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ABSTRACT
The roles of non-coding RNAs in controlling clinical and biological heterogeneity 

in bladder cancer remain unclear. We used TCGA’s published dataset (n = 405 tumors) 
as a discovery cohort and created a new validation cohort to define the miRNA 
expression patterns in the basal and luminal molecular subtypes of muscle-invasive 
bladder cancer (MIBC). We identified 63 miRNAs by PAM, which optimally identified 
basal and luminal tumors. The targets of the top luminal miRNAs were activators 
of EMT (ZEB1, ZEB2) and basal subtype transcription (IL-6, EGFR, STAT3), whereas 
the targets of the top basal miRNAs were involved in adipogenesis pathways and 
luminal breast cancer (ERBB2, ERBB3). We also identified a 15-miRNA signature 
that identified stromally infiltrated basal and luminal MIBCs corresponding to the 
“cluster IV/immune undifferentiated/claudin-low” and “cluster II/luminal immune” 
subtypes identified previously, which likely contain samples with higher infiltration 
rates. Using the 63-miRNA signature, we accurately assigned MIBCs to the basal and 
luminal subtypes and confirmed that patients with basal tumors had shorter overall 
survival. The results strongly suggest that miRNAs contribute to the control of the 
gene expression patterns observed in basal and luminal MIBCs and that they can be 
used as biomarkers and candidate therapeutic targets.

INTRODUCTION

Muscle-invasive bladder cancer (MIBC) is the 
fourth most common cancer type in men in the United 
States, occurring less frequently in women. It is a highly 
heterogeneous disease in which approximately half of 
patients are cured by surgery with or without cisplatin-
based chemotherapy, while the other half succumb 
to rapid disease progression [1]. Frontline treatment 
regimens had not changed for decades until anti-PDL1 
immune checkpoint blockade was approved very recently 
[2, 3], and prognostication is still based on clinical and 

pathological criteria. Fortunately, several recent large-
scale genomics projects have provided new insights 
into the molecular heterogeneity of MIBCs that likely 
influences clinical heterogeneity. Whole genome mRNA 
expression profiling by several independent research 
groups demonstrated that MIBCs can be subdivided 
into molecular subtypes that share biomarkers with the 
intrinsic basal and luminal subtypes of breast cancers 
[4-7]. Cancers in one subtype (termed “SCC-like” or 
“basal”) [8] were associated with advanced and metastatic 
disease at presentation and shorter disease-specific 
and overall survival, whereas patients whose cancers 
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belonged to another subtype (termed “papillary” or 
“luminal”) had better outcomes [4, 5, 7]. Basal cancers 
were enriched with squamous histopathological features 
[4, 5, 7], whereas luminal cancers were enriched with 
papillary histopathological features and activating DNA 
mutations and fusions involving fibroblast growth factor 
receptor-3 (FGFR3) [4, 5, 9]. Therefore, it appears that 
basal and luminal MIBCs have very distinct clinical and 
biological properties and therefore should be managed as 
distinct disease entities. As a consequence, there is strong 
interest in developing reliable clinical tools that can be 
used to accurately assign MIBCs to the basal and luminal 
subtypes.

Micro-RNAs (miRNAs) are a class of non-coding 
RNAs containing 19 to 24 nucleotides that control 
expression of their target mRNAs by inhibiting protein 
translation and promoting mRNA degradation. Micro-
RNAs are attractive as cancer biomarkers because they 
are more stable than mRNAs in formalin-fixed, paraffin-
embedded (FFPE) tissues and accessible body fluids 
[10, 11]. While miRNA expression has been explored in 
bladder cancer, most past studies focused on miRNAs 
that are differentially expressed in cancers as compared 
to normal urothelium, including miR-142, the miR-200 
family, miR-100, and miR-99a [12]. We wondered whether 
miRNAs could also be used as biomarkers to identify the 
basal and luminal molecular subtypes of bladder cancer 
and possibly as novel therapeutic agents [13]. To test this 
hypothesis, we used TCGA’s matched whole genome 
mRNA and miRNA expression data and generated new 
miRNA sequencing data on an independent cohort of 
62 muscle-invasive tumors from our own institution to 
explore the patterns of miRNA expression in basal and 
luminal cancers. 

