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Abstract: With respect to structural and functional cardiac disorders, heart failure (HF) is divided
into HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF).
Oxidative stress contributes to the development of both HFrEF and HFpEF. Identification of a broad
spectrum of reactive oxygen species (ROS)-induced pathways in preclinical models has provided new
insights about the importance of ROS in HFrEF and HFpEF development. While current treatment
strategies mostly concern neuroendocrine inhibition, recent data on ROS-induced metabolic pathways
in cardiomyocytes may offer additional treatment strategies and targets for both of the HF forms.
The purpose of this article is to summarize the results achieved in the fields of: (1) ROS importance
in HFrEF and HFpEF pathophysiology, and (2) treatments for inhibiting ROS-induced pathways in
HFrEF and HFpEF patients. ROS-producing pathways in cardiomyocytes, ROS-activated pathways
in different HF forms, and treatment options to inhibit their action are also discussed.

Keywords: heart failure with reduced ejection fraction; heart failure with preserved ejection fraction;
reactive oxygen species; protein kinases; NO; cGC

1. Introduction

With respect to structural and functional cardiac disorders, chronic heart failure (CHF)
is classified into heart failure (HF) with reduced ejection fraction (HFrEF) and HF with pre-
served ejection fraction (HFpEF). The most common cause of HFrEF is cardiomyocyte loss
due to ischemia. HFpEF is a heterogeneous syndrome with multiple different conditions
that can contribute differently to the syndrome [1]. Patients with HFpEF make up more
than 50% of all HF patients [1,2]. In recent decades, understanding of the pathophysiology
and treatment of HFrEF has increased [3,4]. However, treatment options for patients with
HFpEF are few [1]. The main therapeutic target for patients with HFrEF is the neuroen-
docrine chain with therapies including inhibitors of the renin angiotensin-aldosterone
system, mineralocorticoid receptor antagonists, β-receptor blockers, and medications that
increase the half-life of natriuretic peptides [5]. HFpEF treatment relies on addressing the
reasons for the observed syndrome, including treating the underlying disease, blood pres-
sure control, use of diuretics and addressing other factors that contribute to development
of HFpEF [1].

Oxidative stress (an imbalance between the increased formation of reactive oxygen
species (ROS) and the elimination or neutralization of ROS by an antioxidant system)
plays an important role in the development of CHF [6] and correlates with left ventricle
(LV) dysfunction and hypertrophy in the failing heart [7]. Therefore, pharmacologically
targeting specific ROS and pathways induced by them, could be beneficial for CHF patients.
Broad and detailed knowledge of the particular sources and formation of ROS, as well as
their elimination in the cell, is required in order to better understand the ROS induced
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pathways. Therefore, we have sought to summarize results achieved in the fields of:
(1) ROS significance for HFrEF and HFpEF pathophysiology, and (2) treatment options
in the management of ROS-induced pathways in the human heart for both HFrEF and
HFpEF patients.

2. ROS Sources, Importance and Danger in Human Cells

ROS are chemically reactive molecules that belong to a group of nine major types of
free radicals. These molecules have an unpaired electron in the superoxide anion O2

−,
which is unstable. Several compounds are termed ROS, including: free radicals (superoxide
anion (O2

−)), the hydroxyl radical (.OH)) and oxidative agents (e.g., hydrogen peroxide
(H2O2), peroxynitrite (ONOO−), hypochlorite (OCl−)) [8,9]. H2O2 is involved in the Fenton
reaction in the presence of Fe2+ to produce –OH. O2

− and H2O2 can produce –OH through
the Haber–Weiss reaction [10]. ONOO− is produced in the reaction of .NO with O2

− [11]
(Figure 1) and is known to contribute to chronic heart failure (CHF) pathogenesis [12].

Figure 1. Reactive oxygen species. O2
•−-superoxide anion, OH•-hydroxyl radical, H2O2-hydrogen

peroxide, HOO•-hydroperoxyle radical, H2O-water.

The agents referred to are produced in the cells by the mitochondria and enzymes,
such as lipoxygenases and cyclooxygenases, under normal conditions [13]. Some pro-
cesses, such as apoptosis, immune system reactions, differentiation, activation of several
transcriptional factors, cellular signaling pathways and induction of a mitogenic response
require the presence of some ROS [14]. ROS signaling is either reversible and oxidative or
produces reactive nitrogen species. O2•− takes part in signal transmission by: (1) causing
post-translation redox modifications of proteins [15], (2) hydroxylation (addition of an HO
group) [16], and (3) S-nitrosylation (oxidation of cysteine by NO) [17]. By these means, the
reactivity, stability and conformation of the affected molecules is altered [17]. The superox-
ide anion and hydrogen peroxide are the main ROS that participate in redox signaling [18]
(Figure 1). Hydroxyl radicals are more reactive and less specific and reversible [19]. Cell
antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxi-
dase, protect the cell from ROS excess [20]. ROS excess is known to give rise to oxidative
stress, which affects subcellular organelles, changes intracellular enzyme activity, creates
intracellular Ca2+ overload and modulates gene expression [21,22]. In turn, cell lipids,
proteins and deoxyribonucleic acid (DNA) are damaged, leading to impairment of normal
cell function [22] (Figure 2).
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Figure 2. Harmful effects of ROS in cardiomyocytes (created with BioRender.com on
11 February 2022).

ROS, as reported in the literature, activate the signal kinase and transcription factors
that modify the function of intracellular proteins and signaling pathways in the heart and
in this way contribute to the hypertrophic remodeling of the heart [23,24]. Additionally,
ROS damage mitochondrial phospholipid membranes and, as a consequence, induce
mitochondrial oxidative stress, leading to molecular mechanisms that contribute to the
development and progression of heart failure [25].

3. ROS in the Pathogenesis of CHF Development

Being a by-product of aerobic metabolism, ROS are abundant in the cells of the
myocardium and, if the balance between ROS production and antioxidant systems is
impaired, they can greatly contribute to, or worsen, HF [26].

The proteins involved in redox signaling are protein kinase G (PKG) [27], the small G
protein Ras [28], Ca/calmodulin-dependent protein kinase II (CaMKII) [29], protein kinase A
(PKA) [30], class II histone deacetylases (HDACs) [31], matrix metalloproteinase (MMP) [32],
protein kinase B/Akt [33], the extracellular signal-regulated kinase 1/2 (ERK1/2) [34], p38
MAP kinase [35], protein kinase C (PKC) [36], NF-kappa B [37], and transcription factors,
including activated protein-1 [38].

Cardiomyocyte hypertrophy has been found to be associated with ROS activation
of signaling kinases and transcription factors [23]. ROS also promotes post-translational
modifications that change the function of specific proteins and signaling pathways, lead-
ing to hypertrophic remodeling [23,39]. ROS have been shown to be important in G
protein-coupled receptor stimulation by angiotensin II, tumor necrosis factor-α (TNF-α),
and α-adrenergic stimulation [23,40,41]. Angiotensin II may participate in myocardial
hypertrophy by several intracellular pathways by activating: (1) protein kinase C, (2) c-Jun
N-terminal kinase (JNK), (3) extracellular signal-regulated kinase, and (4) ROS forma-
tion [40,42]. Though the role of TNF-α in cardiomyocytes is not yet sufficiently known,
TNF-α seems to play an autocrine or paracrine role in activating MMPs, which promote
hypertrophic changes in the heart [41].

ROS affect different lipid membranes too, including the sarcolemma, mitochondrial
membranes, nuclear membrane, and the sarcoplasmic reticulum, in which lipid radicals and
lipid hydroperoxide (LPH) form [25,43,44]. As the lipid peroxidation cascade progresses,
LPH reacts with fatty acids to form a more stable product, for example—malondialdehyde
or 4-hydroxy-2-nonenal [45]. Destabilization of the phospholipid-rich inner mitochondrial
membrane by peroxidation results in additional electron leakage and increase in ROS
production intensity [43,45].

ROS activate the cardiac Na+/Ca2+ exchanger, which triggers cardiac hypertrophy
through the Ca2+-dependent pathway [46] and contributes to Ca2+/calmodulin-dependent
protein kinase II activation, leading to increase in cardiomyocyte death and CHF devel-
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opment [47]. The cardiac Na+/H+ exchanger (NHE1) was shown to be activated [48]
and sarcolemmal Na+/K+ ATPase was found to be suppressed by ROS [49] and to be
implicated in cardiac hypertrophy. It should be emphasized that the elevation of Na+ in
cardiomyocytes may contribute to slower cardiac muscle relaxation and arrhythmias [50].

It should also be mentioned that heme oxygenase (HO) (an enzyme that catalyzes heme
degradation) has been shown to reduce oxidative stress in cardiomyocytes by catalyzing
the carbon monoxide (CO) producing reaction [50,51]. CO has been shown to act as an
antioxidant and contribute to the anti-hypertrophic effect [51].

Additionally, ROS induced endothelial damage [52,53] and thrombosis develop-
ment [54] are stated in the literature to take place in chronic HF development.

3.1. Enzymes Involved in ROS Production

NADPH oxidases (NOX) 2 and 4 [55], xanthine oxidoreductase (XOR) [56], and nitric
oxide synthase (NOS) [57] are the common enzymes that produce ROS in cardiomyocytes
(Figure 3).

