
Published online 10 November 2018 Nucleic Acids Research, 2019, Vol. 47, Database issue D573–D580
doi: 10.1093/nar/gky1126

HumanNet v2: human gene networks for disease
research
Sohyun Hwang1,2,3,†, Chan Yeong Kim1,†, Sunmo Yang1, Eiru Kim4, Traver Hart 4, Edward
M. Marcotte2,5 and Insuk Lee1,*

1Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea,
2Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin,
TX 78712, USA, 3Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13496,
Korea, 4Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer
Center, Houston, TX USA and 5Department of Molecular Biosciences, University of Texas at Austin, TX 78712, USA

Received August 14, 2018; Revised October 17, 2018; Editorial Decision October 23, 2018; Accepted October 25, 2018

ABSTRACT

Human gene networks have proven useful in many
aspects of disease research, with numerous network-
based strategies developed for generating hypothe-
ses about gene-disease-drug associations. The abil-
ity to predict and organize genes most relevant to
a specific disease has proven especially important.
We previously developed a human functional gene
network, HumanNet, by integrating diverse types of
omics data using Bayesian statistics framework and
demonstrated its ability to retrieve disease genes.
Here, we present HumanNet v2 (http://www.inetbio.
org/humannet), a database of human gene networks,
which was updated by incorporating new data types,
extending data sources and improving network infer-
ence algorithms. HumanNet now comprises a hierar-
chy of human gene networks, allowing for more flexi-
ble incorporation of network information into stud-
ies. HumanNet performs well in ranking disease-
linked gene sets with minimal literature-dependent
biases. We observe that incorporating model organ-
isms’ protein–protein interactions does not markedly
improve disease gene predictions, suggesting that
many of the disease gene associations are now cap-
tured directly in human-derived datasets. With an im-
proved interactive user interface for disease network
analysis, we expect HumanNet will be a useful re-
source for network medicine.

INTRODUCTION

Human gene networks have been widely used to investi-
gate genetic factors of diseases and therapeutic targets (1).
Gene networks can also augment disease genomics infor-

mation derived from expression profiles (2–4), whole ex-
ome sequencing (5,6) and genome-wide association stud-
ies (GWAS) (7,8) for the discovery of disease-associated
genes. Edges of the gene networks may represent diverse
types of associations between genes which can be mapped
by both experimental and computational methods. Because
appropriately integrating interaction information from di-
verse sources can improve the breadth and accuracy of a
network, many integrated human gene networks have been
developed and a variety of topological analysis algorithms
have been applied to generate new hypotheses about gene-
disease-drug associations.

We previously developed an integrated human functional
gene network, HumanNet, and demonstrated its capability
of disease gene predictions (9). In order to construct the net-
work, we inferred functional associations between human
genes from protein–protein interactions (PPI), co-citation
of human genes across PubMed abstracts, co-occurrence
of protein domains, co-expression of genes across samples
and genomic context associations. In addition, interactions
between evolutionarily conserved proteins of model organ-
isms were transferred to the human gene network. Those
networks, inferred from different types of data, were evalu-
ated and integrated using a Bayesian statistical framework.
Since the first release of HumanNet, the amount of publicly
available omics data has increased substantially and net-
work inference algorithms have also improved significantly,
and thus we expected that updating HumanNet could pro-
vide a greatly enhanced resource for network medicine.

In this report, we present HumanNet v2, which of-
fers substantial performance improvements over v1, espe-
cially for the disease gene predictions. A new feature of
the updated HumanNet is a four level inclusive hierar-
chy of the human gene networks: the first level has two
networks, HumanNet-PI comprising human-derived PPIs
and HumanNet-CF based on co-functional links inferred
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from various types of genomics data; the integration of
HumanNet-PI and HumanNet-CF produces the second
level network HumanNet-FN which is an integrated func-
tional gene network; the third level has two extended func-
tional networks by either co-citation (HumanNet-XC) or
interologs (10) from other species (HumanNet-XI); and
the fourth level network is the fully extended network
(HumanNet-XN) that contains all above functional links
(Figure 1A).