RESULTS

The TCGA cohort is the largest high quality 
whole transcriptome MIBC dataset available at present 
(n = 405 MIBCs). We used the TCGA RNAseq data 
and unsupervised analyses, consensus clustering (CC), 
to determine whether previous conclusions about the 
molecular subtypes of bladder cancer were reproducible. 
Consistent with our previous conclusions [14], the results 
revealed that a three cluster (k = 3) solution best fit the 
data mathematically (Figure S1A), and the biomarkers that 
were enriched in each of the 3 CC subtypes overlapped 
significantly with those associated with the basal, p53-
like, and luminal subtypes we had identified previously 
(Figure S1). However, the CC subtype assignments were 
only 75% identical to those made using our one-nearest 
neighbor (oneNN) classifier (Figure S1B) [14]. Most of 
the discrepancies were due to class switches between 
the p53-like and luminal tumors, consistent with past 
conclusions [14]. Furthermore, in spite of the fact that 
a three-cluster solution was optimal mathematically, 

we noted that basal and luminal biomarker expression 
was almost entirely mutually exclusive in the p53-like 
tumors (Fig S1C, S1D), suggesting that a two-cluster 
(k = 2) solution would be more biologically accurate. 
Consistent with this idea, using a k = 2 solution (Figure 
1A), we observed excellent overlap (93%) with subtype 
assignments made using an independent basal/luminal (k 
= 2) PAM classifier (BASE47) [6], and when the oneNN 
p53-like tumors were omitted, we also observed an 
overlap of 93% with the oneNN basal and luminal subtype 
assignments (Figure 1B). Direct visualization of basal and 
luminal biomarkers confirmed good separation of the basal 
and luminal CC subtypes, although a fraction of the basal 
tumors, corresponding to some of the oneNN p53-like 
tumors, had noticeably lower expression of both basal and 
luminal biomarkers (Figure 1C/1D). 

We used the TCGA mRNA dataset and the k = 2 
CC subtype assignments as a training set to develop our 
own mRNA PAM classifier, using 62 samples from the 
MDA fresh frozen (FF) cohort (GSE48075) for validation 
(Table S1). We used 12,407 mRNAs that passed filtering 
criteria in TCGA’s cohort and were present in the FF 
cohort to develop the PAM classifier, which resulted in 
a solution that contained 593 mRNAs that contained 39 
of the 47 BASE47 genes (Figure S2A). We noted a few 
discrepancies in the subtype assignments made using this 
new PAM classifier and BASE47, which were largely due 
to the presence of a small fraction of tumors that were 
double positive for basal and luminal biomarkers (Figure 
S2). The 593 PAM mRNAs were then used to make 
subtype predictions in the 62 FF cohort (Figure S2B), 
resulting in 28 basal tumors and 34 luminal tumors. The 
28 predicted basal tumors encompassed all of the basal 
tumors originally identified by oneNN prediction and 
had high expression of basal markers and basal BASE47 
genes. The 34 predicted luminal tumors encompassed all 
of the luminal tumors identified by oneNN prediction and 
had high-level expression of PAM luminal markers and 
luminal BASE47 genes (Figure 2). 

After identifying the basal and luminal MIBCs in the 
two datasets, we characterized their differential miRNA 
expression patterns as a step toward identifying a miRNA-
based signature that could distinguish them. We first used 
the same unbiased approach we applied to TCGA’s mRNA 
dataset, this time using TCGA’s miRNAseq data from the 
405 MIBCs (Figure S3). The results were consistent with 
a k = 2 solution (Figure S3A) and revealed 77% and 73% 
concordance with the basal/luminal subtype assignments 
made by mRNA consensus clustering and BASE47, 
respectively (Figure S3B). However, when we examined 
basal and luminal mRNA biomarker expression within the 
miRNA clusters, we observed that a significant fraction of 
PAM-defined luminal tumors clustered with the miRNA-
defined basal cluster (Figure S3C/S3D). Therefore, we 
concluded that a supervised approach based on the mRNA 
subtype calls would generate more accurate calls. Because 
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no validation cohort consisting of matched mRNA 
and miRNA expression profiling data was available, 
we generated a new one by performing small RNA 
sequencing (Ion Torrent platform) on our 62 FF validation 
cohort [14]. Using TCGA’s cohort as a training set, we 

