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with deep neural networks

Yuan-Yuan Shen,1 Qing-Jun Xing,2 and Yan-Fei Shen1,3,*
SUMMARY

The functional movement screen (FMS) test is a seven-test battery used to assess fundamental movement
abilities of individuals. It is commonly used to predict sports injuries but relies on clinical expertise and is
not suitable for self-examination. This study presents an automatic FMS movement assessment frame-
work using a multi-view deep neural network called MVDNN. The framework combines automatic skel-
eton extraction with manual feature selection to extract 3D trajectory features of human skeleton joints
from two different directions. Three mainstream methods of time-series modeling are then used to learn
high-level feature representation from skeleton sequences, andmotion features from two views are fused
to provide complementary information. Results of public FMS movements dataset demonstrate that our
MVDNN outperforms current state-of-the-art methods with an average miF1 score of 0.857, maF1 score
of 0.768, and Kappa score of 0.640 over ten runs.

INTRODUCTION

Sports injuries1,2 have become one of the most common injuries in modern society, and many people who engage in a variety of daily sports

are plagued by sports injuries. To identify the risk factors of sports injuries in advance, the functional movement screen (FMS) tests3,4 have

been designed to identify deficits in individuals’ movement patterns that may increase the likelihood of sports injuries. Due to its simplicity,

efficiency, and low cost, FMS tests5,6 have been widely used by sport practitioners such as personal trainers, athletic trainers, physical ther-

apists, and strength coaches. For example, the FMS has become one useful tool7,8 during a pre-participation physical examination to screen

athletes for risk of injury in organizations such as the National Hockey League (NHL), the National Football League (NFL), and the United

States military for several years.9 By using the FMS tests, coaches can gain a better understanding of an athlete’s ability to participate in phys-

ical activity based on their final FMS scores. This can help identify risk for injury in advance and lead to decisions related to interventions for

performance enhancement.

At present, the FMS tests rely mainly on human experts. Seven functional movement test tasks including deep squat (DS),

hurdle step (HS), inline lunge (ILL), shoulder mobility (SM), active straight leg raise (ASLR), trunk stability pushup (TSPU), and

rotary stability (RS) constitute an individual FMS test. In the FMS test, participants perform all seven movements in sequence, and

a score of 0–3 is assigned for each task by FMS experts based on FMS scoring criteria. A score of 3 points is awarded for perfect

form, a score of 2 points is given for completing the test with compensations, a score of 1 point is awarded for not completing

the test accurately, and a score of 0 point is given if the subjects feel any pain during the test. Obviously, the assessment scores

are more prone to biases with experts’ subjective evaluation. Furthermore, it is inconvenient to offer FMS expert for every single

FMS evaluation. Thus, an automatic FMS movement analysis system with advanced computer-assisted techniques becomes a prom-

ising idea.

For computer-aided technical FMS analysis system, various sensor data (e.g., motion data, video data, depth data) are being collected

during FMS tests. These data are then analyzed to determine the test score of the participants. Although there are several studies that utilize

wearable inertial measurement unit (IMU) technology to automate FMS tests,10,11 IMU-based FMS tests are not friendly to the home-based

crowd because of expensive inertial sensors and inconvenient to wear. Moreover, there is an abundance of literature on computer-based hu-

manmotion analysis, but most of existing studies cannot be directly applied to other application scenarios due to the significant difference of

data distribution.

With recent developments in computer vision12–14 and machine learning,15–17 markerless vision-based sensors have become increas-

ingly significant in the sport domain.18–20 These sensors provide a fast and effective way to acquire real-time movement data for analysis. In

this paper, we present a home-based FMS analysis system that utilizes markerless vision-based sensors.21,22 The system is designed to
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Figure 1. The pipeline of markerless vision-based FMS movement assessment methods
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automatically handle FMS movement assessment. To capture the 3D skeleton trajectories, we employ Microsoft Azure Kinect depth sen-

sors, which are capable of accommodating dynamic environments and complex backgrounds. Each person’s 3D skeleton trajectory con-

tains 32 body joints. Considering that not all joints extracted from original Azure SDK are informative for FMS test, we select 22 most infor-

mative joints for each FMS test movement. In order to improve the representation of motion features, a deep neural network23–25 is

employed to analyze the 3D skeleton data firstly from both the front and side views. The resulting spatiotemporal feature representation

is then fused with complementary information from both views to achieve better results. The working principle of the proposed MVDNN

method is shown in Figure 1.

