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Motor Imagery BCI systems have a high rate of users that are not capable of modulating
their brain activity accurately enough to communicate with the system. Several studies
have identified psychological, cognitive, and neurophysiological measures that might
explain this MI-BCI inefficiency. Traditional research had focused on mu suppression
in the sensorimotor area in order to classify imagery, but this does not reflect the true
dynamics that underlie motor imagery. Functional connectivity reflects the interaction
between brain regions during the MI task and resting-state network and is a promising
tool in improving MI-BCI classification. In this study, 54 novice MI-BCI users were split
into two groups based on their accuracy and their functional connectivity was compared
in three network scales (Global, Large and Local scale) during the resting-state, left
vs. right-hand motor imagery task, and the transition between the two phases. Our
comparison of High and Low BCI performers showed that in the alpha band, functional
connectivity in the right hemisphere was increased in High compared to Low aptitude
MI-BCI users during motor imagery. These findings contribute to the existing literature
that indeed connectivity might be a valuable feature in MI-BCI classification and in solving
the MI-BCI inefficiency problem.

Keywords: motor imagery (MI), brain computer interface (BCI), BCI inefficiency, electroencephalography (EEG),
functional connectivity (FC), phase synchronization

INTRODUCTION

Brain-Computer Interface (BCI) is a system that outputs an action based on the classification of
the user’s brain waves. The technique enables humans to interact with the physical environment
and external devices without having to move muscles (Wolpaw et al., 2002). This is a solution for
disabled bodies—for example, caused by a stroke (Wolpaw et al., 2002), who can thereby control an
exoskeleton (Jeong et al., 2020), robot arm (Edelman et al., 2019), or wheelchair (Kim et al., 2016).

The brain signals as input for the BCI are most commonly measured with
electroencephalography (EEG) because it is non-invasive, low-cost, and user-friendly compared
to other imaging techniques. There are various BCI paradigms that employ different tasks and
EEG components for operation (e.g., P300, SSVEP, etc. see Abiri et al., 2019 for a review). Motor
imagery BCI (MI-BCI) systems rely on the mental execution of a movement, which changes brain
activity in the motor cortex (Pfurtscheller and Neuper, 2001). The system classifies these changes
and thereby sends a command to the external device (Wolpaw et al., 2002). MI-BCIs have the
advantage of not requiring external stimuli (as opposed to reactive BCIs) however they require
extensive training until the user is capable of producing ideal brain activity patterns for the system
to classify (Wolpaw et al., 2002).
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However, Allison and Neuper (2010) concluded that
15–30 percent of users are incapable of using a MI-BCI system
even after training. This lack of control is traditionally called
‘‘BCI illiteracy’’ (Allison and Neuper, 2010), which is more
recently replaced with the term ‘‘BCI inefficiency’’ to stress
the fact that the users are not solely responsible for inaccurate
classification (Thompson, 2019); the issue of BCI inefficiency
arises with the variations in brain signals between different
subjects and experiments (Lotte et al., 2007; Lee et al., 2019a) and
its prevalence has been investigated by multiple studies as well
(Jeunet et al., 2016; Lee et al., 2019a; Meng and He, 2019).

The variability in BCI performance has been related to a
variety of cognitive, psychological, and neurophysiological
factors (e.g., Jeunet et al., 2015; Leeuwis et al., 2021a) which
gives rise to the intra- and intersubject variability in EEG
brain activity patterns (Saha and Baumert, 2020). Plenty of
studies have investigated user’s traits, psychological states,
and cognitive abilities to relate them to BCI performance
(e.g., Jeunet et al., 2015; Leeuwis et al., 2021a), and while
some variability is explained, the holy grail has yet to be
found. Identifying inefficient users and the underlying
mechanisms of BCI inefficiency is important as it will
allow researchers to: (1) select suitable subjects for their
experiments; (2) adapt the training strategy and duration
to each user; and (3) report subject-dependent results
that would make the comparison between studies easier
(Sannelli et al., 2019).

Research into the neurophysiological factors has mainly
focused on pattern changes in the sensorimotor rhythm (SMR;
Blankertz et al., 2010) known as mu suppression (Wolpaw
and McFarland, 2004). Mu suppression refers to Event-
Related (De)Synchronization (ERD/ERS) within alpha/mu band
(8–13 Hz; Penaloza et al., 2018) and is seen in both motor
execution (Duann and Chiou, 2016) and motor imagery
(Pfurtscheller and Neuper, 2001) and therefore is widely
applied in MI-BCI systems (e.g., Pfurtscheller et al., 2006;
Blankertz et al., 2008). For instance, BCI inefficiency is
usually attributed to a lower SMR amplitude during resting-
state (Zhang et al., 2020) and MI task (Shu et al., 2018),
implicating that the MI-induced SMR-modulation is smaller,
which results in insufficient discrimination of brain activity
patterns for the system to correctly translate the users’ intentions
(Zhang et al., 2020).

While the SMR activity can be enhanced by conducting
multiple training sessions, the inter-subject variability is still
present after training and thereby contributes to user inefficiency
(Saha and Baumert, 2020). This variability arises as the frequency
bands and cortical regions in which MI-related activations
appear are not consistent for all subjects, which leads to the
unreliability of ERD/ERS analysis for different subjects (Hamedi
et al., 2016; Benaroch et al., 2021). Focusing on one specific
region while neglecting its interactions with other regions,
oversimplifies the real phenomenon of motor imagery; the
system’s collective behavior should be understood to fully
capture the brain activity during motor imagery (Gonzalez-
Astudillo et al., 2020). Therefore, especially the inefficient BCI
users with low resting-state SMR might benefit from new

measures; such as brain connectivity analysis (Hamedi et al.,
2016; Zhang et al., 2020).