Figure 3. Enzymes involved in ROS production in cardiomyocytes and fibroblasts (created with
BioRender.com on 7 February 2022). NOX2 is presented to be activated by endothelin and angiotensin
II [58], by cytokines [59] and mechanical stress [60]. Increased NOX2 activation leads to cytoskeletal
dysfunction in patients with CHF [61]. It was discovered that superoxide anions, produced by
NOX, can oxidize and degrade hydrobiopterin-4 (BH4) leading to NOS uncoupling [62]. Nitric
oxide synthase 3 (NOS3) uncoupling was observed in myocardium exposed to chronic pressure
load. NOS3 catalyzes nitric oxide (NO) synthesis under physiological conditions. NO has an an-
tihypertrophic effect. However, NOS3 is uncoupled with pressure load, and this, in turn, leads to
reduction in tetrahydrobiopterin-4 concentration, increase in ROS production, and, as a consequence,
to cardiomyocyte hypertrophy [63]. It was also shown that increase in ROS activates MAPK, leading
to increased expression of proteins, such as ERK, JNK and P38, which are related to cardiomyocyte
hypertrophy [64] (Figure 3). What is more, NOX-derived ROS may activate XOR [65]. Addition-
ally, angiotensin II-induced signaling and isolated cardiomyocyte hypertrophy are dependent on
NOX2 [66]. GTP-binding protein Rac-1 (involved in NOX activation), as described in the literature,
is involved in isolated myocyte hypertrophy, induced by endothelin I, phenylephrine, angiotensin
II [67] and norepinephrine [68]. AMPK—adenosine monophosphate activated protein kinase;
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AT1R—angiotensin II receptor; NOX-NADPH oxidase; BH4—dihydrobiopterin-4; NOS—nitric oxide
synthase; NO—nitric oxide; MAPK—mitogen-activated protein kinase; XOR—xanthine oxidoreduc-
tase; AMP—adenosine monophosphate; GMP—guanosine monophosphate; Rac-1—GTP-binding
protein; NHE-1—sodium/hydrogen exchanger-1; ERK—extracellular signal-regulated kinase; JNK-
c—Jun N-terminal kinase; p38—a focal point of interactions of the serine/threonine kinases), MMP—
matrix metalloproteinase.

Humans have seven NOX with a similar catalytic core, but different regulatory mecha-
nisms [19]. NOX2 and NOX4 are abundantly expressed in cardiomyocytes, endothelium
and fibroblasts. Every NOX produces the superoxide anion [62]. NOX2 and NOX4 activity
is presented in Figure 3. The data presented in [69,70] implies that NOX4-derived ROS
could contribute to overload-induced LV hypertrophy (LVH), and that NOX2 is produced
in response to angiotensin II infusion. However, some studies suggest that LVH, as a
response to chronic renin-angiotensin-aldosterone system activation, is not associated with
NOX2 [71,72]. The enzymes involved in ROS production in cardiomyocytes and fibroblasts,
and the pathways that they activate according to the literature [58–68], are presented in
summary in Figure 3.

NOX has been shown to be involved in MMP activation in response to angiotensin
II [73] and mechanical stretch [71] in the vessels. Experiments with mice and rats have
demonstrated the role of NOX2 in the development of interstitial cardiac fibrosis, however,
the NOX2-expressing cell type was not established [71,72,74]. NOX4 was shown to be
expressed in cardiac fibroblasts [75,76] in animal models. Currently there are no in vivo
experiments that could confirm the analogous case in humans.

The other ROS produced enzyme is XOR. XOR is involved in: (1) degradation of the
purine nucleotides (AMP and GMP), in which it oxidizes hypoxanthine and xanthine to
uric acid and H2O2 [77], (2) reduction of nitrite and nitrate, in which it produces NO and
consequently promotes vasodilatation [78], or inflammation [78] and mitochondrial damage
(as a result of overproduction) [79]. There are two forms of XOR: xanthine dehydrogenase
and xanthine oxidase (XO). XO is involved in H2O2 production [80]. High levels of uric acid
are found in patients with HF blood tests [77]; therefore, production of H2O2 is expected to
be increased in these patients as well.

NOS catalyze NO production in a reaction where L-arginine is converted to L-citruline [81].
There are three isoforms of NOS. Two isoforms of NOS (endothelial (eNOS) and neuronal
(nNOS)) are expressed more intensely in cardiomyocytes [82]. However, iNOS can con-
tribute to contractile damage in CHF as well [83].

Increased ROS production is related both to myosin-activated protein kinase (MAPK) [64]
(Figure 3) and adenosine monophosphate activated protein kinase (AMPK) activation [84].
AMPK activation leads to an increase in the antioxidants SOD and catalase (CAT) and
uncoupling of protein 2 (UCP2) gene expression, leading to weakened apoptosis and NOX
expression decrease [84] (not shown in Figure 3).

Another group of enzymes involved in CHF development through ROS production. is
a family of NAD+ dependent class III histone deacetylases called sirtuins (SIRT) [85]. There
are seven members of this enzyme group in different cell departments. SIRT3 is found in
the mitochondria [86] and is involved in ATP production and ROS detoxication [87,88].
Some studies have found that SIRT3 is involved in cardiac muscle hypertrophy and fibrosis,
leading eventually to CHF development [89,90]. Additionally, some studies have found
that SIRT3 is involved in oxidative stress-mediated cell death in cardiomyocytes through
protein Ku70 deacetylation, leading to deacetylated Ku70 interaction with the apoptosis
regulator bcl-2-like protein4 (Bax) [91]. However, other studies have highlighted several
mechanisms through which SIRT3 exerts a cardioprotective effect: (1) SIRT3 activates
the antioxidant enzyme superoxide dismutase (SOD) [92], and (2) activates isocitrate
dehydrogenase 2 (IDH2) by deacetylation. IDH2 uses NADP+ for reduction. SIRT3, in this
way, increases NADPH levels, and increases glutathione (GSH) levels, thereby, inhibiting
ROS production [93].
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It can be concluded that several redox-signaling pathways may be modulated by
ROS-producing enzymes, leading to cardiomyocyte hypertrophy, interstitial fibrosis and
apoptosis. The value of NOX seems to be far more important in comparison with the other
enzymes in that its activation can be triggered by both neuroendocrine factors and pressure
overload, or by inflammatory cytokines. NOS play an important role in redox alterations
in CHF development, both with substrates and cofactors. Sirtuins are involved in the
enzyme-antioxidant activation that protects the heart from hypertrophy. NOX-, XOR-,
NOS- and SIRT-mediated pathways could, therefore, be potential treatment targets for CHF
development suppression.

3.2. Mitochondria in ROS Production and Enzyme-Antioxidants

The most abundant source of ROS in cells is the mitochondrial electron transport
chain (ETC). A total of 0.2–2% of the electrons in the ETC leak out of the chain and interact
with oxygen to produce superoxide or hydrogen peroxide [47]. Additionally, H2O2 is
produced in the reaction, catalyzed by SOD1. After it has diffused from mitochondria,
H2O2 is involved in physiological and pathological pathways (damaging proteins and
lipids) [47]. H2O2 damages mitochondrial DNA, interferes with the Krebs cycle, ATP
production, and fatty acid metabolism [94] and can trigger the opening of ion channels
or the inner membrane anion channel inside the mitochondria, leading to cell death [95].
Proton leakage in the mitochondria consists of: (1) basal leakage (not regulated and related
to the inner mitochondrial membrane’s lipid bilayer and the adenine nucleotide translocase
(ANT)), and (2) inducible leakage (regulated and catalyzed or suppressed by uncoupling
proteins and ANT) [47]. UCP2 is involved in cardiovascular disease; therefore, drugs
targeting UCP expression or activity might be a potential treatment option. Hypoxia is
suggested to further increase ROS production in the mitochondria [47]. ETC complexes III
(CIII), and especially I (CI), are found to be the main sites of ROS production [96]. Therefore,
the regulation of ROS production in these complexes may yield significant results.

Mitochondrial ROS are also involved in different cell signaling pathways, involving
apoptosis [97], autophagy [98], and necrosis [99].

Other ROS sources in the mitochondria are the enzymes monoamine oxidase A and B,
both located within the outer mitochondrial membrane (OMM). They catalyze the oxidative
deamination of neurotransmitters and biogenic amines, leading to H2O2 production [100].
Monoamine oxidase A (MAO-A) is specific to cardiomyocytes [101]. It was discovered that
MAO-A-dependent ROS formation may impair autophagy, leading to the accumulation of
autophagosomes and mitochondrial fusion, resulting in microtubule-associated protein
light chain 3-phosphatidylethanolamine conjugate (recruited to autophagosomal mem-
branes) formation, and autophagy receptor (p62) and ubiquitylated protein accumulation,
causing cardiomyocyte death and CHF. Both MAO-A derived H2O2 and aldehydes are
able to directly target mitochondrial function [102]. Additionally, MAO-A-generated ROS
has been shown to inhibit sphingosine kinase, which leads to ceramide accumulation and,
thereby, to cardiomyocyte apoptosis [103]. Contractile proteins (actin and tropomyosin) are
also affected [104].