We benchmarked each of the networks for their abil-
ity to prioritize disease-linked gene sets with two differ-
ent network-based algorithms. We observed HumanNet-
XC and HumanNet-XN to have equally good or better per-
formance than STRING v10.5 (11) and significantly better
performance than other integrated human gene networks
such as ConsensusPathDB (CPDB) (12), GIANT (7), Gen-
eMANIA (13) and FunCoup (14). Time-stamped bench-
marking strategy demonstrated that the improvements in
performance of HumanNet extended beyond the incorpo-
ration of literature-based information. Interestingly, while
we offer networks extended by IL for completeness, we ob-
served no gains in disease gene prediction quality by their
incorporation, suggesting that data measured directly in
humans has reached a high level of predictive power for
the disease gene network. Users can download edge in-
formation of various human gene networks and perform
disease gene predictions and disease network analysis via
a highly interactive user interface on the HumanNet web
server (www.inetbio.org/humannet).

NETWORK DATABASE IMPROVEMENT

Four-level inclusive hierarchy of human gene networks

To provide flexibility in utilizing the network’s information
for various purposes, we designed HumanNet v2 with a
four-level inclusive hierarchy of human gene networks com-
prising networks based on 10 distinct types of data (Figure
1A and Supplemental Table 1). The previous version of Hu-
manNet was constructed based on only functional associ-
ations between genes, which can be supported by various
types of biological data. The PPI assay was a traditional
approach for mapping the functional associations between
genes. Human gene networks based on only PPIs generally
have a limited network coverage, because there are many
functional associations that are not mediated by physical
interactions between proteins. However, PPI networks have
advantages in terms of the mechanistic interpretation of
disease-associated mutations (15). Therefore, we decided to
maintain a human gene network based on only PPIs sep-
arately as one of the first-level networks, HumanNet-PI,
which contains 158 499 links among 15 352 genes, based on
PPIs by high-throughput assays (HT) and literature-curated
PPIs (LC).

In contrast to the PPI network, functional gene networks
can be supported by diverse types of data (16), including
PPIs. Despite lacking mechanistic information for the net-
work links due to the broad edge definition, the typically
high comprehensiveness of functional gene networks pro-
vides advantages in terms of generating functional hypothe-
ses. We inferred co-functional associations between genes
from six additional types of data: co-essentiality (CE) (17),

co-expression (CX) (18), associations by pathway database
(DB), associations between protein domain profiles (DP)
(19), associations by gene neighborhood (GN) (20) and
associations between phylogenetic profiles (PG) (21). Net-
work inference methods for each type of data are described
in the Supplemental Methods. We integrated the six co-
functional gene networks to generate another first-level
network based on only inferred co-functional links from
omics data, HumanNet-CF that contains 14 739 genes and
252 590 links. Integration of these two first-level networks
produces the second-level network HumanNet-FN, an inte-
grated functional gene network that contains 17 247 genes
and 371 502 links.

Two networks at third-level were constructed based
on the extended information of the functional associ-
ations by either co-citations (CC) across approximately
300 000 full-text articles of PubMed Central (HumanNet-
XC) or interologs (IL) transferred from nine other species
(HumanNet-XI). Co-citation made a significant contribu-
tion to the mapping of functional associations for several
human gene networks, including HumanNet and STRING.
However, the functional network by co-citation may cause
biased benchmarking performance for disease gene discov-
ery, because benchmarking data are also based on the lit-
erature. Some users may want to exclude the influence of
co-citation during disease gene predictions. Therefore, we
decided to maintain a human gene network extended by
co-citation data separately. HumanNet-XC contains 17 790
genes and 424 501 links. In contrast to the HumanNet-
XC, which contains only human-derived functional net-
works, HumanNet-XI includes interologs derived from
five laboratory model organisms (Caenorhabditis elegans,
Drosophila melanogaster, Danio rerio, Mus musculus and
Saccharomyces cerevisiae) and four additional vertebrates:
Canis lupus familiaris (dog), Bos taurus (cattle), Rattus
norvegicus (Rat) and Gallus gallus (chicken). HumanNet-XI
contains 17 303 genes and 418 525 links.

The fourth level network, HumanNet-XN, is a fully ex-
tended functional gene network by both co-citation and in-
terologs. Interologs derived from non-human species pro-
vided 101 036 more links to HumanNet-XC, yet its genome
coverage only increased from 94.6 to 95.3%. The most com-
prehensive network, HumanNet-XN, contains 17 929 genes
and 525 537 links.