Brain connectivity analysis provides a tool to inspect
the interaction between brain regions during the MI task;
it quantifies the exchange of information and its relevance
to the user’s BCI performance (Wang et al., 2006; Zhang
et al., 2017). This is done with connectivity measures such
as functional connectivity and effective connectivity (Hamedi
et al., 2016). Functional connectivity is explained as statistical
dependencies between brain regions, and effective connectivity
gives directionality to this exchange of information (Lee et al.,
2019b). Previous reports suggest that inefficient BCI users
exhibit different brain connectivity at the baseline resting-
state, and this can be used to predict their performance
during the task (i.e., Zhang et al., 2015; Lee et al., 2020).
For instance, Zhang et al. (2015) reported that the average
functional connectivity at resting-state is positively correlated
with BCI performance, indicating that a higher EEG connectivity
during resting-state was related to better BCI accuracies. In
addition, Lee et al. (2020) observed significantly higher effective
connectivity from the supplementary motor area (SMA) to the
right dorsolateral prefrontal cortex (DLPFC) in high aptitude
BCI users during resting-state when compared to low aptitude
performers. Implementing these findings, research showed
that functional connectivity during the MI task (Yi et al.,
2014; Stefano Filho et al., 2017; Gu et al., 2020; Vidaurre
et al., 2020; etc.) or the change in functional connectivity
from resting-state to MI task can be used as a feature
for MI-BCI classification (Gonuguntla et al., 2016; Hamedi
et al., 2016). This means that MI-BCI performance cannot
be solely dependent on the resting-state EEG and that the
user’s ability to reorganize brain activity during the MI task
may play a critical role in determining the success of the
BCI control.

In the former studies, both effective connectivity (e.g.,
Lee et al., 2020) and functional connectivity (e.g., Vidaurre
et al., 2020) measures have been investigated, however,
these studies employed various metrics of connectivity
including coherence, phase synchronization, phase-slope
index, etc., which employ different algorithms and hence
vary in their interpretation (Bastos and Schoffelen, 2016).
However, to fully tackle the disadvantages of EEG, such as
artifacts and inter-trial/inter-subject amplitude variability,
phase-based relationships (e.g., phase synchronization) might
provide the best functional connectivity measure of spatially
distributed regions that are active during mental task execution
(Caicedo-Acosta et al., 2021). Functional connectivity features
measured by the phase lag index (PLI) and phase-locking
value (PLV) can discriminate between different MI tasks
(Stefano Filho et al., 2018; Caicedo-Acosta et al., 2021), and
therefore are a promising tool to identify potential non-learners
(Caicedo-Acosta et al., 2021).

Besides the variety in applied algorithms, different networks
of connectivity are observed in previous literature. Some studies
computed connectivity as average synchronization between
distributed brain regions i.e., an average of all electrode
connections over the scalp (e.g., Zhang et al., 2015). Others make
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the distinction between local scale and large scale (e.g., Wang
et al., 2006; Zhang et al., 2014; Vidaurre et al., 2020). In addition,
some researchers worked with source localization algorithms
before applying connectivity measures (e.g., Gu et al., 2020;
Lee et al., 2020; Vidaurre et al., 2020). Within this distribution
of scales, especially separating connectivity values for intra-
and inter-hemispheric activity makes sense as the MI task is
lateralized between left- and right-hand movements which are
represented contralateral in the brain: the ERD on the left side of
the motor region (C3) is observed in right-hand MI, whereas that
on the right side of the motor region (C4) is observed in left-hand
MI (Luo et al., 2021).

While past studies have investigated the potential of brain
connectivity analysis in identifying the mechanisms of BCI
inefficiency, the literature remains inconclusive regarding the
role of connectivity measures as these studies employed a
variety of connectivity algorithms, on a variety of scalp
locations and in a variety of tasks. Most studies showing the
value of connectivity have been working on small datasets,
comparing results at an individual level instead of a statistically
meaningful group level. Therefore, it is important to validate
the efficacy of brain connectivity as a potential predictor of
MI-BCI performance by using a larger dataset that represents
the large inter-subject variability that exists among BCI users
(Leeuwis and Alimardani, 2020).

In this study, we aim to examine the relationship between
EEG connectivity during the MI task and users’ BCI
performance. By comparing two groups of High and Low
BCI performers in a large dataset (N = 54), this study intends
to investigate if successful MI task execution (i.e., better BCI
performance) is associated with establishing a different (perhaps
stronger) connectivity pattern between brain areas. As phase
synchronization is a promising measure in predicting MI-BCI
performance, which is also robust to artifact and inter-subject
amplitude variability (Caicedo-Acosta et al., 2021), PLV is
employed as a measure of functional connectivity in this study.

In addition, this study intends to bring consistency to
literature by evaluating EEG connectivity at different network
scales. We explored the connectivity difference between High
vs. Low aptitude groups in the sensorimotor areas by examining
all different scales that are proposed in previous research: the
average connectivity over all electrodes (e.g., Zhang et al., 2015),
and the distinction between local scale and large scale (e.g., Wang
et al., 2006; Zhang et al., 2014; Vidaurre et al., 2020). Since intra-
hemispheric connectivity might depend on the directionality of
trials, in combination with the dominant hand of the subjects,
the directionality of trials was also considered as a factor in
the analysis.

Thus, the present study will uncover if the PLV values
during left MI trials are significantly different from PLV values
during the right trials in either high or low performers on three
scales of connectivity: (1) the average connectivity between all
connections; (2) large scale connectivity based on connections
between the left and right motor areas; and (3) local scale
connectivity based in either left or right motor areas. The large
number of participants and the incorporating of this number of
connectivity scales is unique in the literature and will therefore

contribute to a better understanding of functional connectivity
and its relation to motor imagery.

