and travel to the draining lymph nodes to activate T
cells. Primed T cells then migrate back to the skin where they
augment the antimicrobial properties of keratinocytes via T cell-
produced IL-17 (28). Aside from being potent inducers of CD4+ and
CD8+ T cell-mediated adaptive responses, DC can also have direct
effects on bacteria. The production of TNF-a and inducible nitric
oxide synthase (iNOS) by so-called TipDC has shown that DC can
eliminate bacteria in the murine L. monocytogenes infection model.
TipDC had allostimulatory capacity in mixed leukocyte reactions
but were not required for effective priming of CD4 and CD8 T cells
in vivo (29). Skin resident LC phagocytes serve as skin guardians,
orchestrate immune responses against pathogens, but have also
been implicated to induce tolerance to skin’s own antigens under
steady-state conditions (30, 31). Local ablation of epidermal LC
worsened the dermal phenotype in a lupus mousemodel but had no
systemic effect on the effects of autoimmune responses. LC regulate
skin tolerance via IL-10-producing CD4+ T cells, but IL-10 levels in
skin-draining lymph nodes were unaffected (32) (Figure 1).

Human pDC constitutively express the serine protease
granzyme B (GrB) (33). GrB production in human pDC is
stimulated by IL-21 but inhibited by autocrine production of
type I interferons (34). Similarly, IL-10 can increase GrB
secretion from pDC, whereas Toll-like receptor agonists and
CD40 ligand strongly inhibit them (35). GrB+ pDC suppress T
cell proliferation in a GrB-dependent, perforin-independent
manner, a process reminiscent of Treg. GrB-secreting pDC
may therefore play a regulatory role in tumor immune defense,
antiviral immune responses, and autoimmune processes.
In inflammatory processes, CD8⁺ T cells trigger perforin-
mediated apoptosis in pDC, limiting their proinflammatory
activity and possibly avoiding autoimmunity (36).
June 2022 | Volume 13 | Article 929000
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KEY QUESTIONS AND FUTURE
DIRECTIONS FOR THE FIELD

Future research in this field must link the phenotypic
characterization of the different DC subpopulations to the
known functions of DC biology. Is there really a large number
of different DC or are there simply states of activation in certain
organs at certain times that are functionally indistinguishable?
Frontiers in Immunology | www.frontiersin.org 4
ALTERED DC FUNCTION IN DISEASE

As key cells of tolerance and immunity, dendritic cells
are directly involved in the development and progression
of diseases. Here, we would like to give examples of
disease-causing and course-determining DC alterations in
cutaneous tumors, autoimmune diseases, and inflammation
of the skin.
FIGURE 1 | Dendritic cells exhibit immunostimulatory or tolerogenic potential depending on the context. DC's fate depends on cytokines and pathogen contact.
Inflammatory cytokines and pathogens presenting TLR ligands promote T effector cells, while anti-inflammatory cytokines or interactions with commensal bacterial
components produce tolerance, e.g. induce T cell anergy or deletion, or give rise to regulatory T cells.
FIGURE 2 | In vivo targeting of DC for Treg induction. Systemic administration of specifically designed nanoparticles or antibodies combined with antigen delivery for
tolerogenic DC targeting in vivo, affects the resulting immune response of allergic and autoimmune diseases in an antigen-specific manner. Epicutaneous application
of antigens results in activation of tolerogenic LC in the skin (by dermal patches, Epicutaneous immunotherapy) or tolerogenic DC in skin draining lymph nodes
(repetitive exposure to low doses of allergens, Low zone tolerance), respectively, and subsequent control of allergic immune reactions by Treg.
June 2022 | Volume 13 | Article 929000
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SKIN CANCER

The DC network of the skin may be one of the first contacts that
growing skin tumors have with the immune system. In what way
such first contacts influence tumor growth is unclear. However,
avoidance of inflammatory responses and immune cell
immigration induced by them might help tumors to remain
“cold,” i.e., not detected or even ignored by the immune system.
If inflammation and immune cell immigration occur, tumors
induce numerical and functional changes in progenitor cells and
mature DC that attenuate or undermine the immune response
against them. Following examples categorize DC alterations in
skin cancer:

Altered DC Recruitment or Survival
Lesions of squamous cell carcinoma (SCC) have significantly
reduced numbers of LCs and CD11c+ dermal DC, resulting in
fewer DC available for effective T-cell priming (37, 38).