used 412 miRNAs that passed filtering criteria in TCGA’s 
cohort and were present in the FF cohort to develop a 
miRNA PAM classifier, which resulted in a 63 miRNA 
solution (Figure 3A/3B). A survey of the results suggested 
that the known biological targets of these miRNAs were 

Figure 1: Validation of the basal and luminal subtypes. mRNA CC was performed with TCGA’s cohort (n = 405). A. mRNA CC (k 
= 2) solution. B. Comparison of mRNA CC subtype assignments to MDA oneNN assignments (top), and to BASE47 assignments (bottom). 
C. The heatmap depicts relative expression of MDA basal (top) and luminal (bottom) markers. D. The heatmap depicts relative expression 
of BASE47 basal (top) and luminal (bottom) markers. 
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relevant to basal and luminal biology. Specifically, basal 
tumors expressed high levels of miR-155, miR-142, 
miR-221, miR-222 and miR-223, which are miRNAs 
commonly associated with aggressiveness in other solid 
tumors and poor prognosis [15-19]. The luminal tumors 
expressed high levels of all of the members of the miR-
200 family (miR-200a/b/c, miR-141, miR-429), consistent 
with previous findings [5, 14]. Members of the miR-200 
family are inhibitors of epithelial-mesenchymal transition 
(EMT) that directly target ZEB1 and ZEB2, core EMT 
transcription factors that directly inhibit transcription of 
the “epithelial” adhesion molecule E-cadherin that are 
highly expressed in basal tumors [20]. Luminal tumors 
express high levels of E-cadherin and low levels of 
ZEB1/2, consistent with the idea that members of the 
miR-200 family play important roles in controlling their 
biological properties. We proceeded to confirm that these 
63 miRNAs could accurately distinguish basal and luminal 
tumors using hierarchical clustering (Figure S4). This 
resulted in 85% and 83% concordance with the subtype 

assignments assigned by mRNA consensus clustering and 
BASE47, respectively.

We then used the Ingenuity Pathway Analysis 
(IPA) miRNA target filter and miRTarBase to identify 
additional miRNA-mRNA relationships that were either 
experimentally observed or were highly predicted in the 
TargetScan database. The results revealed that many of 
the basal subtype-associated miRNAs targeted mRNAs 
involved in adipogenesis, differentiation, and EMT 
suppression (Figure 3C). Specifically, several basal 
miRNAs (miR-125b, miR-142, miR-143, miR-152, miR-
155, and miR-221/222/223) have been predicted to block 
genes in the adipogenesis and RXR activation pathways 
[21-23]. Most notably, miR-125b, miR-223, miR-99a, and 
miR-212 target FGFR2 and FGFR3, which are involved 
in luminal MIBC biology [5, 22, 24, 25]. Several basal 
miRNAs (miR-125b, miR-142, miR-152, miR-146b, 
miR-222, and miR-212) have also been predicted to target 
luminal factors that have been previously identified in 
breast cancer, including ERBB2, ERBB3, ERBB4, and 

Figure 2: PAM identifies basal and luminal tumors in the 62 FF validation cohort. A. The heatmap depicts relative expression 
of MDA basal (top) and luminal (bottom) markers as a function of PAM subtype assignment. B. The heatmap depicts relative expression 
of BASE47 basal (top) and luminal (bottom) markers as a function of PAM subtype assignment. C. Comparison of mRNA PAM subtype 
assignments and MDA oneNN assignments. 
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FOXA1 [26-28]. MiR-125b has also been shown to inhibit 
homeobox (HOX) genes, which control urothelial terminal 
differentiation [29] and are highly expressed by luminal 