Excess of H2O2 in the cell is eliminated by glutathione peroxidase (GPX) and perox-
iredoxin (PRX). Both of these require GSH and thioredoxin for regeneration [105], which
requires NADPH as a cofactor [105,106]. Nicotinamide nucleotide transhydrogenase,
NADP+-dependent isocitrate dehydrogenase (IDH) and malic enzyme are involved in
NADP+ regeneration to NADPH [107]. These require Krebs cycle products—NADH,
malate and isocitrate. With IDH being the most important for NADPH regeneration [108],
the Krebs cycle is necessary for the antioxidant capacity within mitochondria [109] as
well as in the cytosol [110]. Aldehyde dehydrogenase (ALDH2) is another mitochondrial
enzyme involved in antioxidant activity and participates in the detoxication of lipid peroxi-
dation products [111]. Moreover, ROS through intermediate links, activate AMPK, leading
to an increase in antioxidant enzyme gene expression (SOD, CAT and (UCP2)) [84].
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In sum, the mitochondria are an important ROS source in cardiomyocytes. The
amount of ROS produced by mitochondria depends on the supply of oxygen to the cell and
activity of the enzymes that produce ROS (especially SOD1 and MAO-A). Cardiomyocyte
cytosol antioxidant GPX and PRX regeneration also depends on Krebs cycle action. AMPK
activation is important for antioxidant enzyme function.

4. Differences in ROS-Induced Pathways between HFrEF and HFpEF

Abnormalities in antioxidant values and oxidative states are found in CHF of various
etiologies. Oxidative stress is increased in both HFrEF and HFpEF and is related to the
pathogenesis of myocardial remodeling [9,21,55,112,113]. Comparison of oxidative stress
readings in ischemic cardiomyopathy and non-ischemic cardiomyopathy patients and the
correlations between oxidative stress parameters and clinical readings have highlighted the
possibility that the defense mechanisms against ROS could differ between these groups [93].

4.1. ROS in HFrEF

HFrEF is considered in patients with an LV ejection fraction lower than 40% [5]. HFrEF
is mostly associated with large scale cardiomyocyte death and formation of eccentric hyper-
trophy as a result of myocardial infarction, cardiomyopathy or valvular heart disease [114].
Irreversible cardiomyopathic changes, subcellular abnormalities and, in turn, decreased
heart systolic-diastolic function are suggested to be the causes of elevated ROS levels in
HFrEF [115]. Excess of ROS in HFrEF can participate in: (1) subcellular abnormalities and
contractile function damage by proteins involved in excitation-contraction and modification
coupling [116], (2) myocardial fibroblast proliferation and MMP activation [115], (3) mito-
chondrial dysfunction due to upsurge of mitochondrial matrix calcium [117], as well as
mitochondrial fragmentation, stimulating cardiomyocytes to undergo apoptosis [118] and
decrease in oxidative capacity in HFrEF [119]. Lysosomes are known to take part in active
mitophagy of clustered mitochondria [117]. Mitophagy is upregulated and intensified with
progression to HFrEF [119] due to peroxidation of the lysosomal membranes and lipofuscin
accumulation [120].

The molecular mechanisms leading to mitochondrial clustering have not yet been
clarified. An mRNA-binding protein, involved in the proper cytoplasmic distribution of
mitochondria, named clustered mitochondria protein homolog (Cluh), has been suggested
as a participant in mitochondrial biogenesis and oxidative capacity [121]. Cluh has been
found to be downregulated in an HFrEF rat model [122], however, it has not yet been
investigated in humans.

Proteins in OMM (mitofusin 1 and 2) [123], the inner mitochondrial membrane (IMM)
(optic atrophy 1 (OPA1)) [124], and mitochondrial fission proteins (dynamin-related pro-
tein1 (DRP1)) [125] and fission1 [122] are stated to be damaged by ROS [122]. OPA1 was
suggested to take part in mitochondrial respiratory efficiency [126], mitochondrial frag-
mentation and apoptosis [127], and its expression was found to be decreased in HFrEF
patients [119]. It was discovered that the mitochondrial mitophagy marker BNIP3 takes
part in promoting mitochondrial fragmentation by binding to OPA1, leading to OPA1
inhibition [127]. Additionally, BNIP3 inhibition increases DRP1 phosphorylation leading
to its cytoplasmic translocation [117]. DRP1 was also found to be increased in HFrEF
patients [119]. It is worth paying attention to mitochondrial dynamic proteins (MDPs) that
are regulated by some signaling pathways involving proteasome-dependent degradation
and transcription and, therefore, modulating mitochondrial function [128]. It was shown
that MAPK phosphorylates MFN2, leading to its degradation, and is therefore important
in myocardial remodeling induced by mitochondrial related apoptosis [129,130] (Figure 4).

Troponin I, phospholamban [129] and DRP1 [131] have been shown to be target
proteins in PKA-related initiation of remodeling and progression to HF.
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Figure 4. ROS in HFrEF pathogenesis (created with BioRender.com on 9 February 2022). Decrease
in O2 and nutrient supply in cardiomyocytes results in ROS overproduction. Increase in ROS leads
to MMP activation and consequently fibroblast proliferation, vacuolar degeneration, excitation-
contraction coupled protein oxidation (consequently leading to decrease in contractile function of
cardiomyocytes) and oxidation of mitochondrial OMM and IMM proteins. OMM protein damage
results in MAPK pathway activation, leading to apoptosis. IMM protein OPA1 oxidation (resulting in
inhibition) with BNIP3 inhibition by ROS causes mitochondrial fragmentation. Both mitochondrial
and other cytosol protein oxidation by ROS lead to decrease in ETC protein expression, resulting
in ATP production decrease, resulting in poor contraction. Hyperacetylation of ETC complexes,
fatty acid beta-oxidation and TCA cycle proteins lead to inhibition of its activity. SIRT, in healthy
cardiomyocytes, inhibits hyperacetylation and activates AMPK-induced pathway, leading to enzyme-
antioxidant synthesis which leads to hypertrophy inhibition. Excess of ROS inhibits beneficial SIRT
effects. (EF—ejection fraction; MMP—matrix metalloproteinase; ROS—reactive oxygen species;
BNIP3—mitochondrial mitophagy marker; OPA1—optic atrophy 1 protein; DRP1—dynamin-related
protein 1; MFN2—mitofusin 2; MAPK—mitogen-activated protein kinase; ETC—electron trans-
port chain; β-OX—beta-oxidation; SIRT—sirtuin family of NAD+-dependent deacetylases; TCA—
tricarboxylic acid cycle; LKB1—liver kinase B1; AMP—adenosine monophosphate; AMPK—AMP
activated protein kinase; SOD—superoxide dismutase; CAT—chloramphenicol acetyltransferase;
UCP2—uncoupling protein 2).

Calcium uptake in mitochondria is managed by the voltage-dependent anion channel
(VDAC1) at the OMM [132], and is regulated by the mitochondrial calcium uniporter
(MCU) at the IMM [133]. Calcium efflux is managed by the sodium/calcium/lithium
exchanger at the IMM through intermembranous space, and then through VDAC1 into
the cytosol [134]. Mitochondrial matrix calcium overload has been suggested as a major
cause of mitochondrial dysfunction and decrease in oxidative capacity in patients with
CHF [134], but decrease in MCU expression in HFrEF has also been suggested [135].
Therefore, clarification is needed on how activation of signaling pathways affects calcium
flux through the OMM and IMM.

Decrease in oxidative capacity was found to be linked to decreasing expression of
ETC complexes, or post-translation modifications of mitochondrial proteins (mainly acety-
lation) [117,119,136]. Cytochrome C oxidase activity was shown to be reduced along
with reduction of expression of ETC complexes I and IV [117]. Decrease in ETC complex
expression [119] and increase in protein acetylation is present in HFrEF patients [136].
Acetylation of ETC complexes, fatty acid beta-oxidation and tricarbonic acid (TCA) cycle
proteins lead to inhibition of its activity [136] (Figure 4). It is speculated that the reason
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behind mitochondrial protein hyperacetylation is related to reduced protein deacetylation
by SIRT3 and SIRT5, and excess of acyl-CoA [137]. Both SIRT3 and SIRT5 were found to
be downregulated in a rat HFrEF phenotype, but not in a moderate cardiac remodeling
setting [122].

Elevated cytoplasmic Na+, abnormal mitochondrial Ca2+ regulation and impaired
energy metabolism are additional causes of diminished mitochondrial function in cardiomy-
ocytes. These, in turn, downgrade mitochondrial energy supply and increase mitochondrial
ROS release. Increased cytoplasmic Na+ impels mitochondrial Ca2+ depletion, mediated
by mitochondrial Na+/Ca2+ exchanger activity. Therefore, qualitatively different patterns
of ROS emission across a similar range of Ca2+ concentrations are produced [138].

A positive correlation between serum levels of reactive oxidative metabolites (DROM)
and high-sensitivity C-reactive protein (hs-CRP) was shown [139], suggesting interfaces
between oxidative stress and inflammation in HFrEF [140].