MATERIALS AND METHODS

Experiment
Participants
The data was collected by Leeuwis et al. (2021b). The dataset
comprises 55 novice subjects (MAge = 20.71, SDAge = 3.52,
36 females, 19 males). Subjects were all right-handed with
(corrected to) normal vision by criteria for participation.

EEG Signals
EEG was recorded from 16 electrodes according to the
10–20 international system (F3, Fz, F4, FC1, FC5, FC2, FC6, C3,
Cz, C4, CP1, CP5, CP2, CP6, T7, and T8) while the subjects
completed a MI-BCI task. The reference was set on the right
earlobe and a ground electrode on AFz. EEG signals were
amplified by a g.Nautilus amplifier (g.tec Medical Engineering,
Austria) at the sampling rate of 250 Hz.

Motor Imagery Task and the BCI System
Details of the experimental procedure can be found in Leeuwis
et al. (2021a,b). The BCI paradigm included four runs: it
started with one non-feedback calibration run followed by three
feedback runs. In this study, we work with the data recorded
during the three feedback runs, hence excluding the calibration
trials. Each run consisted of 20 left- and 20 right-hand trials,
resulting in 40 trials per run. Each trial took 8 s and started with
a fixation cross shown for 3 s (Figure 1). A red arrow cued the
direction in which the participant had to imagine movement.
This arrow was presented for 1.25 s. After the cue, a feedback
bar indicated the direction and certainty of the BCI classifier’s
prediction to the participant.

The online BCI classifier used g.BSanalyze (g.tec Medical
Engineering, Austria), which is a Simulink-based high-speed
online processing package. The classifier relied on Common
Spatial Patterns (CSP) algorithm to compute ERD/ERS in each
trial. The classifier was recalibrated after every run. Thus, the
classifier parameters were recomputed based on the latest run. In
doing so, the classifier was optimized to the strategy of the user
throughout the session.

Data Analysis
Low and High BCI Groups
Subjects were split into two groups of Low and High performers
based on their online BCI performance. The accuracies obtained
from all trials in the three feedback runs were averaged and a
median split was performed. The subject with the median value
was excluded from the analysis, which left both High and Low
performance groups with 27 subjects. The median score was 71%,
which is closely compatible with the inefficiency threshold of 70%
in previous studies (Lee et al., 2019a; Meng and He, 2019). The
median split provided a balanced group comparison, which in
return improved statistical strength. The Low performers group
included 11 males and 16 females (MAge = 21.4, SDAge = 4.44).
The High performers group were 19 females and eight males
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FIGURE 1 | MI-BCI paradigm during the three feedback runs. The dataset included a total of 120 trials (60 right and 60 left-hand trials) per subject. Each trial lasted
8 s. The first 3 s of the trial served as the rest phase while the last 5 s provided motor imagery data.

TABLE 1 | Average BCI performance for high and low BCI performers.

M SD

High aptitude users 77.17 5.44
Low aptitude users 67.19 2.96

(MAge = 20.2, SDAge = 1.94). Their BCI performance is indicated
in Table 1.

EEG Pre-Processing and PLV Calculation
The EEG data were re-referenced using common average
referencing (CAR) and then band-pass filtered between 8 and
30 Hz using the MNE python package (Gramfort et al., 2013). A
Laplacian spatial filter was applied to reduce the effects of volume
conduction (Cohen, 2014; Kayser and Tenke, 2015). Following
the default settings, the regularization parameter γ was 1e-5 and
the stiffness of the spline was 4 (Gramfort et al., 2013; Cohen,
2014). The preprocessed EEG signals were used to extract PLV
by using a complex Morlet wavelet (CMW) as a kernel. CMW is
defined as

ψ(t) = ej2π fct e − t2/fb/
√
π fb

where fb is the bandwidth parameter and fc is the center
frequency (He et al., 2011). For alpha frequency analyses, fc was
10.5 and fb was 0.3. For beta band frequency analyses, fc was
21.5 and fb was 0.13.

Continuous wavelet transform using a CMW enables
detecting changes in the frequency domain that occur in
different time periods. CMW is popular in the time-frequency
decomposition of EEG signals because it uses a Gaussian-
modulated sinusoid and therefore its shape resembles the
neurophysiological signals (Kopal et al., 2014).

The functional connectivity between different sites of the
brain was calculated in terms of phase synchronization.
Investigating a synchronization between brain signals collected
from different sites can unveil how the cortical regions
communicate with each other (Gray et al., 1989). Phase
synchronization analysis started with the effort to understand the
phase-locking phenomenon in which a constant phase difference
between two signals lasts for a short period of time (Rosenblum
et al., 1996; Mezeiová and Palus, 2012). Phase synchronization

analysis is conducted by quantifying this phenomenon into a
phase-locking value (PLV) that is obtained by the equation below

PLV(t) =
1
N

∣∣∣∣∣
N∑

n = 1

ei θ(t,n)
∣∣∣∣∣ (1)

where θ (t, n) stands for the phase difference ϕ1(t, n)− ϕ2(t, n)
on time bin t for each trial n in [1, . . . ,N] (Lachaux et al., 1999).
Time bin t reflected 3 s for resting state and 3.5 s for MI task with
zero overlap. The PLV was calculated for each pair of electrodes
in the dataset.

The PLV ranges from 0–1, with 1 indicating complete phase
synchronization and 0 indicating no phase synchronization.
Complete phase synchronization appears when the two
compared EEG signals possess indistinguishably the same
characteristics (Mezeiová and Palus, 2012). By using phase
synchronization to quantify functional connectivity, the
information carries more refined information than other
measures because it focuses on the phase of the signal regardless
of the amplitude of the wave which can change due to various
artifacts including the body movements.