bladder cancers. 
Likewise, the miRNAs that were enriched in 

luminal MIBCs target pathways associated with invasion 

Figure 3: Micro-RNA PAM identifies basal and luminal tumors. A. The heatmap depicts relative expression of 63 miRNAs 
identified by PAM to accurately assign basal and luminal tumors in TCGA’s cohort (n = 405). B. The heatmap depicts relative expression 
of the 63-miRNA predictor in the FF cohort (n = 62). C. Schematic representation of basal miRNAs and their luminal associated mRNA 
target genes and pathways. D. Schematic representation of luminal miRNAs and their basal associated mRNA target genes and pathways. 
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and metastasis (EMT, fibrosis, and the actin cytoskeleton) 
(Figure 3D). For example, experimentally observed 
targets of miR-29c include 6 different collagens that are 
associated with fibrosis and possibly support cancer-
associated fibroblast infiltration [30, 31]. MiR-10a, miR-
20b and miR-301 are also predicted to target STAT3, while 
miR-1287 and miR-191 are predicted to target EGFR and 
IL6, respectively. EGFR and IL6 are upstream regulators 
of STAT3, and all have been implicated in basal breast and 
bladder cancers [4, 32]. 

It was evident that a subpopulation of the basal 
tumors expressed lower levels of both basal and luminal 
miRNAs, and this subpopulation corresponded to p53-like 
tumors identified by the oneNN classifier. To explore this 
heterogeneity further, we utilized the class assignments 
from the TCGA 3-cluster (k = 3) mRNA CC solution to 
isolate the significant miRNAs and mRNAs that were 
differentially expressed by the p53-like “infiltrated” CC 
(Figure 4A). We identified 15 miRNAs by differential 

expression analysis and used this signature to perform 
hierarchical clustering with the basal or luminal tumors 
identified by mRNA CC. Overall, in the basal subtype, we 
isolated 82% of the infiltrated tumors identified by mRNA 
CC (k = 3), and in the luminal subtype we isolated 83% 
of the infiltrated tumors. The infiltrated luminal tumors 
identified by the 15-miRNA signature likely correspond 
to TCGA’s cluster II, while the infiltrated basal tumors 
identified show similar expression patterns to TCGA’s 
cluster IV tumors [5]. We applied the same 15-miRNA 
signature identified in TCGA’s cohort to the 62 FF cohort. 
We isolated the basal and luminal tumors as identified 
by mRNA PAM, and performed hierarchical clustering 
with the 15-miRNA expression signature (Figure 4B). In 
the basal subtype, all of the infiltrated tumors identified 
by mRNA CC (k = 3) and oneNN p53-like tumors 
clustered together, while in the luminal subtype, 89% of 
the infiltrated tumors identified by CC were isolated by 
hierarchical clustering. The 15-miRNA signature includes 

Figure 4: Differential expression analysis identified 15 miRNAs that define infiltrated/p53-like subsets of the basal 
and luminal subtypes. A. Hierarchical clustering was performed with the 15-miRNA signature in TCGA’s cohort. (Left) Basal tumors 
identified by mRNA CC were isolated and clustered. The heatmap depicts relative expression of the 15-miRNA signature. (Right) Luminal 
tumors identified by mRNA CC were isolated and clustered. The heatmap depicts relative expression of the 15-miRNA signature. B. 
Hierarchical clustering with the 15-miRNA signature in the FF cohort. (Left) Basal tumors identified by mRNA PAM prediction were 
isolated and clustered. The heatmap depicts relative expression of the 15-miRNA signature. (Right) Luminal tumors identified by mRNA 
PAM prediction were isolated and clustered. The heatmap depicts relative expression of the 15-miRNA signature.
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miR-133b, mir-133a, mir-143, miR-145, miR-99a, and 
miR-100, which have been previously associated with 
fibrosis and chemo-resistance [33-35]. 