Post-ischemic condition, hemorrhage, severe trauma or toxic necrosis are the cause
of sterile inflammation in HFrEF patients. As a result, endogenous stimuli trigger sterile
inflammation by activating receptors, such as cluster of differentiation 36A, initializing the
pathogen recognition receptor (PRR), resulting in tissue injury and intracellular cytokine
release [141]. Subsequently, PRR triggers type I interferon (IFN), mitogen-activated ki-
nase (MAPK) and nuclear factor kappa-B (NFκB), as a result, increasing pro-inflammatory
chemokine and cytokine levels [142]. Therefore, granulopoiesis is induced by hematopoietic
stem cells (HSC) that upregulate the production of neutrophils and monocytes [143]. Re-
leased neutrophils are conveyed through the blood into the heart where they phagocytose
damaged cells. After infiltrating the heart, monocytes produce growth factors (IL-10, TGFβ)
and cytokines to reduce inflammatory triggering and promote endothelial and smooth
muscle cells to initiate scar formation [144]. This pathological event sequence causes cardiac
fibroblasts to migrate and proliferate in the injury site where they are transformed into
myofibroblasts. Stress fibers are produced by myofibroblasts, which cause interference
and propagation of electrical signaling, as well as secretion of profibrotic signaling factors
TNF-α, TGF-β and angiotensin II (Ang II). Together, these factors can induce and modify
cardiomyocyte hypertrophy [145]. Moreover, myofibroblasts also line the extracellular ma-
trix, resulting in interstitial and perivascular fibrosis that stiffens the myocardium, inducing
collagenous scar formation [145]. Additionally, TNF-α triggers apoptosis in cardiomyocytes
through death receptors [146].

Taken together, mitochondrial damage, including enzymes involved in metabolic path-
ways (such as fatty acid oxidation and the TCA cycle), OMM and IMM proteins, ETC protein
acetylation and Ca2+ channels were found to be more related to ROS-induced cardiomy-
ocyte damage and CHF progression in HFrEF patients. Mitochondrial-dysfunction-causing
pathways can act simultaneously or subsequently contributing to HFrEF worsening. The
possibilities for mitochondrial function improvement will be discussed in the treatment
options section.

4.2. ROS in HFpEF

HF is defined as impaired LV myocardial contractility, diminished right ventricle (RV)
function and decreased left atrium (LA) volumetric and contractile function. Energetic
imbalances, interstitial fibrosis, cardiomyocyte hypertrophy, and oxidative stress derived
from mitochondrial dysfunction and endothelial dysfunction, are always present in the
setting of HFpEF [4,147].

Pro-inflammatory status affects multiple organ systems and contributes to generalized
microvascular inflammation with diminished cyclic guanosine monophosphate (cGMP)
and nitric oxide (NO) bioavailability, and reduced protein kinase G (PKG) activity. In turn,
lessened PKG activity contributes greatly to cardiomyocyte hypertrophy and increased
resting tension because of impaired connectin (a protein responsible for elasticity of the
muscle) phosphorylation [141]. In addition, increased peroxynitrite concentrations, together
with scarce NO availability, facilitate fibroblast proliferation through epidermal growth
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factor, platelet-derived growth factor, phosphatidylinositol 3-kinase and janus kinase
pathways. These processes in combination cause stiffened cardiomyocytes and increased
collagen deposits, which eventually lead to diastolic dysfunction due to elevated LV
pressures in HFpEF [148–150]. Matrix metallopeptidase 9 (MMP9), a tissue inhibitor of
MMP1, is also increased in HFpEF [151]. In addition, measured cardiomyocyte length and
width were significantly larger in an HFpEF patient group, when compared with an HFrEF
patient group [152].

Comorbidities play an important role in the HFpEF setting. Diabetes mellitus, obesity,
chronic kidney disease, hypertension and anemia generate a systemic inflammatory setting.
For example, in obese HFpEF patients, macrophages in adipose tissue promote secretion of
proinflammatory cytokines and, in CHF patients with anemia, low hemoglobin concentra-
tion fosters oxidative stress, caused by immune response to iron deficiency [153–155]. A sys-
temic inflammatory state, induced by comorbidities, causes elevated levels of interleukin-6
(IL-6), tumor necrosis factor α (TNF-α), soluble ST2 (a receptor that inhibits cardioprotec-
tive impact of IL-33), and pentraxin 3 (a complement activator and autoimmunity control
agent) [151,156,157]. In turn, pro-inflammatory cytokines induce ROS production in the en-
dothelium through NOX [158], causing oxidative and nitrosative stress in the myocardium
of HFpEF patients [159,160]. Obesity-induced inflammatory cytokines activate ROS produc-
tion through NOX activation [161]. Decrease in NO has been shown to be highly important
in HFpEF development through ROS [141] (Figure 5).

Figure 5. NO–cGMP-PKG pathway in HFpEF development (created with BioRender.com on
9 February 2022). NO, produced in endothelium by eNOS in normal conditions, protects fibrob-
lasts and cardiomyocytes from harmful proliferation. BH4 (hydrobiopterin-4) is required for eNOS
action. NO acts via stimulation of cardiac sGC receptors (leading to cGMP synthesis). cGMP regu-
lates phosphodiesterases (PDEs) and cGMP-dependent protein kinases (PKG). NO inhibits TXNIP,
resulting in inhibition of apoptosis, however ROS inhibit this action. Oxidative stress shifts sGC
towards an oxidized heme-free form which is unresponsive to endogenous and exogenous NO. Titin
hypophosphorylation leads to hypertrophy of cardiomyocytes. Increased peroxynitrite concentra-
tions, together with scarce NO availability, induce fibroblast proliferation. Due to uncoupled eNOS,
superoxide production increases. In turn, low levels of NO react with superoxide to generate perox-
ynitrite. Peroxynitrite: (1) oxidizes BH4 to BH2 (BH2 inhibits eNOS), and (2) oxidizes Fe2+ to Fe3+

(Fe3+ inhibits cGMP production from GTP). Therefore, cGMP cannot activate PKG to phosphorylate
titin, whereas titin phosphate prevents cardiomyocyte hypertrophy. For this reason, eNOS inhibition
results in both fibroblast and cardiomyocyte proliferation. Neprylisin catalyzes NPs degradation,
and PDE9 inhibits NPs. NPs acts through receptors in cardiomyocytes to modulate proliferation
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of cardiomyocytes. NO—nitric oxide, eNOS—endothelial nitric oxide synthase, BH4—
dihydrobiopterin-4, NPs—natriuretic peptide, PKG—protein kinase G, a—activated, sGC—soluble
guanylyl cyclase, pGC—particulate guanylyl cyclase, PDE-GMP—regulated phosphodiesterase,
ROS—reactive oxygen species, titin-P—phosphorylated titin, GTP—guanosine triphosphate, TXNIP—
thioredoxin-interacting protein.

Due to uncoupled eNOS, superoxide production increases. In turn, low levels of NO
react with superoxide to generate peroxynitrite, leading to nitration of tyrosine residues and
formation of nitrotyrosine [162]. NO seems also to be responsible for early LV relaxation
and reduction of end-diastolic stiffness [163]. In addition, NO acts by stimulating cardiac
soluble guanylate cyclase (sGC) receptors, leading to cGMP synthesis [164]. Additionally,
brain natriuretic peptide (BNP) stimulates particulate guanylate cyclase (pGC) [165]. cGMP
is a secondary messenger, operating cGMP-gated cation channels, through cGMP regulated
phosphodiesterases (PDEs) and cGMP-dependent protein kinases (PKG) [166]. In HFpEF,
NO bioavailability is low due to inflammation and oxidative stress. cGMP concentration
and PKG activity reduction was also observed in an HFpEF model. Moreover, oxidative
stress shifts sGC towards an oxidized, heme-free form which is unresponsive to endogenous
and exogenous NO [167]. Titin hypophosphorylation associated with stiffened cardiomy-
ocytes was also observed in animal models [168,169]. Therefore, ROS are involved in the
NO-sGC-cGMP-PKG pathway associated with titin hypophosphorylation and myocardial
diastolic stiffness in HFpEF (Figure 5).

Structural vascular abnormalities are another important component in HFpEF patho-
genesis. Stiffened arteries contribute greatly to increased pulse pressure and mean arterial
and systolic blood pressures [170]. Mellisa A. Lyle et al. investigated contractile protein
expression in HFpEF, HFrEF and control group patients and found that the HFpEF group
had decreased myosin phosphatase target subunit 1-protein (responsible for NO mediated
vasodilation) concentration. The authors, therefore, speculated that this was a possible
reason why NO, cGMP or PKG signaling-pathway-targeted pharmacotherapies result in
poor clinical benefits [171].

Inducible nitric oxide synthase (iNOS) upregulation is known to be an important factor
in the development of HFpEF [172]. iNOS-related nitrosative stress increases s-nitrosylation
of inositol-requiring protein 1α (IRE1 α) and decreases transcription factors involved in
cellular stress response-spliced X-box-binding protein1 (XBP1s) levels [173]. It should
also be mentioned that overexpression of XBP1s in cardiomyocytes weakened the HFpEF
cardiac phenotype. It seems that iNOS-mediated nitrosylation of IRE1 α interferes with the
XBP1 connection, which is required for the stress response [173]. Therefore, iNOS inhibition
can be considered as a therapeutic strategy in the HFpEF setting.

Mitochondria play an important role in CHF, but are less understood in HFpEF patho-
physiology [174]. Oxidative metabolism in mitochondria shifts towards a compensatory re-
sponse through increased glycolysis; however, hypertensive HFpEF models do not seem to
have correlation between increased glycolysis and, as a result, increased pyruvate oxidation
rates, although it results in significant increase in proton production [175,176]. The same
process was shown in an HFpEF-induced rat model, which displayed reduced pyruvate de-
hydrogenase activity, diminished glucose oxidation and increased pyruvate dehydrogenase
kinase (PDK4) expression [177]. In obese models, mitochondrial ETC is affected through
peak oxidative phosphorylation and NADH-associated respiration. NADH-associated
dysfunction can be explained by diminished NADH-linked mitochondrial respiration due
to calcium overload [178,179]. Declining energy reserves in the myocardium eventually
lead to systolic dysfunction, even if it is “hidden” under a preserved ejection fraction [180].