Time Course of Functional Connectivity
Past studies investigated EEG connectivity either during resting-
state (e.g., Zhang et al., 2015; Lee et al., 2020) or the motor
imagery task (e.g., Gu et al., 2020; Vidaurre et al., 2020)
to associate it with BCI inefficiency. This study aimed to
provide a comprehensive analysis of EEG functional connectivity
by examining the difference between High and Low BCI
performance users at rest, during the motor imagery task,
and also the change of functional connectivity that took
place between the two phases. Therefore, for each trial, PLV
was calculated in three ways: (1) PLV during pre-MI rest
(PLVRest); (2) PLV during the motor imagery task (PLVMI);
and (3) the change of PLV from rest to the MI task
(∆PLV = PLVMI − PLVRest). The last measure serves as a
quantification of the neuromodulation that is expected to take
place when a user switches from rest to MI task. Figure 1 provides
an example of the chronological order of the BCI task during
each feedback trial. The first 3 s of each trial were marked as
rest, followed by the MI task in the next 5 s. Considering the
time needed for the user to engage in the task and the impact of
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feedback toward the end of the trial, only 3.5 s of the MI task
(between 1 s and 4.5 s after cue onset) were evaluated for the
computation of the PLV-value. This duration of the MI segment
was determined by making a consensus between Marchesotti
et al. (2016) and Lee et al. (2019a).

Localization of Functional Connectivity
Different scales of connectivity are observed in previous
literature. To create the most complete overview of different
scales employed by past studies, the current study employed
three different connectivity scales: (1) a global PLV which takes
the average of connectivity over all electrodes (e.g., Zhang
et al., 2015); (2) a large scale PLV which tests the connectivity
between the left hub (FC5, FC1, C3, CP5, CP1) and right hub
(FC6, FC2, C4, CP6, CP2); and (3) a local scale PLV which
looks at connectivity within either the left or right hub. This
distinction between large and local scale connectivity has also
been made by past research (e.g., Wang et al., 2006; Zhang
et al., 2014; Vidaurre et al., 2020). Large scale connectivity
targets the inter-hemispheric network whereas local scale targets
intra-hemispheric network. It is plausible for the connectivity
during the MI task to be considered in both scales as the task
is lateralized between left- and right-hand movements which are
contralaterally represented in the brain. Figure 2 illustrates the
connections included in every network scale. Note that for the
local scale, two separate analyses were conducted: one for the left
hemisphere (C3 neighborhood) and one for the right hemisphere
(C4 neighborhood).

Statistical Analysis
Factorial ANOVAs with permutation were run for each network
scale, where the dependent variable of the ANOVA was
the average PLV value generated from the given electrode
configurations and independent variables were BCI performance
groups (High vs. Low) and MI hand (Left vs. Right). The
interaction term was included in the model. The number of
permutations was 999 for all analyses. When applicable, post
hoc analyses were conducted with a two-sample t-test with a
permutation test.

Since several analyses were done, results had to be corrected
for multiple comparisons. In each network scale, connectivity
values in three activity types (PLVMI, PLVRest, ∆PLV) were
compared in two frequency bands (alpha, beta). Thus, following
the Bonferroni correction, the significance level was adjusted to
0.05/6 = 0.008.

RESULTS

Subjects were grouped into High and Low aptitude BCI users
by splitting the BCI online performance at the median value
(71.00%) which created two groups of 27 subjects. The mean
and SD of BCI online performance in each group are shown in
Table 1. The PLV values for all electrode connections can be
found in the Supplementary Material.

The results of factorial ANOVAs within the alpha band for
global scale, large scale, and local scale connectivity are shown
in Table 2. No significant effects were found for global scale,
large scale and local scale left hemisphere connectivity in any

of the phases or any of the frequency bands. Only for the
right hemisphere local connectivity, the test showed significantly
different PLV between the BCI performance groups during
the motor imagery phase in the alpha band (F(1,1,1,320) = 8.36,
p = 0.005) although there was no main effect for the MI hand
or an interaction effect between the two factors. The results in
the beta band were non-significant for all scales.

Post hoc analysis revealed that the high aptitude users had
significantly higher PLV values compared to the low aptitude BCI
users (p = 0.002). Figure 3 demonstrates the alpha band PLV in
the local scale right hemisphere for both high and low groups as
computed in three ways; during Motor Imagery, Rest, and the
change from Rest to MI.

DISCUSSION

This study aimed to establish the efficacy of EEG functional
connectivity in recognizing BCI inefficient users in a motor
imagery paradigm. Phase synchronization (PLV) was compared
in two groups of High and Low aptitude users, each containing
27 subjects, in different brain network scales (global, large, and
local scale) and different timelines of the motor imagery task
(Rest, MI, and MI − Rest). Results indicated a significantly
higher alpha band connectivity in the right hemisphere (local
scale) for the high performing users during the motor imagery
task. The implications of these findings are discussed in the
following sections.