Lastly, we analyzed survival outcomes based on the 
subtype assignments made using the 63 PAM miRNAs 
in TCGA’s cohort (n = 405). When we compared the 
2-cluster solutions (BASE47, mRNA CC, 63-miRNA 
PAM signature), we observed that in all cases patients with 
basal tumors had the poorest clinical outcomes (Figure 
5). We also analyzed TCGA’s cohort after patients who 
received chemotherapy were removed, and saw similar 
survival outcomes (Figure S5). Having clinically available 
tests to prospectively identify these patients seems crucial, 
as our previous work showed that basal MIBCs responded 
well to platinum-based chemotherapy [14, 36].

DISCUSSION

The primary goal of this study was to develop a 
miRNA-based classifier that could be used to assign 
tumors to the molecular subtypes of bladder cancer [4-
6]. Using an unsupervised approach and a high quality 

RNAseq dataset, we reproduced our previous conclusion 
[14] that a 3-subtype solution was optimal mathematically. 
However, one of the subtypes, corresponding to our 
original p53-like subtype and consisting of MIBCs that 
were enriched with stromal biomarkers, was unstable 
[14, 36], and we therefore concluded that a two-subtype 
solution corresponded better with the known biology. 
Using CC and a k = 2 solution, we developed a new 
mRNA PAM classifier and compared the calls made using 
it to those made with BASE47. The results revealed over 
90% concordance, consistent with the conclusion that the 
basal/luminal dichotomization is highly robust and most 
likely identifies the intrinsic subtypes of bladder cancer. 

Although methods for producing high quality 
RNA expression data from some FFPE tissue sections 
are already available, the RNA in many of them is too 
degraded for whole transcriptome sequencing. Micro-
RNAs are much more stable, so a miRNA-based subtype 
classifier would be expected to have a lower sample failure 
rate. In addition, miRNAs are also very stable in urine and 
blood, so it may be possible to perform tumor subtype calls 
using “liquid biopsies”. With these considerations in mind, 
we set out to develop a miRNA-based subtype classifier 

Figure 5: Survival analyses. Survival analyses confirm that basal tumors have poor overall survival outcomes in TCGA’s cohort (n = 
405). A. Kaplan-Meier plot of overall survival based on MDA oneNN subtype assignments (p = 0.0012). B. Kaplan-Meier plot of overall 
survival based on BASE47 subtype assignments (p = 0.0021). C. Kaplan-Meier plot of overall survival based on mRNA CC subtype 
assignment (p = 0.0012). D. Kaplan-Meier plot of overall survival based on 63-miRNA signature assignments (p = 0.0014).
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that could be used to accurately assign MIBCs to the basal 
and luminal subtypes. Using a supervised approach based 
on the mRNA subtype calls, we identified 63 miRNAs 
that were expressed in a largely mutually exclusive 
fashion in basal and luminal cancers. Analyses of their 
biological functions supported the idea that they should 
serve as robust biomarkers. Most of the basal miRNAs 
targeted factors that have been implicated in the control 
of luminal biology (FOXA1, ERBB2), adipogenesis 
(FGFR2, FGFR3) and urothelial differentiation 
(HOX5/8/13), all of which would be predicted to be 
suppressed in basal cancers. In contrast, the luminal 
miRNAs targeted transcription factors that controlled 
EMT (ZEB1/2), and biomarkers associated with fibrosis 
and actin cytoskeleton (collagens), and basal cancer 
biology (IL6, EGFR, STAT3), all of which are suppressed 
in luminal cancers. Using this 63-miRNA signature, we 
were able to accurately assign MIBCs to the basal and 
luminal subtypes and show that the basal tumors were 
associated with poor outcomes. Furthermore, we identified 
a 15-miRNA signature that identifies basal and luminal 
tumors that appear to be infiltrated with fibroblasts. This 
signature could prove useful in identifying tumors that are 
resistant to traditional chemotherapy [14, 34, 37, 38] but 
are sensitive to immune checkpoint blockade [3]. 