New types of data used for HumanNet v2

We incorporated functional associations inferred from two
new types of data to the updated version of HumanNet.
We inferred functional associations from co-annotations by
pathway database. If a gene is involved in many different
pathways, it may not belong to a specific pathway. Similarly,
co-annotation involving such genes would be only weak in-
dication of functional coupling. Thus, we measured the sig-
nificance of functional association for given co-annotations
by Fisher’s exact test, giving more weight on gene pairs
that share larger proportion of annotated pathways for
each gene. We used pathway annotations by KEGG (22),
BioCarta (23) and Recactome (24) databases. Network in-
ference from pathway databases resulted in 125 550 links
among 7512 human genes.

http://www.inetbio.org/humannet
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Figure 1. (A) Overview of the four level hierarchy of human gene networks in the HumanNet database. (B) Assessment of the six human gene networks at
different levels of the hierarchy, based on measuring the precision of identifying gene pairs linked to the same human diseases (defined by DisGeNET or
GWAS catalog with timestamp filtration) as a function of the coverage of the database genes.

Another new type of data used for updating HumanNet
was co-essentiality. Recently, several large-scale essential
gene screens were conducted across hundreds of cancer cell
lines using the shRNA and CRISPR-Cas9 systems. Func-
tionally associated human genes tend to have correlations
of essentiality profiles across many cancer cell lines (17). We
obtained the functional links inferred from associations be-
tween essentiality profiles based on over 100 genome-scale
pooled-library shRNA screens and over 400 CRISPR-Cas9
screens from cancer cell lines, which are downloadable from
the PICKLES database (25). Network inference from co-
essentiality resulted in 71 243 links among 4052 human
genes.

Data source extensions

To improve HumanNet, we also extended the sources of
each data type (summarized in Supplemental Table 1). The
co-citation network of HumanNet v2 is based on ∼300 000
full-text articles from PubMed Central, whereas ∼750 000
Medline abstracts were used for the co-citation network of
the previous version of HumanNet. Sources of PPI data
were also substantially extended. The number of database
and high-throughput assay sets (Supplemental Table 2)
used for human-derived PPI networks increased from 5 to
14 and 3 to 12, respectively. As a result, the number of non-
redundant PPIs of HumanNet v2 is 158 499 (connecting
15 352 genes), whereas the PPI network of HumanNet v1
has 60 287 links among 9428 genes. Given that PPIs gener-

ally provide high-quality functional associations, this sub-
stantially expanded PPI network will significantly improve
the generation of functional hypotheses. To update the co-
expression networks, we used 125 microarray-based and 33
RNA-seq-based gene expression omnibus (GEO) (26) se-
ries (GSEs) (16 220 samples in total) (Supplemental Ta-
ble 3), whereas only 21 microarray-based GSEs (1603 sam-
ples in total) were used in the previous version. Thus, the
amount of expression profile data for co-expression anal-
ysis has been increased by more than 10-fold. HumanNet
includes networks based on genomic context associations
(GN and PG). We utilized 1748 prokaryotic (1626 bacterial
and 122 archaeal) genomes and 996 metagenomes (754 from
human and 242 from ocean) (27,28) to analyze the genomic
context associations for HumanNet v2, whereas only 432
prokaryotic (393 bacterial and 31 archaeal) genomes were
used for HumanNet v1.

Network inference algorithm enhancement

Since the release of the first version of HumanNet, we have
significantly improved the network inference algorithms for
each data type. We found that associations between the phy-
logenetic profiles of proteins showed a higher correlation
with functional association within each domain of life: Ar-
chaea, Bacteria, and Eukaryota (29). Thus, for HumanNet
v2, we measured the associations between phylogenetic pro-
files that comprise reference genomes from each domain of
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life, then integrated the networks based on domain-specific
profiles into a single network (PG).

For the previous version of HumanNet, we inferred
functional associations by gene neighborhood using only
probability-based measures (30). We later found that
probability-based and distance-based measures (31) of gene
neighborhood are complementary and that their integra-
tion could significantly improve network quality (20). Thus,
we generated two functional networks using probability-
and distance-based measures of gene neighborhood. We
also found that distance-based gene neighborhoods across
metagenomes correlated with functional associations (32).
We could infer two functional networks by gene neighbor-
hood analysis using 754 human microbiomes (27) and 242
ocean metagenomes (28). The final gene neighborhood net-
work (GN) was constructed by integrating the four net-
works.