The Impact of Connectivity During Motor
Imagery
Several studies in the past have identified connectivity as a
marker for MI-BCI accuracy. Wang et al. (2006) were early
to show that functional connectivity as measured through
phase synchronization could serve as a predictor of MI-BCI
performance; phase synchrony between supplementary motor
area (SMA) and primary motor areas (M1) differed between
left and right MI trials. Later, Zhang et al. (2014) calculated
connectivity metrics on a two-class MI-BCI and revealed that
connectivity within left and right hemispheres differed for
both hands during motor imagery. This would enable within-
hemisphere connectivity values as a possible feature in MI-BCI
classification (Zhang et al., 2014). Subsequently, Gu et al. (2020)
used this feature to show that within-hemispheres functional
connectivity during the MI task could enhance BCI classification
of foot imagery. Although Stefano Filho et al. (2017) found
that regular Power Spectral Density (PSD) methods provide
slightly better accuracies than functional connectivity as a feature
for motor imagery classification, Wang et al. (2019) showed
that classification with Common Spatial Patterns (CSP) can
be improved by adding synchronization as a feature. Here,
synchronization was calculated with cross-correlation and PLV,
which were then compared and combined with CSP. Combining
CSP with cross-correlation functions improved classification
accuracy and performed better than CSP combined with PLV
(Wang et al., 2019). Similarly, Zhang et al. (2019) used a fusion
of functional connectivity and event-related desynchronization
(ERD) features and observed that MI classification accuracy
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FIGURE 2 | The three scales of connectivity employed in this study. (A) Global scale connectivity: computes average PLV of all electrodes. (B) Large scale
connectivity: computes average PLV from the left to the right hemisphere. (C) Local scale connectivity: computes local connectivity on two locations: the left
hemisphere (C3 and all surrounding electrodes) and the right hemisphere (C4 and all surrounding electrodes). PLV, phase-locking value.

increased such that 4 out of 12 inefficient users performed
above the efficiency threshold of 70% accuracy. This result is
particularly of interest as it shows that low performing users
may engage in the MI task in a different way that can only be
captured by brain network features. Our study confirms that
a difference in dynamic brain network patterns between High
and Low performers exists, especially during motor imagery,
although not in all network scales that are proposed in literature.

These results may be discussed in the context of the
directionality of connectivity. Baxter et al. (2017) employed an
inference approach and showed that connectivity can be altered
with transcranial direct current stimulation before performing
the BCI task. The increased connectivity was correlated with
improved motor imagery performance in both hands when
there was a strongly connected input from the (ipsilateral)
posterior parietal cortex (PPC) or premotor cortex (PMC) to
the sensorimotor cortex (SMC). Performance decreased when
the connection was reversed. Their results confirmed that motor
imagery-induced connectivity relates to MI-BCI performance,
but also suggest that the inflow or outflow across regions may
play an important role in determining MI performance. The
in- and outflow specifically were not tested in this study as
we employed phase-based connectivity analysis, however, the
implication of strengthening connections in the motor areas
holds. Additionally, this method can be applied to change the
cortical excitability of users before the task in order to upregulate
the connectivity and thereby promote learning.

The Impact of Resting-State Connectivity
Following the conclusions of Zhang et al. (2020) that resting-
state SMR might be an important identifier of BCI inefficient
users and the recent findings of Lee et al. (2020) who showed that
effective connectivity during Rest was already a predictor of BCI
performance, we hypothesized that PLV during the Rest phase
would be greater in High aptitude MI-BCI users compared to
Low aptitude users. This hypothesis was in line with the report of
Vidaurre et al. (2020) who showed that functional connectivity
during both Rest and MI were correlated to online feedback

performance, indicating that the strength of functional pathways
is also important for BCI performance, as is the modulation of
these pathways.

The resting-state network (RSN) is thought to reflect the
fundamental connectivity of the brain and thereby the amount
of information that can be processed during mental tasks (Lee
et al., 2020). Therefore, a person with an efficient RSN may have a
better ability to perform motor imagery tasks (Zhang et al., 2015).
Saha and Baumert (2020) stated that the resting-state network
represents large scale spatiotemporal structures that underlie the
baseline activity of a user and thereby variety in RSN can have
implications on the user’s BCI performance. Sannelli et al. (2019)
showed that varying peak amplitudes during Rest may indicate
performance in MI-BCI tasks. However, in our study, no effect
of such a resting state was observed. This might be due to the
different definitions of resting-state in our study.

While past studies mostly defined resting-state as a complete
absence of task, where the subject sits with closed eyes, we
calculated resting-state from the first 3 s of each MI-BCI trial,
where the subject looked at a fixation cross. This is different from
past studies in that resting-states were shorter in duration and
the subject’s eyes were open. Additionally, the subject could have
been engaged in motor preparation, although the directionality
of the MI trial (left or right hand) was only revealed after the
cue appeared on the screen (see Figure 1). Thus, this motor
preparation could not have impacted connectivity in laterality
and might be better explained as motor readiness (Vidaurre et al.,
2020). Nevertheless, the RSN data collected might reflect more
connectivity than typical resting-state analyses by the nature of
this motor preparation.

Interestingly, Vidaurre et al. (2020) also employed the pre-MI
interval as a resting-state and compared it to the performance
in the calibration run (where the subject has not yet received
feedback). These results cannot be equally compared as the
presence of feedback in our study could have a different impact
on the resulting brain activity during motor imagery. And
also during rest, the feedback presentation from the previous
trial might have had a carry-over effect to the resting-state of
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TABLE 2 | Results of the factorial ANOVA for global scale, large scale, and local scale connectivity in the alpha frequency band.