To summarize, the main contributions of the paper are three-fold:

1. Markerless vision-based sensors are used for computer-aided assessment of FMS tests;

2. Based on the fine-grained characteristic of FMS test, three typical categories of deep models are designed and compared;

3. Multi-view features from both front view and side view are fused together to provide better representation learning.

RESULTS

Dataset

We used the FMS dataset proposed by Xing et al.,26 which contains 1,812 action clips from 45 subjects executing all seven FMS tests.

The 3D skeletal sequence data for each action clip are obtained using the official Microsoft Kinect SDK. This includes 128-dimensional

sequences of joint orientations (four dimensions per joint) and 96-dimensional sequences of joint positions (three dimensions per joint)

from two views (i.e., front view and side view). Due to differences in FMS test movements and movement speed across different sub-

jects, the number of frames in an action sequence varies from 34 to 545 frames. In addition, an annotation json file is provided, which

contains the FMS test scores for each episode rated by three FMS experts on a scale of 0–3 points. We evaluated the inter-rater reli-

ability among the three experts and presented the final results in Figure S1. Several examples of the movements in FMS test are shown

in Figure 2.

The FMS movements assessment task aims to predict an individual’s FMS score by analyzing their movement quality in a 3D video clip.

Using the same evaluation criteria as the original FMS test, a neural network assigns a score of 1–3 points (0 point cannot be determined solely

from visual data) according to the quality of the individual’s movements.

Experimental setting

To minimize the impact of intraclass variations on estimated skeleton data, normalization and alignment are performed first. Each

experiment is conducted 10 times to help yield stable average results, with 30% of randomly selected used as test set. Model
2 iScience 27, 108705, January 19, 2024
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Figure 2. Samples of seven FMS tests

Each FMS test movement contains a pair of images from the front view and the side view.
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parameters are trained using the Adam optimizer with a momentum of 0.9 and a learning rate of 0.001. In order to guarantee conver-

gence, we adopt different training epochs for each kind of network structure. That is, 50 epochs for CNN-based and LSTM-based

models, and 500 epochs for GCN-based model. The batch size for all experiments is set to 64. The structures of the CNN-base

model, LSTM-based model, and GCN-based model that we utilized are presented in Figures 3, 4, and 5, respectively. The feature

fusion method we employed is illustrated in Figure 6.
Performance evaluation

We employ the F1 measure, kappa statistic and confusion matrix to evaluate the performance of our model performance for scoring FMS

movements. To account for the limitations of F1 score in representing overall performance, we calculate the micro-averaged F1(abbr.

miF1) and the macro-averaged F1(abbr. maF1). Assume the true positive, false positive, false negative and true negative for the j-th class

are tpj, fpj, fnj and tnj , respectively, then the miF1 and the maF1 can be computed as follows:

miF1 =
2 PR

P+R
;

P =

PC
j = 1

tpj

PC
j = 1

�
tpj+f pj

� ;

R =

PC
j = 1

tpj

PC
j = 1

�
tpj+f nj

� ;

(Equation 1)
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Figure 3. The structure of LSTM-based neural network
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maF1 =
XC
j = 1

2PjRj

Pj+Rj
=C;

Pj =
tpj

tpj+f pj
;

Rj =
tpj

tpj+f nj
;

(Equation 2)

where C is the number of categories, and C is set to 3 in our case. The kappa statistic assesses the measurement consistency between

human experts and neural network prediction results. The Cohen’s Kappa used in our experiment is defined as:

k =

�
po � pe

�
�
1 � pe

� ; (Equation 3)

where po is the actual observed agreement ratio between two kinds of the raters, and pe is the expected agreement ratio when both anno-

tators assign labels randomly. The level of agreement was further evaluated using the scales in Table 127