Phosphodiesterase (PDE) 5 and 9 were shown to be upregulated in hypertrophy and
CHF. In addition, PDE9-mediated natriuretic peptide (NPs) regulation in cardiomyocytes
was more efficient than with NO-stimulated cGMP regulation [181]. PDE expression in the
myocardium of HFpEF was increased and both PDE9 and PDE5 were involved in regulating
cGMP-PKG activity [181]. Therefore, PDE9 and PDE5 could be potential treatment targets
in patients with HFpEF.
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Taken together, the NO-sGC-cGMP-PKG pathway appears to be the most investigated
and important one in HFpEF pathogenesis. This pathway involves overproduction of
hydrogen peroxide then initiates titin phosphorylation, leading to cardiomyocyte hypertro-
phy. Additionally, eNOS inhibition results in fibroblast proliferation. PDE is also involved
in the cGMP induced pathway in HFpEF pathogenesis. The NO-sGC pathway has been
investigated as a potential treatment target and will be discussed in the treatment strategy
section of this article.

5. ROS-Induced Pathways as a Treatment Target in HFrEF and HFpEF

There are two interactive elements, related to other factors, that are implicit in the
pathogenesis of CHF: inflammation and oxidative stress [182]. Some groups of com-
pounds were investigated for their effect in oxidative stress-induced myocardial dam-
age/remodeling reduction in CHF development including: (1) adenosine monophosphate-
activated protein kinase (AMPK) activators, (2) renin-angiotensin system inhibitors (RAAS
inhibitors), (3) inhibitors of ROS-producing enzymes, (4) antioxidants, (5) MAO inhibitors,
(6) medications that improve mitochondrial function, and (7) substances that increase
cGMP-PKG signaling. Each of these groups will be discussed below.

5.1. AMPK Activators

AMPK is an enzyme that has a pleiotropic cardioprotective impact and is important
in the progression of CHF [84]. There are two AMPK isoforms: α1 and α2, and AMPK α2
seems to dominate in cardiomyocytes [183]. In normal conditions low amounts of ROS
activate AMPK through different pathways [184], leading to antioxidant enzyme SOD,
CAT and UCP2 gene expression (Figure 4), activation of pathways that produce adenosine
triphosphate (ATP), suppression of apoptosis, inhibition of NOX expression and, by these
pathways, protection from cardiac hypertrophy [146]. According to data presented above
in the section on ROS in HFrEF, it appears that AMPK pathway action could be more
feasible for HFrEF. Some drugs, such as metformin, statins, trimetazidine and resveratrol,
were reported to have effects on AMPK activation and may prove to be beneficial in the
clinical setting for ROS reduction and HF progression dampening [146]. For example,
atorvastatin is suggested to activate the eNOS signaling pathway via AMPK, which, in turn
controls NO bioavailability, maintains cardiovascular homeostasis and activates AMPK
by altering the AMP/ATP ratio or increasing ROS-dependent PKC activity [146]. This
process has been shown to attenuate heart dysfunction, fibrosis, and hypertrophy in a
post-MI rat model [185]. Trimetazidine activates AMPK by influencing ATP levels in
cardiomyocytes, thus improving heart function, New York Heart Association (NYHA)
functional class, exercise tolerance and patient’s quality of life [186]. Resveratrol is stated
to be able to inhibit cardiomyocyte hypertrophy through the AMPK-dependent pathway
via two mechanisms: (1) at a high concentration (50–100 µM), it can activate AMPK by
increasing the AMP/ATP ratio [187]; (2) the SIRT1-LKB1 (one of AMPK upstream activators)
pathway [188]. Resveratrol in animal models decreases oxidative stress [189], but clinically
it has not yet been thoroughly investigated [187,188]. AMPK not only improves energy
supply to increase heart function, but also improves heart function by mediating various
intracellular physiological functions, delaying myocardial fibrosis, and reducing heart
damage in animal models. The benefits of these compounds in clinical studies with CHF
patients appear to be worth exploring.

5.2. Renin-Angiotensin System Inhibitors

Angiotensin II (ANG II) is stated to promote excess accumulation of collagen [190]
and is involved in ROS production in cardiomyocytes, leading to myocardial remodeling
and chronic HF (Figure 4). Cardiomyocyte hypertrophy (induced by ANG II), therefore,
could be inhibited by AT1R inhibition. Several potential drugs (e.g., valsartan, candesartan
and kaempherol), affecting chronic HF pathogenesis through the ANG II pathway, have
been investigated.
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Treatment with valsartan reduced mRNA expression levels of NOX2 and NOX4,
as well as the myocardial protein expression levels of NOX2 and NOX4, in rats with
doxorubicin-induced myocardial injury [64]. The authors noted that ANG II increased the
protein expression levels of NOX2 and NOX3 and the production of ROS, and that protein
expression levels of ERK, JNK and P38, which lie downstream of MAPK, were increased
as well. It was emphasized that pre-treatment with valsartan reduced the expression of
AT1R, NOX2, NIX4 and ROS, therefore, activity of the MAPK signaling pathway was
decreased [64]. Clinical studies have confirmed the valsartan effect on oxidative stress
reduction through NOX2 in the human myocardium [191] (Table 1).

Table 1. Medicines affecting human cardiomyocytes via renin-angiotensin system in HF patients.

Medicine Patients Appl., Dose and
Duration Results Pathophysiological

Mechanism Reference

Valsartan
CHF, NYHA

functional class II–IV,
n = 83

6-week study, 80 or
160 mg bid

Produced
hemodynamic and
hormonal effects.

Blocks angiotensin
AT1 receptor

leading to NOX2
activity reduction.

[191]

Sacubitril/valsartan
(LCZ696)

HFrEF (NYHA II–IV)
and LVEF ≤ 40%

n = 4822
5 years

Decreased levels of
NT-proBNP or
improved left

atrial volumes.

Inhibits neprilysin/
ATR [192]

Sacubitril/valsartan HFrEF, n = 54 Twice a day 24/26,
49/51, 97/103 mg

Improved NYHA
class, decreased

NT-pro BNP
concentration,

reduced mortality.

Inhibits neprilysin/
ATR1 [193]

Candesartan HFpEF n = 1958,
HFrEF, n = 1959 2.9 years

Improved
outcomes in both

groups.
ATR1 inhibitor [194]

Neprilizine is an endopeptidase that cleaves the natriuretic peptides (NPs), bradykinin
and adrenomedullin [195]. Inhibition of neprilysin is a main act due to an enhanced effect
on biologically active NP. This inhibition increases the plasma concentrations of other
vasoactive peptides, including vasodilators, such as adrenomedullin (a peptide associated
with the calcitonin gene), bradykinin, and vasoconstrictor peptides, including endothelin-
1 and angiotensin I and II [195]. Therefore, the AT1R inhibitor valsartan was added to
neprilizine (sacubitril). It was discovered that sacubitril/valsartan (LCZ696—combination
1:1 of valsartan and sacubitril) reduced the risk of hospitalization for cardiac failure or
death from cardiovascular disease in patients with HFrEF [196]. LCZ696 was also found to
reduce plasma N-terminal pro b-type natriuretic peptide (NT-proBNP) concentration in
HFpEF and to reduce the risk of death and hospitalization in HFrEF with EF ≤ 40% [192];
however, outcomes for HFpEF are not yet established. Therefore, LCZ696 provides a greater
protection of target organs than AT1R therapy alone, including cardiovascular protection.
This drug is superior in targeting the renin-angiotensin-aldosterone system (RAAS) in
patients with HFrEF who can tolerate AT1R inhibitors, with a better safety and efficacy
profile [190,192,197]. LCZ696 was well tolerated in a Phase II large HFrEF population [192],
produced lower levels of NTproBNP (NCT01920711) and improved NYHA functional
class [198,199].

Researchers recently investigated the usefulness of the ATR1 locator candesartan in
HFpEF treatment and discovered that candesartan improved outcomes to a similar degree
as for HFrEF patients [194].

Current guidelines strongly recommend neurohormonal antagonist treatment for
HFrEF [200]. Despite HFpEF patients representing a majority of those with chronic HF in
the general population, there are no recommendations for HFpEF treatment with sacubi-
tril/valsartan [201].
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Kaempherol (KFP, 3,4’,5,7-tetrahydroxyflavone) is a flavonoid, found abundantly in
plant foods [202], and prevents oxidative stress [203]. KFP was suggested to inhibit cardiac
remodeling through deactivation of mitogen-activated protein kinases (MAPKs) [204].
The activation of MAPK is known to promote fibrosis (Figure 3). Additionally, treatment
aimed at cardiac fibroblasts with KFP resulted in decreased expression of pro-inflammatory
cytokines [204], supplementing the cardioprotective effect. Further clinical studies are
needed to determine the suitability of this medication in patients.