PLVMI PLVRest ∆PLV

F p Post hoc F p Post hoc F p Post hoc

Global Scale (Average of all connections)

Alpha band

BCI group 0.311 0.571 0.007 0.932 1.777 0.185
Right/Left (RL) 0.321 0.592 0.110 0.754 0.256 0.601
BCI:RL 0.126 0.722 0.009 0.906 0.292 0.564

Beta band

BCI group 1.238 0.245 0.898 0.381 0.710 0.420
Right/left (RL) 0.015 0.884 0.179 0.652 0.708 0.379
BCI:RL 0.030 0.874 0.017 0.894 0.032 0.869

Large scale (C3 and surrounding electrodes × C4 and surrounding electrodes)

Alpha band

BCI group 2.710 0.101 0.064 0.450 2.589 0.114
Right/Left (RL) 0.029 0.854 0.000 0.997 0.097 0.781
BCI:RL 0.092 0.726 0.000 0.980 0.266 0.629

Beta band

BCI group 2.122 0.128 1.600 0.209 0.515 0.487
Right/Left (RL) 0.001 0.997 0.167 0.658 0.838 0.340
BCI:RL 0.047 0.980 0.030 0.868 0.020 0.886

Local scale (C3 × surrounding electrodes)

Alpha band

BCI group 0.030 0.851 0.015 0.892 0.014 0.922
Right/Left (RL) 0.045 0.818 0.089 0.775 0.028 0.859
BCI:RL 0.086 0.759 0.017 0.903 0.898 0.324

Beta band

BCI group 1.224 0.267 0.735 0.411 1.114 0.290
Right/Left (RL) 0.457 0.482 0.110 0.741 1.442 0.223
BCI:RL 0.040 0.847 0.006 0.940 0.740 0.360

Local scale (C4 × surrounding electrodes)

Alpha band

BCI group 8.358 0.005* High > low (p = 0.002) 5.824 0.012 2.577 0.113
Right/Left (RL) 0.198 0.663 0.003 0.959 0.889 0.366
BCI:RL 0.503 0.470 0.045 0.845 1.511 0.226

Beta band

BCI group 3.486 0.071 2.743 0.094 1.659 0.199
Right/Left (RL) 0.085 0.764 0.006 0.924 1.979 0.165
BCI:RL 0.017 0.884 0.001 0.959 0.414 0.530

In each scale, average PLV during the Rest, MI, and transition of the two phases (∆PLV) was compared between BCI performance groups (High vs. Low) and MI hand (Right vs. Left).
The interaction between the two variables was included in the model. The significance level was adjusted to 0.008 using Bonferroni correction. PLV, phase-locking value. Bold values
indicate significant effects before Bonferroni correction and * indicates significant effect after Bonferroni correction which is then followed by a post-hoc analysis.

the next trial (Carabalona and Castiglioni, 2009); for example,
motivation is impacted by feedback (Alimardani et al., 2014;
Pillette et al., 2021). Despite the inter-trial interval that was
randomized between 0.5 and 2.5 s, this effect might still be
prevalent.

The Difference Between Task and
Resting-State Connectivity
To investigate whether the difference in connectivity during
motor imagery originated from a higher activation during

MI or a lower activation during Rest, we evaluated the
difference between MI and Rest. This approach was suggested
by Gonuguntla et al. (2016), who showed that PLV increased
during MI compared to Rest (Hamedi et al., 2016). Additionally,
Li et al. (2019b) found that connections between motor areas
in the brain increased during motor imagery, while the activity
of the default mode network was suppressed. Therefore, we
extracted the metric ∆PLV = PLVMI − PLVRest: when the
value is positive, connectivity in MI is greater than during
Rest. As successful motor imagery classification depends on
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FIGURE 3 | The phase synchronization values in the alpha frequency band in the local scale right hemisphere during (A) motor imagery, (B) rest, and (C) the
difference between motor imagery connectivity and rest. The color indicates left and right trials. Results indicated a significant difference in (A) and a trend in (B).

the difference between those states, this indication might
provide additional insights into the brain activity underlying
MI. The results showed that in both hemispheres, the difference
between MI and Rest is mostly negative for both efficient
and inefficient users. This indicates that connectivity during
MI is lower than connectivity during Rest, which is the
opposite of what was expected following previous studies
(Gonuguntla et al., 2016; Li et al., 2019a). Our results showed
no significant difference between High and Low aptitude users
on the connectivity change from Rest to the MI task. Further
research is required to uncover the true dynamics of brain
networks especially when BCI users transition between Rest and
MI states.

Global, Large and Local Scale Connectivity
Following previous studies, three different connectivity scales
were evaluated in this study: the average connectivity over all
the sensorimotor areas (e.g., Zhang et al., 2015), the inter-
hemispheric connectivity between the left and right hemispheres,
and the intra-hemispheric connectivity within each of the right
and left hemispheres (e.g., Wang et al., 2006; Zhang et al., 2014;
Vidaurre et al., 2020).

Significant results were only found in the local connectivity in
the right hemisphere whereas previous literature pointed out the
contribution of both hemispheres to connectivity during MI. For
instance, Wang et al. (2006) studied six BCI users and showed
that PLV connectivity of C3 and its surrounding electrodes (left
hemisphere) was larger in right-hand MI, while for C4 and its
surrounding electrodes (right hemisphere) it was vice versa; the
connectivity was larger during left-hand MI. However, Zhang
et al. (2014) reported the opposite; alpha band connectivity
within the left hemisphere was greater in the left-hand trials
while right hemisphere connectivity in the same alpha band

was higher in the right-hand trials. The authors attributed
this difference to higher mu rhythm desynchronization in the
contralateral hemispheres during MI of one hand, which then
resulted in a larger synchronization value in the ipsilateral areas.
Thus, literature was not consistent regarding intra-hemispheric
connectivity and its association with MI hand. While our results
indicated a difference of alpha band connectivity between High
and Low aptitude groups in the right hemisphere, we observed
no further difference between the right and left MI trials (no
significant effect for RL factor in Table 2).