The human gene network based on protein domain pro-
files for HumanNet v2 was improved by using a weighted
mutual information (WMI) score that measured the mutual
information (MI) between domain profiles of proteins by
giving a higher weight to rarer protein domains (19).

Systematic network evaluation for disease gene discovery

Recently, a systematic network evaluation for their ability
to retrieve disease gene sets was conducted for 21 human
gene networks, including the previous version of Human-
Net (33). The study reported that CPDB (12), GeneMa-
nia (13), GIANT (7) and STRING (11) had the best per-
formance in terms of retrieval of literature-curated disease
gene sets by DisGeNET (34) and sets of disease candidate
genes mapped by P < 5e-08 from the GWAS catalog (35).
To confirm these results and to evaluate the new human
gene networks of HumanNet v2, we evaluated the four best
performed gene networks reported by the aforementioned
study, another large-scale human functional network, Fun-
Coup (14), and HumanNet v2 for disease gene predictions.
Importantly, we used ‘time-stamped benchmarking’ strat-
egy (36) to avoid biased evaluation by co-citation links of
HumanNet and STRING. Co-citation links of HumanNet
v2 were captured from papers published until 2015. Thus,
we used disease-associated genes identified via GWAS pub-
lished only after 2016 for each trait of the GWAS catalog.
With this timestamp filtration, we could obtain 231 traits
that contain more than 10 genes mapped by P < 5e-08 from
the GWAS catalog. Since the latest version of STRING was
published in 2016, we expected that the same gene sets could
be used for unbiased evaluation of STRING.

We first assessed network accuracy for identifying two
genes involved in the same human diseases. We found that
two first level networks, HumanNet-PI and HumanNet-CF,
to have the worse accuracy than the integrated functional
network, HumanNet-FN in terms of connecting gene pairs
linked to the same diseases annotated by DisGeNET or
GWAS catalog with timestamp filtration as a function of
the coverage of the database genes (Figure 1B). This re-
sult is consistent with the observation that all of the best
performing human gene networks reported by the afore-
mentioned study were functional networks rather than PPI
networks (33). We found HumanNet-XC to have the best

performance in identifying gene pairs for the same dis-
eases. Notably, incorporating interologs into HumanNet-
FN and HumanNet-XC did not notably improve network
precision compared with HumanNet-XI and HumanNet-
XN, respectively. To evaluate contribution of each evidence
to the integrated gene network, accuracy and genome cover-
age of networks by each data type were also assessed based
on the same disease annotations (Supplemental Figure 1).

Next, we compared the best performing HumanNet-XC
with the previous HumanNet (v1) as well as five other hu-
man gene networks, and found that HumanNet-XC outper-
formed all the other human gene networks (Figure 2A). In
addition, we observed that HumanNet-PI has overall higher
accuracy than another scored human PPI network, InWeb
(Figure 2B). These results indicate that HumanNet v2 might
provide the most appropriate networks for disease research
by utilizing protein physical interactions as well as func-
tional associations.

Next, we evaluated the networks for their ability to re-
trieve disease gene sets. The network performance for dis-
ease gene recovery correlates with the efficiency of dis-
ease gene discovery by network-based gene prioritization.
Network-based gene prioritization for diseases can use two
alternative strategies: direct neighborhood and network dif-
fusion (37). Direct neighborhood methods prioritize genes
using the disease information of their directly connected
network neighbors only (38,39). In contrast, network diffu-
sion methods prioritize genes by propagating disease infor-
mation throughout the entire network (40). Recently, net-
work diffusion methods have increased in popularity, and
the web server of the previous HumanNet version also em-
ployed network diffusion for disease gene prioritization.
However, more recently, multiple studies have shown that
direct neighborhood is generally more efficient than net-
work diffusion in obtaining disease genes in the top predic-
tions (41,42). Because typically only a few hundred candi-
dates at most are considered for the follow-up functional
analysis, we benchmarked the retrieval efficiency of dis-
ease genes by the area under the receiver operating char-
acteristic curve (AUROC) until a false positive rate of 1%
(FPR < 0.01). With this benchmarking analysis, we found
HumanNet-XC and HumanNet-XN to have significantly
better performance than all other networks by direct neigh-
borhood with the unbiased disease gene sets (Figure 3A).
We observed similar results for AUROC until FPR of 2%
and 5% (Supplemental Figure 2). In consistent with the
results of previous systematic evaluation, HumanNet v1
showed worse performance than STRING, GeneMania,
and GIANT with the time-stamped benchmarking, indicat-
ing large influence of co-citation information on the earlier
version of HumanNet (33).