5.3. Inhibitors of ROS-Producing Enzymes

The mitochondrial and cytosol enzymes NOX, NOS and XOR were discussed as
primarily ROS-produced enzymes in cardiomyocytes (Sections 3.1 and 3.2). ETC proteins
were suggested as ROS sources as well. One of the compounds related to mitochondrial
ETC is Mito-Q—a combination of the triphenylphosphonium cation (TPP) and Q10. This
remedy demonstrated promising antioxidative effects in several human studies [205–208].
Mito-Q is Q10 coupled to lipophilic TPP+ and it accumulates on the IMM [205]. Q10, when
reduced to ubiquinol by the ETC, acts as an antioxidant, preventing mitochondrial oxidative
damage [206] and resulting in heart hypertrophy reduction in an HF rat model [208].
MitoQ is stored in mitochondria in vivo and is a part of the redox system, together with
the reduced hydroquinone MitoQuinol form. The pivotal aim of MitoQ is to protect and
prevent cellular damage, triggered by mitochondrial ROS overproduction and oxidative
stress [209,210]. It is important to mention that MitoQ is bound to the mitochondrial IMM,
mostly in the hydrophobic membrane core, which is determined by the membrane potential,
while the respiratory chain complex II is continuously processed into ubiquinol [211]. The
active part of MitoQ is ubiquinone (coenzyme Q10) [212]. MitoQ was shown to protect
against oxidative damage in animal models with HF by reducing hydrogen peroxide
formation [207]. Further clinical studies are needed to confirm the analogous effect in
larger humans.

NOX-, XOR- and NOS-induced pathway inhibition may be one of the ways to reduce
ROS damage in the heart. In small clinical studies, it has been shown that myocardial O2
consumption is lowered and mechanical efficiency of the LV is improved by XOR inhibi-
tion [56] due to increased ATP flux through creatine kinase (CK) [213]. XOR inhibitors are
known to improve LVEF [214], endothelial function [215], and to decrease BNP levels [216]
in HF patients. However, larger studies did not show the same amount of benefit in an
HFrEF patient group [217–219].

Inhibition of eNOS and combined treatment with BH4 also reduced ROS production
in animal models with HF [63]. Overexpression of the enzyme catalyzing BH4 biosynthesis
(GTP-cyclohydrolase 1) or oral consumption of BH4 shielded from harmful Ca2+ pathways
and contractile dysfunction in isolated cardiomyocytes in vivo mice through nNOS ac-
tion [220]. However, few clinical studies have investigated the benefits of BH4 usage and
the results of these were rather poor.

Taken together, XOR inhibitors have been shown not to be effective in chronic HF
patient treatment. Management of NOS activity is still at the research stages. We have
not found any studies that investigated the benefits of NOX inhibition or Mito-Q effect in
CHF patients.

5.4. Antioxidants

Administration of antioxidants (AOx) has been expected to be a simple and effective
way to reduce oxidative harm in the myocardium. Vitamin-antioxidants, Mito-TENPO,
enzyme-scavengers of ROS and elamipretide were investigated (Table 2).
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Table 2. Antioxidants affecting human cardiomyocytes in chronic HF patients.

Medicine Patients Appl., Dose and
Duration Results Pathophysiological

Mechanism Reference

OTC OCs

Patients with heart
failure with preserved

ejection fraction
(HFpEF), n = 16.

600 mg of α-lipoic
acid, 1000 mg of
vitamin C, and

600 IU of vitamin E

Improved
peripheral vascular
function regardless

of changes in
global markers of
oxidative stress in

HFpEF.

Alterations in
redox balance as a

result of
attenuated

endogenous AOx
capacity and/or

elevated oxidative
stress might be an

underlying
mechanism.

[216]

AOx Patients with HFrEF,
n = 14.

1 g of vitamin C,
600 IU of vitamin
E, and 0 mg/day).
6 g α). -lipoic acid

Improved
macrovascular

function, reduced
oxidative stress,

and increased AOx
capacity in patients

with HFrEF

Changes redox
balance; Increases
oxidative stress;

Decreases
endogenous AOx

protection.

[221]

Some small studies evaluated vitamin-antioxidants combinations in HFpEF [216] and
HFrEF [221] and discovered improvement in peripheral vascular function and decrease
in oxidative stress (Table 2). In the first study, reactive hyperemia (RH), a measure of
microvascular function, did not change after OC (combination of α-lipoic acid, vitamin C
and vitamin E) administration. Improvement in flow-mediated dilation was accompanied
by significant increase in plasma nitrite and decrease in CRP, but additional biomarkers of
oxidative stress, plasma concentrations of free radicals and antioxidant capacity were not
altered by AOx. These findings confirm the efficacy of an over-the-counter OC combination
in achieving systemic anti-inflammatory effects and improving peripheral vascular function,
regardless of changes in global markers of oxidative stress in HFpEF, providing new insight
into the potential therapeutic effect of AOx [216]. The second study of HFrEF patients
was characterized by macrovascular endothelial dysfunction, which may be due, at least
in part, to a change in redox balance, leading to increased oxidative stress and decreased
endogenous AOx protection. The results of this small study showed that chronic AOx
administration is a simple way to improve macrovascular function, reduce oxidative stress,
and increase AOx capacity in patients with HFrEF [221] (Table 2). However, larger sample
studies are needed to properly investigate the beneficial effects of this compound.

Mito-TENPO is a mitochondria-targeted chemical with superoxide-scavenging prop-
erties [208]. MitoTENPO was given to prevent and reverse HF [222] and improved LV
contraction [223] in a mouse model. Despite these promising results, we did not find any
studies performed with CHF patients.

One more area of AOx application in chronic HF therapy is enhancing ROS scavenging
capacity through GSH [224], SOD [225] and catalase [226]. Different chemicals were
investigated to increase SIRT3 activity as well [204]. Studies in these fields demonstrated
beneficial results, but further investigations are still needed.

Despite increasing interest in oxidative stress management possibilities in CHF pa-
tients, most antioxidant therapies are not successful [6,227].

5.5. MAO Inhibitors

MAO are enzymes located on the OMM. They catalyze deamination of biogenic amines
and neurotransmitters [102]. The mechanisms of MAO toxicity have been commonly
associated with excessive H2O2 production, due to MAO appearing to be one of the major
ROS sources within the mitochondria [100]. Studies in animal models suggested that
activation of MAO-A/B plays a crucial role in progression from cardiac hypertrophy to
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cardiac failure, establishing a clear association between MAO-induced ROS production and
mitochondrial dysfunction. However, MAO is suggested as a promising new therapeutic
target in chronic diseases [228–235]. Despite the clinical relevance of these findings, and
the possible indications for MAO inhibitors in the treatment of chronic HF, little is known
about the activity of MAO in HF patients and its association with redox imbalance [236].

5.6. Mitochondrial Function Improvement

Mitochondrial function depends mainly on ETC and membrane integrity. Coenzyme
Q (CoQ10) is one of the ETC components [237]. Currently, only one clinical study is being
conducted to address this aspect of the pathophysiology of HFpEF. A study on CoQ10 in
diastolic heart failure patients (NCT03133793) is investigating the efficacy of ubiquinol, a
reduced form of CoQ10, which acts to reduce the severity of HFpEF symptoms and improve
cardiac function [238].

CoQ10 is an essential cofactor of the ETC from complexes I and II to complex III.
It maintains mitochondrial membrane potential, supports ATP synthesis and inhibits
ROS generation [239,240]. Plasma levels of CoQ10 are decreased in patients with chronic
HF, and correspond to the severity of a disease. Doses of CoQ10 have been reported to
increase the incidence of adverse reactions at doses above 1200 mg/day, with doses of 22 to
400 mg/day being considered safe [241]. An analysis of small studies suggested that CoQ10
can improve LVEF in HFrEF [242] and can reduce cardiovascular mortality by 50% [243].
However, it was not sufficiently powerful due to poor prognostic effect [237] for it to be
recommended in guidelines [5]. CoQ10 is also needed for eNOS management [235]. CoQ10
benefits in HFrEF patients are well discussed by A. Sharma and co-authors [237]. It remains
unclear if prescribing of CoQ10 is useful due to mitochondrial function improvement, or
due to its involvement in eNOS action. The utility of CoQ10 for HFpEF patients requires
further investigation.

Elamipretide is a compound that accumulates in the IMM by binding to cardiolipin [244],
a phospholipid, required for proper ETC function and other IMM proteins [244,245]. Cardi-
olipin can be oxidized by elevated ROS [246] and disturbs interaction of ETC complexes,
leading to O2− increase and apoptosis initiation [247]. Elamipretide improved mitochon-
drial function in a dog model [248] and isolated cardiomyocytes [249,250]. Despite favorable
effects in animal models and isolated cardiomyocytes, the clinical effects in humans with
HF are rather modest (Table 3).

Table 3. Medicines affecting human cardiomyocyte mitochondria in chronic HF patients. (LVEDV-
LV end-diastolic volume, LVESV-LV-end-systolic volume).

Medicine Patients Appl., Dose and
Duration Results Pathophysiological

Mechanism Reference

Elamipretide
(SS-31)

HFrEF(EF ≤ 35%),
n = 24 and placebo

n = 12.

i.v., 4-h infusion
0.25 mg × kg−1 × h−1 ↓LVESV, ↓LVEDV

By binding to
cardiolipin,

decreases ROS
production.