Our finding of a larger right hemisphere connectivity in the
High aptitude group can be discussed in the context of subjects’
handedness and its effect on SMR lateralization (Zapała et al.,
2020). In our study, subjects were selected to be right-handed;
Zapała et al. (2020) reported that right-handers are better
MI-BCI performers and that they display greater alpha band
desynchronization during left-hand MI than left-handers. They
argued that a higher activation level in the right sensorimotor
cortex of right-handers and consequently the distinction of ERD
patterns between the two MI sides would lead to an effective
BCI control in this group (Zapała et al., 2020). Our result
further confirms this argument by showing that among right-
handers, those who demonstrate larger connectivity in the right
hemisphere are more efficient in MI-BCI control. This role of
the right hemisphere can be perhaps related to the user’s ability
to successfully engage in the non-dominant hand imagery. A
recent case study focusing on twins with discordant dominant
hands showed that the twin who was capable of producing more
pronounced ERD during MI of the non-dominant hand obtained
significantly higher BCI performance (Carino-Escobar et al.,
2020). Therefore, future research should further investigate the
role of the non-dominant hand and corresponding hemispheric
connectivity on MI-BCI performance.
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The fact that unlike previous studies no effects were found
for the larger scales can be explained by various methodologies
employed by these studies. For example, Wang et al. (2006)
defined large scale connectivity by focusing on three channels
of C3, C4, and FCz instead of the connectivity between all
electrodes in the left and right hemispheres. Vidaurre et al. (2020)
employed source localization before extracting the coherence
values and in addition incorporated three classes in the MI task
where foot imagery was also classified. The connectivity between
hemispheres was significant in Zhang et al. (2014) only in the
beta band; left to right connectivity was higher in left trials, while
the right to left connectivity was higher in right trials. Thus,
future research should attempt to bring more consistency to
their methodology, in order to reveal the true underlying effects
across studies.

Limitations
The fact that our results could not fully replicate previous
findings in the literature can be attributed to the practical
limitations that existed in this study. As discussed in Leeuwis
et al. (2021a), the sample was recruited using convenience
sampling. This introduced a skewed distribution in gender and
age of the subjects, which are both factors that might impact
BCI performance (Randolph et al., 2010; Cantillo-Negrete et al.,
2014). In addition, as we noted before, the sample was composed
of only right-handed subjects. While this was necessary for
controlling the number of factors and interpretation of the results
for the majority of BCI users, it indeed limited our understanding
of the dominant hemispheric connectivity and its role on BCI
efficiency. Previous research has already indicated different
inter-hemispheric and intra-hemispheric connectivity between
right- and left-handers (Vukelić et al., 2019). Additionally,
Zapała et al. (2020) suggested that left-handers show lower
BCI accuracies due to weaker SMR modulation compared
to right-handers and that right-handers demonstrate greater
desynchronization patterns during left-hand imagery than right-
hand. The latter might have induced effects of trial directionality
on hemispheric activity due to non-randomized handedness.
Thus, future research should look into the difference between
right and left-handers regarding connectivity during motor
imagery in order to increase the usability of MI-BCI across a
broader range of possible users.

A known and unavoidable problem within connectivity
analysis is the sensitivity to volume conduction or source leakage
(Bruña et al., 2018; He et al., 2019). Connectivity measures
might represent spurious correlations because EEG signals get
spatially diffused between the source regions and the electrodes
and thereby the recorded EEG signals may represent the activity
of multiple active sources (Hamedi et al., 2016). The issue
of volume conduction can be handled by using phase-lag
models, which directly estimate functional connectivity between
two regions. Although Phase-lag index (PLI) is considered a
robust measure of volume conduction when compared to the
PLV, it still possesses a serious drawback when it comes to
the non-stationarity of EEG data (Tognoli and Kelso, 2020)
as it is non-normalized and therefore still biased (Ewald
et al., 2012). Originally, PLI was developed to estimate phase

connectivity ignoring the contribution of zero lag (Stam et al.,
2007), but the metric has shown a low test-retest reliability
(Colclough et al., 2016). Furthermore, Cohen (2015) argues that
the choice of a phase-based functional connectivity measure
should depend on hypothesis-driven vs. exploratory analysis.
While PLI reduces Type-I errors (i.e., false identification of
connections) due to its insensitivity to volume conduction, it
increases Type-II errors, which can lead to rejection of the
null hypothesis when it actually should not (in other words,
missing true connections). On the contrary, PLV reduces the
risk of Type-II errors but is more likely to increase the
Type-I errors due to its robustness to non-stationary data.
Hence, PLI is preferred in exploratory analysis, whereas PLV
is more suited to hypothesis-driven studies as well as studies
with an interest in the time course of changes in connectivity
(Cohen, 2015).

Given the hypothesis-based characteristics of this study, we
opted for phase synchronization analysis using PLV, which does
not involve the magnitude of the signals but rather the phase
of the signals (Sakkalis, 2011). Additionally, in order to reduce
the susceptibility of our analysis to volume conduction artifacts,
we applied a Laplacian spatial filter to the EEG recordings
(Cohen, 2014; Kayser and Tenke, 2015; Caicedo-Acosta et al.,
2021). The problem of volume conduction, however, is still
prevalent in PLV analyses and further refinement of phase
synchrony estimation algorithms that are cost-effective
and robust to volume conduction remains necessary
(Bruña et al., 2018).

Previous studies have examined correlations between
inferred brain activity obtained by localization algorithms (e.g.,
Lee et al., 2020; Vidaurre et al., 2020). Source localization aims
to solve the inverse problem, where surface EEG recordings
are translated to underlying brain structures while accounting
for field propagation (He et al., 2019). While this allows for
interpretation of the brain structures that underlie functional
connectivity during MI, potential confounding effects might
result from the employed reconstruction algorithms (Westlake
and Nagarajan, 2011). As MI-BCI systems mostly rely on
EEG measurements, the functional connectivity expressed
between electrodes, as opposed to connectivity between
brain structures, communicates interpretable values that
future MI-BCI researchers can implement easily. Thereby,
differences in connectivity, without the need for prior reverse
engineering of the source location, can be employed as future
features in determining High and Low aptitude users in
MI-BCI experiments.