Melanomas recruit pDC via CXCR4/CXCL12 (39). IFN-
induced expression of CXCR3 ligands (CXCL9, CXCL10, and
CXCL11) produced by pDC in turn promotes the attraction of
additional pDC (40). Through increased attraction, melanomas
appear to recruit primarily immature pDC (also called
plasmacytoid monocytes) (39).

Redirection of Monocyte Precursors
IL-6 and macrophage colony-stimulating factor (M-CSF)
produced by melanomas promote monocyte differentiation
into macrophages rather than DC, limiting effective T-cell
responses (41). Melanomas concomitantly produce GM3 and
GD3 gangliosides that inhibit DC differentiation from
monocyte-derived progenitors and induce apoptosis in
monocyte-derived DC (42, 43). Similarly, melanoma-derived
cyclooxygenase-1 (COX-1) and COX2 prostanoids block DC
differentiation (44).

Exploitation of Immature DC
Tumor-infiltrating immature DC and pre-DC promote
angiogenesis in tumors by secreting endothelial growth factors
(e.g., VEGF) and producing other factors that increase the
sensitivity of endothelial cells to growth factors (45, 46).
Conversely, tumors induce endothelial transdifferentiation in
DC progenitor cells, which form a scaffold for the subsequent
lining of tumors with endothelial cells (47).

DC Subversion
Skin tumors undermine anti-tumor immunity not only by
altering the differentiation of DC precursors, but also by
interfering with the activity of fully differentiated DC:

DC treated with melanoma lysate produce less IL-12p70
albeit without showing changes in maturation markers (e.g.,
CD40, CD80, CD83) (48). However, melanoma-infiltrating DC
also appear to become resistant to some maturation stimuli (49).
In turn, DC from regressing melanoma metastases exhibit a
stronger T-cell stimulatory potential than DC in progressively
growing metastases (50).
Frontiers in Immunology | www.frontiersin.org 5
More recently melanomas have been found to convert
infiltrating cDC2 cells into myeloid cells characterized by
decreased CD1c expression and expression of monocyte/TAM
markers such as CD14, CD163, CD206, and MerTK (51). Thus,
CD14+ DC appear to arise not only from monocytes but can also
develop from cDC2 in the tumor microenvironment (52). In a
three-dimensional melanoma model with multicellular tumor
spheroids, lactic acid produced by melanomas suppressed the
production of proinflammatory cytokines, including IL-12, by
monocyte-derived DC (53).

Melanoma-recruited pDC lose the propensity to produce type
I interferons (IFN I), which play an important role in cancer
immunization (54, 55). Such altered pDC then support
melanoma progression by promoting regulatory immunity
through OX40L and ICOSL (56).

Treg contribute to immune tolerance to tumors (57, 58) as
evidenced by the fact that their ablation in mouse models
improves the anti-tumor immune response (59). However,
while early Treg deletion triggers complete rejection of
transplanted tumors (60), deletion at later time points only
limits tumor growth, suggesting that Treg establish
mechanisms in the tumor microenvironment that become Treg
independent. Nevertheless, depletion of Treg at late growth
phases of tumors also increases the number of functional
cytotoxic T cells in tumor tissue and enhances responses to
vaccination against tumor antigens (60). However, some
observations point to a more complex role for Treg in tumor
growth. By limiting inflammatory processes that drive malignant
transformation (61), Treg may protect against the development
of certain tumor types (62). While sarcomas appear to escape,
immune control via editing rather than immune repression, lung
adenocarcinomas escape because the anti-tumor response itself
was suppressed (63). Tumor-infiltrating T cells also often do not
appear suppressed, but rather chronically activated and
functionally altered (64, 65). Taking into account that Treg
primarily form stable contacts with DC in tissues, the effect of
Treg in tumors appears to be based less on regulation of T cells
and more on DC. How tumor-induced changes in DC affect their
interaction with Treg seems for the most part unexplored. It is
also conceivable that tumor cells alone do not alter DC in
tumors, but interaction with Treg does.
AUTOIMMUNE SKIN DISEASES