The high concordance of calls made using BASE47 
and the new PAM classifier described here demonstrate 
that subtype calls made using relative mRNA expression 
are highly robust. Methods to quantify expression of 
large numbers of mRNAs isolated from FFPE tissues 
(Nanostring, RNAseq) are already available, so it should 
be possible to reduce these classifiers to clinical practice. 
However, RNA quality from FFPE tissues can be highly 
variable, and in our experience 40-50% of samples fail 
the standard quality control cut-off ( > 30% of RNA 
fragments longer than 200 bp) used for these platforms. 
In contrast, miRNAs are much more stable and can be 
reliably measured in highly degraded samples. Therefore, 
even though mRNA-based subtype calls appear to be 
somewhat more robust, a miRNA-based subtype classifier 
will have a lower sample failure rate. Importantly, we also 
recently created an immunohistochemical classifier based 
on KRT5/6 and GATA3 staining that can also distinguish 
basal and luminal tumors with reasonable accuracy [39]. 
Therefore, it seems likely that routine identification of 
basal and luminal tumors using mRNAs, miRNAs, or 
conventional immunohistochemistry will become part of 
routine diagnostic practice in the near future.

MATERIALS AND METHODS

Informed consent

Informed consent was obtained from all patients 
who contributed tumors to the TCGA and MD Anderson 
bladder cancer cohorts utilized in this study.

Institutional review board (IRB) approval

All of the genomics studies (TCGA and MD 
Anderson) were performed in compliance with US 
guidelines under approved IRB laboratory protocols.

Training dataset

BLCA RNA and miRNA-sequencing level 3 
data was extracted from the TCGA data portal. TCGA 
normalized RNAseq (RSEM) and miRNA-Seq counts 
(RPM - reads per million mapped miRNA) were log2-
transformed, median centered, and filtered based on a fold 
change of or greater than 2 in at least 10% of the samples. 
Messenger RNAs and miRNAs that passed the filtering 
criteria were used for consensus hierarchical clustering 
in the R package ConsensusClusterPlus [40], with 80% 
resampling and 1,000 iterations. Read counts for both 
mRNAs and miRNAs were used as input for differential 
expression analysis by the R package edgeR [41, 42]. All 
analyses utilized a false-discovery rate (FDR) cutoff of 
5%, and a fold change cutoff of 2.

Validation cohort

We utilized the MD Anderson 62 FF patient sample 
cohort that were analyzed by the Illuminia HTv3 beadchip 
microarray. The RNA expression data were downloaded 
from GEO, dataset GSE48075. The dataset was quantile 
normalized and differential expression was performed 
using the R Bioconductor package, linear models for 
microarray data (limma) [43]. 

Subtype identification

Prediction analysis of microarrays (PAM) was used 
to identify the minimal number of mRNAs or miRNAs 
that could accurately predict subtype classification on 
TCGA’s cohort using the mRNA CC (k = 2) calls as a 
reference [44]. The resulting 593-gene predictor (Δ = 
6.969), and 63-miRNA predictor (Δ = 3.898), was used to 
classify the FF cohort. 
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Ion torrent small RNA sequencing

We used 62 RNA samples to perform small RNA 
sequencing on the Ion Proton from Ion Torrent. The 
amount of small RNA in the total RNA sample was 
quantified with the use of Small RNA and RNA 6000 
Nano bioanalyzer chips from Life Technologies. We used 
20 ng of small RNA for library preparation using the Ion 
Total RNA Seq v2 library preparation kit. The resulting 
cDNA library was quantified with High Sensitivity DNA 
bioanalyzer chips from Life Technologies to determine 
the molar concentration of each library, and to calculate 
the percentage of library that was barcoded small RNAs. 
The cDNA libraries were diluted to the same molar 
concentration, pooled, and diluted to 100 pM. The sample 
was then templated and sequenced with the Ion Proton. 
The GEO accession number for the small RNA sequencing 
data presented in this study is GSE84525. 

Identification of downstream targets

In order to identify downstream target mRNAs of 
the identified differentially expressed miRNAs, we used 
the IPA (Ingenuity Systems) miRNA target filter to identify 
potential downstream mRNA targets. Target mRNAs that 
were high in a subset, where the miRNA was low in the 
same subset were isolated and used for analyses. 

Survival analyses

Clinical data for the 405 TCGA patient samples was 
extracted from TCGA’s data portal. All survival analyses 
were performed in GraphPad Prism 6.
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