As noted, intra- and inter-subject variability is a problem
within EEG measurements (Saha and Baumert, 2020).
Additionally, the exact definition of frequency band varies
among subjects (Haegens et al., 2014), as does the cortical
regions in which MI-related activations occur (Hamedi et al.,
2016). Due to specific imagery strategies of the subject, variability
occurs between subjects and over time (Seghier and Price, 2018).
Not every subject starts motor imagery immediately after the cue.
This might also be reflected in connectivity. To adjust for these
variations, Wang et al. (2019) already showed that choosing the
optimal time window for each subject individually can improve
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their accuracy. Future research might identify the individual
settings that explain the underlying connectivity dynamics and
incorporate them for MI-BCI classification.

Future Research
Future research could explore multiple connectivity measures in
a larger sample, e.g., comparing the classification of effective and
functional connectivity within the sample. Especially, recording
more sessions in a longitudinal experiment will provide a more
solid basis for establishing inefficient users and the relation
between their BCI performance and connectivity values.

Additionally, the combination of neurophysiological
characteristics, combined with users’ psychological and cognitive
factors might further improve the identification of inefficient
users (Leeuwis et al., 2021a). Within this dataset, future research
could relate the factors identified in Leeuwis et al. (2021a),
with the neurophysiological characteristics such as functional
connectivity described in this study. Creating a more complete
user profile can help to identify inefficient users and adapt
training settings beforehand.

Moreover, as Zhang et al. (2020) suggested, categorizing
inefficient users based on their resting-state EEG activity or
offline/online BCI performance in order to provide targeted
solutions for each group (e.g., employ new EEG feature, apply
transfer learning algorithms, or develop new training strategies
and experimental paradigms), can reduce the BCI inefficiency
problem in a more effective way and speed up BCI mainstream
adoption. Our study particularly highlights the potential of EEG
functional connectivity in identifying inefficient users early on in
research. Further studies are required to confirm the efficacy of
this metric as a reliable classification feature for MI-BCI systems.
Employing a large sample of inefficient users in order to test a
connectivity-based BCI classifier might sound futuristic as long
as the calculation is taking too much time (Zhang et al., 2014)
but with the increasing computing power and better knowledge
of the key factors, this gradually becomes a more realistic
experimental set-up. Thus, with these expanding possibilities,
future research should aim at identifying online classification
accuracy ‘‘boosters’’, such as functional connectivity, in order to
solve MI-BCI inefficiency.

As discussed in Vidaurre et al. (2020), motor imagery
is originating from somatosensory and motor cortices and
is therefore related to a feeling of agency as well as the
proprioceptive sensations the users’ experiences (Nikulin et al.,
2008). Several studies showed that this proprioception after MI
is correlated to increased performance (e.g., Ramos-Murguialday
and Birbaumer, 2015; Vidaurre et al., 2019). The coexistence
of motor initiation and the anticipation of the effects of
the movements explains why connectivity between motor and
sensory cortical areas relates to successful motor imagery.
Making connectivity part of the online feedback feature set
thereby makes sense. The use of this has already been shown to
enhance BCI classification (Zhang et al., 2019; Gu et al., 2020)
and might therefore be explored in future research.

Furthermore, classification scores of low performing users can
be improved by incorporating new AI algorithms such as deep
learning methods on raw EEG signals instead of the classical

machine learning approach that relies on EEG feature extraction
(e.g., Stieger et al., 2021; Tibrewal et al., 2021; Zhang et al., 2021).
Deep learning models have the advantage of facilitating end-to-
end learning; they can exploit information from raw data on
their own, which is not only computationally more effective but
also captures brain activity patterns underlying MI beyond the
defined ERD features (Tibrewal et al., 2021). Particularly, in the
light of connectivity research, deep learning provides a more
holistic analysis of brain activity patterns during MI that extends
beyond mu suppression in the sensorimotor area and this can
result in a better discriminative power of BCI classifier for the
inefficient users.

Last but not least, several studies point to the improvement of
feedback and training methods through immersive and engaging
environments, such as robotic platforms (Alimardani et al.,
2018), virtual reality (Coogan and He, 2018), and gamification
(de Castro-Cros et al., 2020). This resonates well with past
research on user motivation and its effect on BCI performance
(Nijboer et al., 2010; Alimardani et al., 2014; Sannelli et al., 2019;
Kleih-Dahms et al., 2021). Therefore, employing state-of-the-art
classification methods as well as training/feedback design is a
promising avenue for future research to reduce the prevalence
and severity of the BCI inefficiency problem.

CONCLUSION

In this study, we examined the difference between high and
low aptitude motor imagery BCI users in their EEG functional
connectivity in three network scales (Global, Large, and Local
scale) during the resting state, motor imagery task, and the
transition between the two phases in each trial. Our comparison
of two groups of High and Low BCI performers (each 27 subjects)
showed that alpha-band functional connectivity in the right
hemisphere was significantly higher in High aptitude MI-BCI
users when they performed the motor imagery task. However,
connectivity during resting-state and other scales were not found
to be significantly different between High and Low MI-BCI
performers. These findings add to the existing literature by
providing a comprehensive analysis of functional connectivity
at different network scales and during different phases of the
MI task using a large sample of subjects. Our results confirm
that indeed connectivity might be a valuable feature in user
profiling for BCI experiments. However, this is not yet the end;
to solve the MI-BCI inefficiency problem, future research should
confirm the efficacy of functional connectivity as an online
classification feature in a state-of-the-art MI-BCI paradigm with
a large sample size. This verification will establish whether
functional connectivity is truly able to distinguish motor imagery
patterns and improve accuracy for users that are inefficient with
current models.
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