The development of autoimmune diseases bases on alterations in
central or peripheral immune tolerance. As early as the 1980s
[ten years after their discovery as a separate antigen presenting
cell population (66)], DC were observed to act as drivers of T
cells in autoimmune lesions (67) and to transfer autoimmunity
to naive recipients (68).

Interestingly, observations made in the 1970s (69) that led to
the definition of Foxp3+ Treg in the 1990s (70) are also closely
related to autoimmune diseases. Foxp3+ Treg prevent
autoimmunity by limiting activation and differentiation of
June 2022 | Volume 13 | Article 929000
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autoreactive T cells through interaction with DC (71), in
particular, by regulating the expression of costimulatory
molecules (72) and suppressing canonical autophagy (73).

Despite methodological difficulty in reliably identifying
human Treg (74, 75), a number of papers have demonstrated
that most autoimmune diseases are accompanied by defects in
the number or function of peripheral blood Treg, and these
observations could be confirmed by in vivo disease models (76).
Most notably, experimental models demonstrated that
attenuation of Treg activity is causal and not a consequence of
autoimmune disease (77).

Preventive Role in Autoimmune
Pathogenesis?
Novel models of constitutive and inducible DC ablation and DC-
specific gene targeting have further elucidated the role of DC in
autoimmune diseases. Enforced antigen expression in steady
state DC induces profound and irreversible peripheral
unresponsiveness. Both, induction of Treg and anergization or
deletion of autoreactive T cells have been shown to be involved in
peripheral tolerance induction by DC (21, 78–81). However,
constitutive cDC, pDC or CD8+ cDC ablation (82–85) results in
only a small reduction in Treg numbers but does not cause
autoimmunity and DC ablation in an autoimmune-prone
background ameliorates rather than exacerbates disease (86).
However, these observations do not mean that DC are redundant
for peripheral tolerance, because in the absence of DC, effector
cells do not form.

Presumably, their functional state rather than their phenotype
determines the tolerogenic properties of DC. Although distinct
tolerogenic DC can be generated under artificial conditions (87,
88), they are not identifiable in the steady state. It has been
suggested that expression of the autoimmune regulator (AIRE),
which induces the presentation of a wide range of self-antigens,
contributes to central and peripheral tolerogenic DC activity (89,
90), however, in human DC its association with tolerogenic DC
activity has been called into question (91).

Independent of a phenotypic distinction of tolerogenic DC
populations, there are observations showing that DC counteract
autoimmunity by activating regulatory cells. In pemphigus, for
example, LC counteract the development of autoimmunity by
activating keratinocyte antigen-specific Treg (92).

Contributing Role in Autoimmune
Pathogenesis
While early adoptive transfer experiments had already shown
that DC can trigger autoimmune responses (67, 68), a number
of anti-inflammatory genes (including SHP1, STAT3, avb8-
integrin) have since been identified whose absence in DC
triggers spontaneous autoimmune responses (93–95). In
addition the formation of type I interferons by pDC appears
to be involved in all autoimmune processes. Recent
observations show that the gut microbiome induces IFN-I
production in pDC, which drives a specific epigenomic and
metabolic state in cDC that instructs cDC for pathogen control.
Interestingly, however, IFN-I-mediated cDC instruction lowers
Frontiers in Immunology | www.frontiersin.org 6
the threshold for self-reactivity (96). In this context, it is
noteworthy that of the 81 human autoimmune diseases
identified by Hayter and Cook (97), most involve the barrier
tissues gut and skin. As in the gut, a continuous confrontation
with microbiota takes place in the skin (98). Whether this leads,
as in the gut, to an instruction of skin DC is, to our knowledge,
not investigated. On the other hand, there are increasing
indications that gut commensal-mediated immune instruction
becomes systemic and influences immune responses in the skin
including autoimmune responses (99).