Model comparison results

In this experiment, we evaluated the performance of the proposedmethod from two perspectives. First, we compared the performance of our

proposed framework with two baseline method (i.e., AdaBoost.M128 and FCN26) which have been used in recent studies for FMS evaluation.
Figure 4. The structure of CNN-based neural network

4 iScience 27, 108705, January 19, 2024



Figure 5. The structure of ST-GCN network

ll
OPEN ACCESS

iScience
Article
Second, we investigated howdifferent network architectures and viewpoints affected the performance of ourmethod. The comparison results

are shown in Table 2.

From the results in Table 2, we can see that our proposed framework clearly outperforms the two baseline methods. In fact, the CNN-

basedmethod with single view is a modified version of the FCNmethod that controls the receptive field to achievemulti-scale feature fusion.

Specifically, four branches with distinct receptive fields are used to achieve multi-scale perception, and the size of each branch’s receptive

field is controlled through different dilation rates. Compared with FCN and CNN-based methods, we found that this multi-scale strategy

achieves significantly better performance on all three kinds of evaluation metrics.

We also investigate the performance comparison of the proposed framework for the task of FMS movement assessment using three

mainstream networks. In Table 2, the results for LSTM-based, CNN-based, and GCN-based methods are presented from the fifth row to

the end, evaluated independently for front view, side view, and multi-view fusion. The best performance of both single-view and multi-

view models are highlighted in bold. Overall, the GCN-based model outperforms the others in both single-view and multi-view sce-

narios, followed by the CNN-based and LSTM-based models.

To summarize, we can draw three conclusions. First, the CNN-based and GCN-based methods outperform the LSTM-based methods in

FMS movements assessment for both single-view and multi-view input. This is because the CNN-based and GCN-based methods excel at

capturing subtle differences in spatial information, which is a crucial aspect in the task of FMS movement assessment, compared to the

sequence modeling approach of the LSTM-based methods. Second, front-view feature data generally produces higher miF1, maF1 and

Kappa scores than side-view feature data due to severe vision occlusion from the latter. While LSTM-based methods exhibit similar results

with both views, significant differences exist for CNN-based and GCN-basedmethods. Lastly, multi-view fusion models that capture comple-

mentary information from different views achieve better results than the comparedmethods for both front and side views. Furthermore, early

fusion and late fusion can achieve similar performance in the LSTM-based methods and the CNN-based methods, while late fusion is proved

to be better in GCN-based methods.

In addition, we have plotted the learning curve in Figure S2. The learning curve demonstrates that the CNN-based and GCN-based ap-

proaches exhibit superior convergence compared to the LSTM-based method. Consistent with this, our experiments reveal that the CNN-

based and GCN-based methods achieve better performance than the LSTM-based approach.
Per-action assessment results

Since that the assessment complexity of seven FMS movement tests varies, we further investigate the model performance for each FMS test

individually. The micro-averaged and macro-averaged F1-measure for seven FMS movements are depicted in Figure 7.

Figure 7 displays the F1-measure results for the single-view and the multi-view models. For the single view, the CNN-based methods

outperform the LSTM-based and the GCN-based methods in most tests. Specifically, CNN-based methods outperform other methods in

four out of seven FMS movements including DS test, SM test, ASLR test and RS test, while GCN-based methods achieve the highest
A B

Figure 6. The early fusion strategy and the late fusion strategy
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Table 1. The correspondence between the k values and the levels of agreement

k value <0.20 0.21–0.40 0.41–0.60 0.61–0.80 >0.80

Level of Agreement Poor Fair Moderate Good Very Good
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performance only in the HS test. Furthermore, different feature fusion strategies affect FMSmovement tests differently. Early fusion improves

the CNN-basedmethods’ performance in six FMSmovements except the RS test, but has limited effect on GCN-basedmethods. Late fusion

significantly improves the GCN-based methods’ performance in five of the seven tests, except for the SM and ASLR tests.