It is also possible to prioritize disease genes with net-
work diffusion techniques such as random walk with the
restart model (40). For benchmarking the retrieval effi-
ciency of disease gene sets by network diffusion, we used
‘performance gain’ scores based on the area under the preci-
sion recall curve (AUPRC) as described in a previous study
on systematic network evaluations (33). With this bench-
marking analysis, we found HumanNet-XC, HumanNet-
XN, and STRING to have significantly better performance
than other networks (Figure 3B).
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Figure 2. Assessment of human functional gene networks (A) and PPI networks (B) for genes linked to the same human diseases (defined by GWAS catalog
with timestamp filtration) as a function of the coverage of the database genes.

Figure 3. Assessment of predictive ability of networks for unbiased GWAS catalog disease gene sets based on the distribution of (A) the area under receiver
operating characteristic curve (AUROC) until 1% of false positive rate (FPR < 0.01) and (B) performance gain scores based on area under precision recall
curve (AUPRC). For each box-and-whisker plot, the boundaries of the box represent the first and third quartiles and the whiskers represent the 10th and
90th percentiles. Significance of performance difference from that of HumanNet-XC is indicated by asterisk (*: P < 0.05, **: P < 0.01, Wilcoxon rank sum
test).

Notably, in all of the above benchmarking analysis, we
did not observe a significant increase in performance by in-
corporating interologs (P > 0.05 for HumanNet-FN versus
HumanNet-XI and for HumanNet-XC versus HumanNet-
XN, Wilcoxon rank sum test). These results suggest that
many of the evolutionarily conserved gene links for the
same diseases are now captured directly in human-derived
data. However, we cannot exclude the possibility that in-
trologs can improve gene prioritization for non-pathogenic
cellular processes such as core metabolic pathways.

WEB INTERFACE IMPROVEMENT

Implementation of a new user interface

We implemented back-end and front-end servers for Hu-
manNet v2 to facilitate effective interactions with users.
For the back-end server implementation, we used Re-
dis (https://redis.io), an in-memory DB which reduces
the data loading time significantly compared with that

from a hard drive. We designed the back-end inter-
face as an Application Programming Interface (API) to
communicate with the front-end server and also job re-
quests from users. We employed several open-sourced
Cascading Style Sheet components and JavaScript li-
braries for front-end server implementation. We designed
the website layout using Bootstrap4 and its components
(https://getbootstrap.com). Cytoscape.js (43) and its exten-
sions, ‘cytoscape.js-cose-bilkent’ (from https://doi.org/10.
5281/zenodo.1098231) and ‘cytoscape.js-panzoom’ (from
http://doi.org/10.5281/zenodo.835037) were employed to
provide the graph and network visualization.

Disease-focused hypothesis generation

The HumanNet v2 web server facilitates human disease re-
search by predicting disease genes or disease annotations.
Network-based disease gene predictions are generally based
on the network connections to the genes known to be in-
volved in the disease. We dubbed these known disease genes

https://redis.io
https://getbootstrap.com
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http://doi.org/10.5281/zenodo.835037
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Figure 4. Screenshots of the HumanNet reports page for the network-based disease gene prediction using HumanNet-XC based on submission of 70
genes for type 2 diabetes mellitus (defined by DISEASES) as guide (query) genes. The upper panel shows the interactive network viewer, visualizing a
network of guide genes (green nodes) and their top 100 direct neighbors, which can be interpreted as putative candidate genes (blue nodes). Here, the
local subnetwork of the third ranked candidate, IGF2BP2 and its neighbors is highlighted. The retrieved gene IGF2BP2 is already annotated for diabetes
mellitus by DISEASES, DOAF and DisGeNET, serving to validate the specific prediction result. The lower panel reports data on the guide genes, including
the statistical significance of within group connectivity of guide genes, and the observed network performance for guide gene recovery reported as ROC
curves.