Disease Repercussions on DC and Their
Significance for Disease Progression
In addition to changes in DC that drive the development of
autoimmunity, there are retroactive changes in disease that
determine disease progression.

DC Accumulation and Altered Cytokine Formation
Accumulation of pDC is characteristic of autoimmune skin
lesions. In several autoimmune diseases, increased recruitment
of DC to target tissues leads to a decrease in the number of DC in
the blood. In rheumatoid arthritis (RA) there is also -presumably
in response to the decrease in numbers in the blood- an increased
generation of pre-plasmacytoid dendritic cells in bone marrow
(100). In systemic lupus erythematosus (SLE) circulating pDCs
become functionally abnormal (101).

Defective Migration
Local immune activation, in addition to increased attraction
of pDC, also ensures that DC already in the tissue increasingly
migrate to draining lymph nodes, or, conversely, are retained
at the site of inflammation. For example, in autoimmune
dermatitis, the migration of LC is impaired (102). The
defect in LC migration develops before the onset of skin
lesions and correlates with the onset and severity of
dermatitis. However, there appear to be both non-migrating
LC and migrating cells that look like LC and share some of
their characteristics (103).
INFLAMMATORY SKIN DISEASES

Inflammatory skin diseases are due to barrier damage or
activation of innate and acquired immunity. In contrast to
defined autoimmune diseases, inflammatory skin diseases often
have an autoimmune component for which it is not conclusively
clear whether it is causal.

Psoriasis
Psoriasis is a common (2% of the U.S. population) chronic
inflammatory skin disease characterized by thickening and
scaling of the epidermis due to increased proliferation of
keratinocytes (104). Psoriasis often develops on damaged skin
(Köbner phenomenon), suggesting that innate danger signals
may trigger psoriatic inflammation. It is now widely believed that
psoriasis is of autoimmune origin (105, 106).
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Psoriasis is associated with a greatly increased number of
inflammatory DC in diseased skin that act as potent T-cell
activators (107). In both psoriasis and relevant mouse models,
the IL-23/IL-17/IL-22 axis plays an important role in the disease.
In IL-23-induced psoriasis and in Imiquimod-induced psoriasis
(a model based on the observation that patients treated with
Aldara cream experience flares of psoriasis (108), which most
closely match gene expression found in psoriatic skin (109)), the
critical DC are TNF-a and IL-1b-producing monocyte-derived
DC, including a population of inflammatory Langerhans cells.
Flt3L-dependent DC and resident LC appear to be dispensable
for inflammation (110).

Lichen Planus
Lichen planus is a chronic recurrent inflammatory disease of the
skin and mucous membranes associated with apoptosis of basal
keratinocytes (111). For some time, autoimmune T cells against
desmoglein 3- and COL17 have been suspected to play a role in
this disease (112). Studies on DC indicate that LC play roles in
the pathology of the disease as they accumulate alongside DC in
oral lymphoid foci (113). As in virtually all skin autoimmune
diseases, in addition to myeloid DC, pDC were observed to
secrete IFN-a and granzyme B and possibly help lymphocytes in
tissue destruction.