[251]

Elamipretide
(SS-31)

HFrEF(EF≤40%),
n = 48 and placebo

n = 23.

p.o., 4 mg or 40 mg
once daily for 28 days.

Did not improve
LVESV.

By binding to
cardiolipin,

decreases ROS
production.

[252]

Coenzyme Q10
Moderate to severe

HFrEF, n = 420.
p.o., 100 mg 3 times

daily, 2 years.

Significantly
improved NYHA
class, CV events
↓by 50%.

Q10 is involved in
eNOS regulation [243]

5.7. Chemicals Increasing cGMP-PKG Signaling

Constantijn Franssen, with co-authors, reviewed studies conducted before the year
2014 regarding medications that increased cGMP-PKG signaling [253]. The medicines
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reviewed were nitroxyl (HNO), enalapril, LCZ696 and sGC activators (e.g., cinaciguat,
riociguat, vericiguat). HNO was shown to increase cGMP and to suppress NOX, resulting
in an anti-hypertrophic effect in rat cardiomyocytes [254] and HFrEF patients [255], but
clinical studies of the HNO effect in HFpEF were absent. LCZ696 was discussed in the
chapter, “Renin-angiotensin system inhibitors”. Cinaciguat did not show any effect on cardiac
index [256]. Riociguat improved symptoms and NT-proBNP levels [257]. Vericiguat was
evaluated in a Phase II trial study in HFrEF and HFpEF [258].

Knowledge about medications that increase cGMP-PKG signaling has grown in the last
decade. Sodium-glucose cotransporter 2 inhibitor (SLGT2), soluble guanylate cyclase (sGC)
activators, PDE inhibitors, NO donors, and the vasodilator hydralazine were investigated.

Empagliflozin (sodium-glucose cotransporter 2 inhibitor) and sGC activator were
suggested to have antioxidant and anti-inflammatory features in the myocardium of HF
rats and HFpEF patients [259]. The results revealed that empagliflozin reduced cardio-
vascular mortality, all-cause mortality, and the number of hospitalizations for HFrEF.
Moreover, both empagliflozin and sGC activator improved cardiomyocyte function by
enhancing the phosphorylation of titin and other myofilament proteins, presumably due
to improved signaling pathways, such as the nitric oxide (NO)/soluble guanylyl cyclase
(sGC)/cGMP-dependent protein kinase (PKG) signaling pathway (NO-sGC-cGMP-PKG
pathway) and the CaMKII-mediated hypertrophic pathway, PKC, ERK2, in addition to the
PKA pathway [259] (Figure 5).

The PDE5 inhibitor sildenafil can inhibit guanosine 3′,5′-cyclic monophosphate (cGMP)
breakdown, improve cardiac relaxation and LV remodeling [260]. The catalytic site of PDE5
generally degrades cGMP, and sildenafil potentiates the endogenous increase in cGMP by
inhibiting its degradation [261]. Sildenfil reduced pulmonary vascular resistance and right
heart pressure in patients with HFrEF, who had secondary pulmonary hypertension, and
long-term treatment improved exercise tolerance, functional capacity, LV diastolic function
and cardiac geometry [262–264]. In a large, long-term (24 weeks) trial of sildenafil (RELAX),
PDE5 inhibitor did not improve LV diastolic function and did not reduce hypertrophy and
pulmonary pressures. In this study, sildenafil did not increase plasma cGMP concentrations,
therefore, exercise capacity and clinical status did not improve [265].

NO donors were also investigated for their capacity to improve heart function. Some
of these donors, such as Angeli’s salt [266] and Piloty’s acid [267], appeared to be unstable.
In turn, pure NO donors, such as the congener of Piloty’s acid, CXL-1020 [255], and the
pro-drug of CXL-1020, cimlanod (BMS-986231), were generated [268]. The HNO donor
BMS-986231 in animal models improved myocardial contractility and relaxation without
increasing heart rate or oxygen consumption [269]. One study was performed with HFrEF,
in which patients received intravenous infusions (i.v.) of BMS-986231 at various doses, and
information about the safety and tolerability of medicine was provided [270]. However,
the poor solubility of BMS-986231 limited its clinical use as an i.v. agent, and its oral
bioavailability is still being investigated [268].

Major studies were performed with the protonated form of NO—nitroxyl (HNO).
The action of HNO is preserved during oxidative stress because HNO does not react with
superoxides [271], and undergoes moderate oxidative reactions through the formation of
hydroxyl radicals [272]. HNO inhibits mitochondrial respiration by inhibiting complexes
I and II, most likely by modifying specific cysteine residues in ETC proteins [273]. HNO
increased cGMP levels and had NADPH oxidase (NOX2) inhibitory and antihypertrophic
effects in rat cardiomyocytes [255]. HNO improved myocardial function due to direct
positive lusitropic and inotropic effects, independent of cyclic adenosine monophosphate
(cAMP), and due to combined venous and arterial dilation [274–278]. In addition, HNO
modifies sarcomeric proteins to increase their Ca2+ sensitivity resulting in systolic force
generation [270]. HNO also causes vasodilatation through endothelial soluble guanylate
cyclase [266,279]. A recent study showed that HNO reduced left and right ventricle filling
pressure and systemic vascular resistance in both animal and CHF patient models [255].
It was concluded that nitroxyl was well tolerated, reduced diastolic filling pressure and
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systemic vascular resistance, and raised cardiac output and stroke volume with unaltered
heart rate [255]. Taken together, the novel cardio-protective properties of HNO show the
therapeutic potential of HNO donors, particularly in situations where NO signaling is
impaired (in HFpEF), but more detailed studies are required.

The vasodilator hydralazine has a beneficial effect on the balance between NO and O2,
which is disturbed in patients with HF [280]. Clinical treatment with nitrates resulted in
eventual tolerance to its vascular and hemodynamic effects, mainly due to endothelial dys-
function [281]. However, in combination with hydralazine, nitrate tolerance was avoided
due to hydralazine inhibition on nitroglycerin-induced vascular O2, and peroxynitrite
(ONOO−) formation in vitro [282] and in vivo [283]. Thus, the antioxidant effect of hy-
dralazine and the prevention of the development of its tolerance in response to isosorbide
dinitrate (ISDN) [284] may at least partially explain why this combination improves mor-
bidity and mortality in patients with chronic congestive HF [285]. The African-American
Heart Failure (A-HeFT) trial demonstrated that ISDN and hydralazine combination has a
large effect on survival in patients with HFrEF [286].

Recently, new classes of drugs that increase cGMP production by targeting guanylate
cyclase at the NO receptor (sGC) have been discovered. These were designed in order to
generate cGMO independently of NO and to target signaling cascades in the cardiovascular
system [287]. Enzymes with a unique mode of action activate the oxidized, heme-free
form of sGC, which does not react with NO. The oxidation or absence of the heme moiety
increases the effect of cinaciguat on the sGC, causing a significant cGMP increase [288].
These compounds are called sGC stimulators and sGC activators. They differ in that sGC
stimulators are targeted to bind to the regulatory domain and trigger cGMP production by
binding the heme-containing non-oxidized form of the sGC regulatory domain [289].

In recent years, the soluble stimulant sGC vericiguate has attracted the attention of
the medical community following reports of reduced clinical outcomes in patients with
chronic heart failure. The NO-sGC-cGMP pathway is mediated by a different mechanism
that complements current drug therapy for cardiovascular disease. cGMP deficiency is a
characteristic trait of both HFrEF and HFpEF [258]. Vericiguate acts synergistically with
endogenous NO [285,290], which is considered a nitroconstrictor that produces cGMP
at low levels of NO (Figure 5). By increasing cGMP, vericiguate has also been shown to
promote vascular relaxation and improve vascular tone regulation and myocardial dys-
function [285,291–293]. This would also attenuate left ventricular remodeling by inducing
PKG-induced phosphorylation of titin after activation of PKG by cGMP [292] (Figure 5).
sGC activators are well discussed by Chien Y.T. et all [294]. Vericiguat is currently in
phase 3 clinical trials for HFrEF (BAY 1021189) and praliciguat is now in phase 2, in HF-
pEF (IW-1973, IWP-121) [294]. Drugs that alter cardiomyocyte homeostasis by increasing
cGMP-PKG signaling in HF patients are summarized in Table 4.

Table 4. Medicines affecting human cardiomyocytes by increasing cGMP-PKG signaling in HF
patients. (LV-left ventricle, LA-left atrium).

Medicine Patients Appl., Dose and
Duration Results Pathophysiological

Mechanism Reference

Empagliflozin
HFpEF II–IV class

(EF > 40%), n = 2997,
placebo n = 2991.

10 mg once daily or
placebo 36 months

Reduced
cardiovascular

death and
hospitalization

SLGT2 inhibitor
and sGC activator [295]

Sildenafil
Stable outpatient
individuals with
HFpEF, n = 160.

24 weeks
Did not improve
exercise capacity

and clinical status.

Inhibits cGMP
breakdown [265]
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Table 4. Cont.

Medicine Patients Appl., Dose and
Duration Results Pathophysiological

Mechanism Reference

Nitroxyl HFpEF, n = 65. 23 months

HNO increased cGMP
concentrations and
had NOX inhibitory

and antihypertrophic
effects in rat

cardiomyocytes.