‘guide genes’ because they guide the network-based pre-
dictions of new disease gene candidates. We can estimate
the predictive performance of networks based on the ef-
ficiency of guide gene recovery. The HumanNet v2 server
uses a direct neighborhood approach rather than network
diffusion for network-based gene prioritization, because at
most a few hundred candidates are considered for follow-
up functional analysis and direct neighborhood generally
outperforms network diffusion methods for the early re-
trieval of guide genes (41,42). The HumanNet v2 server uses
HumanNet-XC as a default network, because it showed the
best performance for disease gene recovery in our bench-
marking analyses.

Using multiple guide genes for network-based predic-
tions is desirable, because predictions based on multiple net-
work connections are more confident due to the ensem-
ble effect. The functional coherence of guide genes would
be a meaningful indicator of their effectiveness. Therefore,

the HumanNet server reports on the significance of within-
group connectivity of guide genes using 10 000 random gene
sets of the same size (Figure 4, lower panel). The Human-
Net server also reports on ROC plots, which indicate the
predictive performance of networks for a disease based on
the efficiency of guide gene recovery. To evaluate statistical
significance of the observed AUROC score, HumanNet v2
server generates null models using 10 000 random gene sets
of the same size. Users can submit pre-defined disease gene
sets from DisGeNET (34), DISEASES (44), Disease Ontol-
ogy Annotation Framework (DOAF) (45), GWAS catalog
(35) and Human Phenotype Ontology (HPO) (46). Users
can also submit a set of genes targeted by a drug based on
DiSigDB (47). Thus, predictions guided by the DiSigDB
gene set are likely candidates of novel targets for the same
drug. HumanNet users can also predict disease annotations
of a gene based on the network-neighbors. For a query gene,
the HumanNet server collects disease annotations from its
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network neighbors and lists them starting from the most en-
riched one.

Interactive network viewer

Network-based disease gene prediction generates a network
of guide genes and new candidate genes for disease. Fur-
ther investigation of the disease gene network would pro-
vide functional insights which might be useful for narrow-
ing down final candidates and for mode-of-action studies.
Therefore, we designed a network viewer enabling users to
conduct interactive analyses of the disease gene network.
The HumanNet v2 server generates a network of guide
genes and the top 100 candidate genes for the disease. Ini-
tially, the entire network appears in the viewer to give a
brief idea of the disease gene network, but soon after, all
the candidate genes disappear. Then, users can select dif-
ferent numbers of top candidate genes for a new disease
network by thresholding the prediction score (Figure 4, up-
per panel). Users can select a particular gene of the disease
network not only from the network viewer but also from
the table of candidate genes. The network viewer highlights
a local subnetwork of the choice of gene and its network
neighbors. Users can also see additional information such
as annotations of the GO biological process and diseases
for the chosen gene and supporting evidence for the local
network connections. The interactive thresholding for can-
didate gene selection allows users to consider various dis-
ease gene networks with different trade-offs between de-
gree of confidence and coverage. Disease-association for the
selected group of candidate genes can be summarized by
gene-set analysis (GSA). Users can select the top N candi-
date genes and run GSA with not only GO biological pro-
cesses but also annotated disease genes from DisGeNET
(34), DISEASES (44), DOAF (45) and HOP (46).

CONCLUSION

In this report, we present an updated HumanNet by in-
corporating new types of data, extending data sources and
improving network inference algorithms. The new Human-
Net was designed to have an inclusive, four level hierar-
chy of human gene networks. Based on our benchmark-
ing results for their performance of disease gene recovery,
we conclude that HumanNet serves as one of the better
human gene networks for prioritizing disease-linked genes
and reconstructing disease-relevant gene modules. We rec-
ommend HumanNet-XC for most network-based disease
research, but other networks will be useful for other pur-
poses. For example, HumanNet-PI is recommended for the
mode-of-action studies of disease mutation, HumanNet-
FN for more conservative predictions of disease genes and
HumanNet-XN for studies requiring the most comprehen-
sive networks. Due to the continuous growth of omics data
repositories and the advent of new types of functional ge-
nomics data such as single cell transcriptome profiles, we
might be able to keep improving HumanNet in the future.
With a highly interactive web server for generating hypothe-
ses, we expect HumanNet to be a highly useful in silico re-
source for the study of human diseases.
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