Herpesvirus infections are associated with several
autoimmune diseases, including SLE, multiple sclerosis (MS),
and RA (114). Importantly, HSV infect DC and alter their
function (115). Remissions of lichen planus have been
associated with a decrease in protein expression of HHV-7
herpesviruses in pDC (116). Either viruses infect inflamed skin
more easily or viral infections lead to the destruction of
keratinocytes and thus start reactions against self-antigens.
KEY QUESTIONS AND FUTURE
DIRECTIONS FOR THE FIELD

The study of human disease in relation to the role of DC
struggles with the chicken-and-egg problem. Are DC drivers of
the disease or are changes in DC merely a consequence of the
disease? Mouse models of skin diseases such as psoriasis
recapitulate the symptoms of psoriatic patients, but are based
on triggers that do not occur as such in the pathogenesis of
human diseases. In addition, it is unclear which molecules define
tolerogenic and immunogenic DC.
THERAPEUTIC DC REPROGRAMMING

In Vivo Targeting of DC for Therapeutic
Approaches
The important potential use of tolerogenic DC in
immunotherapeutic applications include allergic and autoimmune
disorders and transplantation medicine. Thus, methods for rapid
and reliable large-scale production of DC ex vivo from peripheral
Frontiers in Immunology | www.frontiersin.org 7
blood of patients have been of great academic and clinical interest
and multiple clinical studies have been performed as mentioned
below. However, difficulties in obtaining DC from the blood in
sufficient numbers, high manufacturing costs and comprehensive
requirements for GCP-based production have led to advancements
for in vivo targeting of per se tolerogenic DC or for induction of
tolerogenic phenotypes in vivo, respectively (117–119). In addition
to avoidance of costly ex vivo isolation, these approaches have the
advantage of targeting of DC subsets in their natural environment
and offer the availability to a broad range of patients because of
donor independency (Figure 2).
ANTIBODY-MEDIATED DC
TARGETING IN VIVO

An alternative strategy for antigen-specific tolerance induction
by DC in vivo is the use of antigen-delivering antibodies (119,
120). Here, a particular antigen is delivered via antibodies that
bind to molecules expressed by DC. The rationale is the specific
targeting of tolerogenic DC and/or the induction of intracellular
tolerogenic pathways after internalization and processing of the
antigen (Figure 2). So, the processed antigen will be presented in
a tolerogenic context, resulting in T cell anergy, T cell deletion,
and/or activation and expansion of Treg, respectively. Though
many studies focus on the induction of immunity in cancer, in
vivo targeting of DC was achieved to affect the immune responses
in allergies, autoimmune diseases and transplantation rejections
as well. Antibody-dependent targeting of DEC-205, an
endocytotic receptor highly expressed on cDC1, resulted in
antigen-specific unresponsiveness in the absence of adjuvants,
whereas presence of maturation stimuli led to pronounced
immune responses (21, 118). With regard to the pro-
tolerogenic properties of DEC205+ DC if given without
adjuvants, antibodies against the c-type lectin receptor DEC205
have been administered in different mouse models of
autoimmune diseases (e.g. EAE, diabetes, colitis and arthritis)
and graft-versus-host disease (121–125), resulting in tolerogenic
mechanisms and prevention of inflammatory immune reactions.
Dependent on the type of disorder and the antigen used, T cell
deletion or T cell anergy of antigen-specific effector T cells and/
or Treg activation have been identified as underlying mechanism
for tolerance induction. Importantly, a phase I clinical trial in
which human DC were targeted in vivo with anti-DEC205 linked
to the tumor antigen NY-ESO-1 in the presence of maturation
factors resulted in a robust cellular and humoral immune
response. This proof-of-concept study confirms the preclinical
data that in vivo targeting of DC leads to an antigen-specific
modulation of immune reactions (126). Further studies reported
alternative molecules for antibody-mediated targeting of
tolerogenic DC as CD207, Treml4, Siglecs, DCIR2, or CLEC9A
(DNGR1). Antigen delivery by these antibodies in the vast
majority of the studies promoted the activation and/or
differentiation of regulatory FOXP3+ regulatory T cells (118,
127) (Figure 2).
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USE OF NANOPARTICLES FOR
TOLEROGENIC DC TARGETING IN VIVO