NO donor. [255]

Cymlanod HFrEF, n = 45 5 h i.v infusion or
placebo

Slightly reduced LV
and LA volumes NO donor [296]

Hydralazine

HFrEF, NYHA class
III–IV (EF ≤ 35% or
< 45% with LVIDd

> 2.9 cm/m), n = 1050.

18 months Improved survival.

ROS scavenger;
Inhibitor of

O2
−generation;

normalizes
endogenous rates

of vascular
O2
−production

[122].

[286]

Cinaciguat HFrEF. n = 62 1 year
Did not significantly
improve dyspnea or

cardiac index.

Increases cGMP
production by

targeting
guanylate cyclase
at the NO receptor

(sGC).

[256]

Vericiguat

HFrEF, (LVEF < 45%,
history of

decompensation
within the last four

weeks), n = 456

1.25 mg, 2.5 mg, 5 mg,
or 10 mg for 12 weeks

Was well-tolerated and
higher doses were
associated with a

greater reduction in
NT-pro BNP level.

Triggers cGMP
production by

binding the
heme-containing

non-oxidized form
of sGC regulatory

domain.

[290]

HFpEF ( LVEF > 45%
and a history of
decompensation
within the last

four weeks), n = 477

from 1.25 mg to 10 mg
once daily for

12 weeks

Appeared to be
well-tolerated and
improved patients

with HFpEF quality of
life; however, had no
significant impact on

NT-proBNP level.

[297]

HFpEF (LVEF > 45%),
n = 789 15 mg or 10 mg daily No significant changes

were observed. [298]

HFpEF (NYHA II to
IV) with an

LVEF < 45%, history of
decompensation over

the last six months,
elevated NT-proBNP

or BNP), n = 5050

10 mg once daily
for 10.8 months

Hospitalization for
heart failure and death

from cardiovascular
causes were reduced
compared to placebo.

[299]

To conclude, AMPK activators are suggested to improve heart function in animal
models, and, with further research, have potential to be beneficial for patients with chronic
HF. The AT1R and neprilysin inhibitor valsartan/sacubitril has been investigated in most
detail of all Ang II inhibitors and was included in guidelines for HFrEF treatment. Kaem-
pherol displayed cardioprotective effects in cell culture [203,204]; however, further clinical
studies are needed in order to assess its suitability and beneficial effects for patients. The
utility of antioxidants, mitochondrial-function-affecting drugs and MAO inhibitors have
been poorly studied to date. Both the SLGT2 inhibitor, sGC activator empagliflozin and
vericiguat produced gratifying treatment results in patients with HFpEF.
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6. Conclusions

Mitochondrial damage, inflammation and enzyme-oxidants (NOX, XOR, NOS), as
well as decreased activity of enzyme-antioxidants (GPX and PRX), can be assumed to
be the main triggers for excess amounts of ROS in cardiomyocytes. AT1R is involved in
NOX activation in both cardiomyocytes and fibroblasts. Enzyme-oxidants act through
MAPK and NO synthesis inhibition pathways, leading to cardiomyocyte hypertrophy and
interstitial fibrosis. Pro-inflammatory cytokines trigger ROS overproduction, leading to
mitochondrial structural damage due to membrane protein, ion channel protein and protein
acetylation in HFrEF mitochondria. Therefore, damaged mitochondria are suggested to be
the main ROS source in HFrEF, while NO decrease, NO-sGC-cGMP signaling inhibition by
ROS and enzymes iNOS, eNOS, PDE are understood to be the most important factors in
HFpEF development.

The pathways involving both AMPK and MAPK protein kinases, AT1R and cGMP-
PKG, are considered as treatment targets for halting chronic HF development. Therefore,
some compound groups for oxidative stress-induced myocardial damage/remodeling
reduction in HF development include: (1) activators of AMPK, (2) RAAS inhibitors, (3) in-
hibitors of ROS producing enzymes, (4) antioxidants, (5) MAO inhibitors, (6) medications
that improve mitochondrial function, and (7) substances that increase cGMP-PKG signaling.

Achievements in reducing ROS-induced harmful pathways in chronic HF can be
summarized as follows: AMPK activators are suggested to improve heart function in
animal models, therefore, exploratory studies with patients afflicted with chronic HF could
prove to be of great value. AT1R and the neprilysin inhibitor valsartan/sacubitril have
been investigated in the most detail of all. Ang II inhibitors have yielded favorable results
and been included in HFrEF treatment guidelines. Kaempherol displayed cardioprotective
effects in animal models, but clinical studies are still needed to verify the suitability and
treatment benefits in humans. XOR inhibitors and management of the NOS activity in
chronic HF patient treatment are still in research stages. Further studies that investigate the
benefits of NOX inhibition or Mito-Q effect in CHF patients are needed. The usefulness of
antioxidants, mitochondrial-function-affecting drugs and MAO inhibitors are still poorly
studied and understood. Both the SLGT2 inhibitor and the sGC activator empagliflozin
and vericiguat displayed gratifying results in HFpEF treatment; however, their effects still
require to be confirmed in randomized studies.

7. Perspectives

ROS were shown to be involved in both HFrEF and HFpEF pathogenesis through
different pathways. Although treatment with unselective antioxidative treatment failed to
demonstrate better outcomes in HFrEF and HFpEF patients, oxidative stress remains the
focus of intensive research. It appears that selective antioxidant treatment ought to give
more favorable results. Treatment regarding mitochondrial function improvement and
cGMP-PKG signaling appear to need deeper investigation for both CHF patient groups. In
HFrEF, patient usage of AMPK activators should be evaluated.
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Abbrevations
ALDH2 aldehyde dehydrogenase
AMP adenosine monophosphate
AMPK adenosine monophosphate activated protein kinase
ANGII angiotensin II
AO antioxidant
AOx vitamin C, vitamin E, α-lipoic acid (antioxidants)
AT1R angiotensin II receptor
ATP adenosine triphosphate
BH4 dihydrobiopterin-4
BNIP3 mitochondrial mitophagy marker
BNP brain natriuretic peptide
Bax bcl-2-like protein 4
CAT chloramphenicol acetyltransferase
CHF– chronic heart failure
CI ETC complex I
CIII ETC complex III
CK creatine kinase
CRP– C-reactive protein
Cluh clustered mitochondria protein homolog
CoenzymeQ-10– ubiquinone
DM– diabetes mellitus
DROM reactive oxidative metabolites
DRP1 dynamin related protein1
ERK extracellular signal-regulated kinase
ERK1/2 extracellular signal-regulated kinase 1/2
ETC electron transport chain
GTP guanosine triphosphate
GMP guanosine monophosphate
GPX glutathione peroxidase
GSH glutathione
H2O2 hydrogen peroxide
HF heart failure
HFpEF heart failure with preserved ejection fraction
HFrEF heart failure with reduced ejection fraction
HNO nytroxyl
HSC hematopoietic stem cells
IDH isocitrate dehydrogenase
IDH2 isocitrate dehydrogenase
IL-10 interleukin-10
IL-6 interleukin-6
IMM inner mitochondrial membrane
IRE1α inositol-requiring protein 1α
ISDN isosorbide dinitrate
JNK-c Jun N-terminal kinase
KFP Kaempherol
LA left atrium
LKB1 liver kinase B1
LPHs lipid hydroperoxide
LV left ventricle
LVEDV left ventricle end-diastolic volume
LVESV left ventricle end-systolic volume
LVH left ventricular hypertrophy
LVID left ventricular internal dimension
MAO monoamine oxidase
MAO-A monoamine oxidase A
MAPK mitogen-activated protein kinase
MCU mitochondrial calcium uniporter
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MMPs matrix metalloproteinase
NAPDH- nicotinamide adenine dinucleotide phosphate
NFκB nuclear factor kappa-B
NHE-1 Na+/Ca2+ exchanger
NO nitric oxide
NO-2 plasma nitrite
NOS nitric oxide synthase
NOX nicotinamide adenine dinucleotide phosphate oxidase
NP natriuretic peptide
NT-proBNP N-terminal pro b-type natriuretic peptide
NYHA- New York Heart Association
OMM outer mitochondrial membrane
ONOO− peroxynitrite
OPA1 optic atrophy 1
P38 a focal point of interactions of the serine/threonine kinases
PDE phosphodiesterases
PKA protein kinase A
PKB protein kinase B
PKC protein kinase C
PKG protein kinase G
PKS protein kinase S
PRR pathogen recognition receptor
PRX peroxiredoxin
RAAS renin-angiotensin-aldosterone system
ROS reactive oxygen species
Rac-1 GTP-binding protein
SGLT2 sodium-glucose cotransporter
SIRT NAD+ dependent class III histone deacetylases
SOD superoxide dismutase
TGFβ tumor growth factor β
TNF-α tumor necrosis factor-α
TPP triphenylphosphonium cation
TXNIP thioredoxin-interacting protein
UCP2 uncoupling protein 2
VDAC1 voltage-dependent anion channel 1
XBP1s X-box-binding protein1
XO xanthine oxidase
XOR xanthine oxidoreductase
cAMP cyclic adenosine monophosphate
cGMP cyclic guanosine monophosphate
eNOS endothelial nitric oxide synthase
hs-CRP high-sensitivity C-reactive protein
iNOS inducible nitric oxide synthase
nNOS neuronal nitric oxide synthase
pGC particulate guanylyl cyclase
sGC soluble guanylate cyclase
β-OX beta-oxidation
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