Driven by the initial success in DC-targeting nanocarriers for
cancer treatment, promising strategies in this field are under
development to modulate the immune system in autoimmunity,
allergies, and transplantation medicine (128). DC-specific
antibodies can be linked to nanoparticles (NP), allowing for a
cell-specific targeting, as well as drug-delivery to induce DC with
a tolerogenic phenotype, thereby preventing harmful
inflammatory immune responses (Figure 2). For successful
nanoparticle-based immune modulation through DC targeting
in vivo , there are some aspects to be considered: 1.
physicochemical properties of the NP (material, size, shape,
charge, surface modification etc.), 2. disease-specific antigens,
3. DC targeting molecules, 4. co-delivery of drugs or adjuvants
with functional properties for tolerance induction and 5. route of
administration (119, 128). When using nanoparticles for
regulation of immune reactions in autoimmune and allergic
diseases, all these parameters can be optimized to boost DC
targeting and to control unwanted immune responses. Multiple
receptors, including DC-SIGN, mannose and Fc receptors,
CD40, or CD11c, respectively, have been used for DC specific
ta rge t ing in the contex t o f nanomedic ine (128) .
Immunosuppressive drugs and other tolerogenic agents (e.g.
siRNA, antisense oligonucleotides) can be packaged into
nanoparticles and be co-delivered with (auto-)antigens into
DC, resulting in immune tolerance, e.g. by generation and
activation of Treg (129) (Figure 2). In preclinical in vivo
models it was demonstrated that poly(lactic-co-glycolic acid)
(PLGA) nanoparticles carrying rapamycin were capable of
inducing durable immunological tolerance to co-administered
proteins via induction of tolerogenic DC and subsequent
increased numbers of Treg. This immune modulation resulted
in an inhibition of antigen-specific hypersensitivity reaction that
was superior to the efficacy of rapamycin administered on its
own (130). In another approach, nanoparticles were generated
that target disease relevant peptides toward MHC class II
molecules which then initiate the expansion of antigen-specific
regulatory Tr1 cells and regulatory B cells leading to abrogated
immunological and clinical symptoms in several murine
autoimmune models such as type 1 diabetes, rheumatoid
arthritis, multiple sclerosis and inflammatory bowel disease
(131). The field of transplantation medicine uses nanoparticles
to induce a donor-specific, long-lasting tolerance. Bryant et al.
showed that PLGA-based nanoparticles loaded with donor
antigens combined with low dose rapamycin at the time of
transplant protected transplanted islet allografts from
rejection (132).
THE SKIN AS ANATOMICAL SITE FOR
DC – MEDIATED TOLERANCE INDUCTION

Among specific anatomical sites, the skin represents a crucial barrier
that is in constant exchange with exogenous antigens and
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commensal pathogens, requiring control of immune responses
orchestrated by cutaneous and skin-draining DC. As mentioned
above, the induction of tolerance vs. immunity depends on the DC
subset, immune mediators and receptors involved etc. but as well as
on the dose and application route of the antigen. With regard to the
antigen dosage, the allergic contact dermatitis (ACD), one of the
most frequent occupational skin disorder, is induced in patients and
mice by epicutaneous exposure to high doses of contact allergens
(haptens). They are taken up by cutaneous DC that prime the
allergen-specific ACD effector T cells in the skin-draining LN. A
second contact with the same allergen results in activation of these
allergen-specifc ACD effector T cells and the clinical manifestations
of the ACD (133, 134). In contrast, repetitive epicutaneous
applications of very low doses of haptens (low zone tolerance)
circumvent the activation of cutaneous DC and in contrast induce
an allergen-specific tolerance via stimulation of regulatory FOXP3 +
T cells and activation and differentiation of CD8+ tolerogenic DC in
skin-draining LN. The latter ones produce TNF that foster the
apoptosis of ACD effector T cells, thereby inhibiting the allergic
cutaneous inflammation of ACD (135–137) (Figure 2). Thus, the
dosage of the contact allergen determines the outcome of the
immune response and the development of the resulting skin
disease via activation of stimulating vs tolerogenic DC, followed
by regulatory T cell differentiation respectively.

The idea to modulate an allergic immune response by
application of allergens via the skin was also further analysed
for protein antigens, and called epicutaneous immunotherapy
(EPIT) (138). In animal models of food allergies and
autoimmune diseases, repetitive applications of an adhesive
dermal patch containing antigens protect from inflammation
and clinical symptoms via uptake of antigens by cutaneous LC
and subsequent regulatory T cell activation (119, 138, 139)
(Figure 2). These promising studies have paved the way for
several clinical trials of EPIT that have been completed or are
ongoing for milk, peanuts and pollen allergies with encouraging
results in terms of safety and tolerability (138).
CLINICAL TRANSLATION OF
TOLEROGENIC DC

For clinical applications, the most available options so far have
been to induce immature DC ex vivo, and treat them with agents
promoting the differentiation into tolerogenic DC phenotypes,
which can be given during the entire culture period in the
absence of maturation stimuli or only during the maturation
phaseThe latter protocols combine the culture of CD14+ DC
precursor cells in the presence of maturation factors (e.g., LPS or
IL-1+IL-6+TNF+PGE2) with additional pharmacological agents,
immunosuppressive mediators, exposure to apoptotic cells or
gene modification (119, 140, 141). Here, an aberrant DC
maturation occurs, resulting in the differentiation of a stable
human tolerogenic DC phenotype. Such monocyte-derived DC
recapitulate the properties and functionality of naturally
occurring DC. Co-culture of monocyte-derived DC with
immunosuppressive drugs (e.g. rapamycin, dexamethasone) or
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cytokines (e.g. TGF-beta, IL-10) or other bioactive agents (e.g.
vitamin D3, hepatocyte growth factor, complement factor H,
neuropeptide vasoactive intestinal peptide) leads to tolerogenic
properties of the differentiated DC populations (140, 142–148).
Most of these substances dampen the antigen-presenting
properties of DC by reducing expression of costimulatory and
MHC class molecules. On the other hand, immunosuppressive
surface molecules (e.g. ILTs, PD-L1) or soluble mediators (IL-10,
TGF-beta, IDO) are highly expressed by tolerogenic DC subsets
(145, 149–151). These differentiated tolerogenic DC are capable
to directly suppress the effector functions of other immune cells,
such as T or B cells, induce T cell anergy or T cell apoptosis and/
or the differentiation and activation of Treg with high
suppressive activity.

Since a comparative study by Boks et al. identified IL-10
modulated tolerogenic DC as promising candidates for antigen-
specific tolerance induction in vitro, we will highlight the generation
and properties of these DC subset in more detail. In the first
culturing step IL-10 DC differentiate in the presence of IL-4 and
GM-CSF to immature DC. The two most prominent protocols
differ in the duration of IL-10 supplementation: throughout the
culture period (DCIL10) or only during the last two days of culture,
in the presence of a maturation cocktail (25, 152–156). Gregori et al.
showed that DCIL10 express CD14, CD16 and ILT2-4 but also
typical DC markers such as CD83 and CD86 molecules (156).
DCIL10 are inducers of regulatory IL10 secreting Tr1 cells that
express CD49b and Lag3 and the induction of these Tr1 cells was
largely dependent on IL-10 secretion by DCIL10.

In contrast, human IL-10 DC, generated in presence of IL-10
only during the last two days of the maturation phase, were
inducers of anergic T cells as well as of Treg, which was
independent of IL-10 secretion by DC. The Treg efficiently
suppressed syngeneic CD4+ effector T cells and cytotoxic CD8+

T cells in a cell-to-cell contact dependent and antigen-specific
manner (142, 153). The induced T cell anergy was associated
with an increased expression of MAP kinase p38 and its effector
molecules MEK 2 and 3. The latter ones facilitated the
upregulation of the cyclin-dependent inhibitor 1B (p27Kip1),
resulting in a cell-cycle arrest in the G1 phase and, thereby in an
anergic state of the T cells (154, 155).

As mentioned above, a comparative study by Boks et al.
identified IL10-modulated DC (IL-10 DC) as the most potent
candidates for tolerance induction as they exhibit important
prerequisites for clinical applications in humans such as potent
migratory capacity, efficient Treg induction, and the stability of
tolerogenic phenotype under inflammatory conditions (146).
Investigation of our own laboratory confirmed these theses as
we identified two subsets of the tolerogenic IL-10 DC,
CD83highCCR7+ and CD83lowCCR7- IL-10 DC. Both
tolerogenic DC subpopulations exhibited the capacity to
induce Treg, but Treg generated in the presence of the
CD83high IL-10 DC subset displayed a superior suppressive
capacity. In addition, the CD83high DC subset was extremely
stable in a pro-inflammatory environment and, due to the
increased CCR7, expression showed a very high migratory
capacity which is required for DC/T cell-contact in lymphatic
Frontiers in Immunology | www.frontiersin.org 9
tissues (25), identifying this CD83highCCR7+ IL-10 DC subset as
promising candidate for clinical applications.

Clinical Studies With Ex Vivo Generated
Human Tolerogenic DC
The increasing knowledge of tolerogenic DC biology, the promising
results from in vitro studies with human DC and numerous
preclinical animal studies have paved the way for several
completed and ongoing clinical phase I trials in autoimmune
diseases and transplantation medicine (141) (Figure 3). Published
studies in patients suffering from diabetes (157), arthritis (158, 159),
multiple sclerosis (160, 161) and Crohn´s disease (162) used
different protocols for induction of tolerogenic DC phenotypes,
including dexamethasone alone or plus vitamin D3 or vitamin A,
respectively. Vitamin D3 alone, an NF-kappaB inhibitor, or
antisense ODN against CD40, CD80 and CD86 were also used.
In the vast majority of the trials the tolerogenic DCwere loaded with
disease specific antigens/peptides for induction of a specific
tolerance reaction. The study results demonstrated a range from
no adverse effects until grade 1/2, indicating a high safety profile for
tolerogenic DC applications in vivo. Analysis of the clinical outcome
showed a therapeutic response in a part of the patients, often
measured in reduction of disease-specific scores. Immuno-
monitoring in some trials revealed a decrease in cytokine
production, reduced effector T cell responses, and intriguingly, an
increase of the Treg/effector T cell ratio or of the frequency of the
Tr1 regulatory T cell subset (158) (Figure 3).

In transplantation medicine, data from six phase I/II trails
assessing the use of various regulatory cell products, including
tolerogenic DC, in kidney transplantation have been analysed.
The results demonstrate that regulatory cell therapy is associated
with fewer infectious complications, but similar rejection rates,
and is therefore a potentially useful therapeutic approach to
minimise the burden of general immunosuppression (163). A
meta- analysis of 48 records of clinical trials confirmed these
data, showing the safety of tolerance-inducing cell-products
(including DC) in patients with autoimmune disorders or
receiving organ transplantation (160).
KEY QUESTIONS AND FUTURE
DIRECTIONS

In general, the clinical trials in this field have confirmed the
safety and feasibility of autologous ex vivo generated tolerogenic
DC for therapeutic approaches in autoimmunity and
transplantation medicine. However, tolerogenic DC use in real
clinical practice has many problems to solve beforehand.
Harmonization of study protocols and systematic inclusion of
immunological outcome measures would highly improve the
development of tolerogenic DC-based treatment approaches.
These needs have initiated the implication of consortia in the
USA (“The immune tolerance network”) and Europe (“Action to
focus and accelerate cell-based tolerance inducing therapies”).

As the generation of autologous ex vivo tolerogenic DC
exhibit several pitfalls as mentioned, alternative strategies of in
June 2022 | Volume 13 | Article 929000

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Scheib et al. DC in Tolerance and Immunity
vivo DC targeting by antibody- and nanoparticle-based
techniques or antigen delivery by way of the skin (EPIT, LZT)
can be considered for tolerance induction. However, these
systems have been primarily tested in preclinical models and
further translational trials have to be performed to show the
efficacy, feasibility and safety of these novel strategies for
tolerance induction via DC targeting in vivo.
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