Per-level assessment results

Each FMSmovement test can be predicted as a score of 1–3 by models automatically. To analyze the frequency of incorrect scoring, we visu-

alize the confusionmatrix based on themanual and automatic scoring.We plot the confusionmatrix in Figure 8 obtained by the LSTM-based,

CNN-based and GCN-based methods. From Figure 8, we can observe that the misclassified samples tend to be predicted with a score close

to their true scores. For example, a 3-point sample is more likely to be predicted incorrectly as 2 points rather than 1 point, and a 1-point

sample is more likely to be predicted incorrectly as 2 points rather than 3 points. The evaluation methods make themost errors when grading

a 3-points sample as a 2-points sample.

DISCUSSION

Select the most representative features

Asmentioned above, the original Azure Kinect cameras track 32 joints for each person. However, not all of these joints are informative for FMS

movements test and the irrelevant joints may introduce excessive noise. To address this issue, we analyze the scoring criteria of the FMS

movements test by Minick et al.,29 and select the most informative joints for each movement. The original skeleton joints from Kinect SDK

and the extracted skeleton joints used in our experiments are illustrated in Figures 9A and 9B, respectively. Figure 9C enumerates the joints

index and joints name. Table 3 summarizes the joint information for all FMS movements. Finally, we adopted 22 skeleton joints in our move-

ments evaluation experiments by gathering all important skeleton joints from all FMS movements.

We compared the experimental results of 32 original skeleton joints with our carefully chosen 22 skeleton joints to validate the efficiency of

our feature selection process. Figure 10 shows the results, with red bars representing the original joints and blue bars representing the

selected joints. Themodels consistently performed better after feature selection. For example, GCN-basedmethods with late fusion showed

a performance boost of approximately 9.73%, 17.43%, and 30.61% for micro-average f1, macro-average f1, and kappa, respectively.

Furthermore, we conducted two sets of controlled experiments, utilizing the GCN-based (Front) method tomodel the original 32 skeleton

joints and the filtered 22 skeleton features, respectively. Each experiment was conducted 10 times, and the results were recorded for three

metrics: micro-average F1, macro-average F1, and kappa. By applying the t-test, we calculated the p-values for these three metrics. All re-

sulting p-values were less than 0.05, indicating a significant difference in model performance between the feature-filtered and original

feature-based models across these evaluation metrics. For a more detailed experimental process, please refer to Table S2.
Table 2. Overall comparisons for FMS movement assessment with sample-based training and test set splits

Method miF1 maF1 Kappa Level of Agreement

Adaboost.M1(Front)28 0.568 0.387 0.106 Fair

Adaboost.M1(Side)28 0.708 0.338 0.074 Fair

FCN(Front)26 0.794 0.642 0.47 Moderate

FCN(Side)26 0.773 0.600 0.41 Moderate

LSTM-based(Front) 0.726 0.560 0.35 Fair

LSTM-based(Side) 0.731 0.545 0.33 Fair

LSTM-based(Early Fusion) 0.754 0.591 0.40 Fair

LSTM-based(Late Fusion) 0.758 0.594 0.41 Moderate

CNN-based(Front) 0.827 0.721 0.58 Moderate

CNN-based(Side) 0.812 0.684 0.53 Moderate

CNN-based(Early Fusion) 0.855 0.760 0.64 Good

CNN-based(Late Fusion) 0.854 0.759 0.64 Good

GCN-based(Front) 0.833 0.731 0.60 Good

GCN-based(Side) 0.776 0.643 0.48 Moderate

GCN-based(Early Fusion) 0.812 0.699 0.56 Moderate

GCN-based(Late Fusion) 0.857 0.768 0.64 Good

6 iScience 27, 108705, January 19, 2024



Figure 7. The micro-averaged and macro-averaged F1-measure for seven FMS movements
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Ablation study on body joints

Taking into account the interdependence of various body joints, especially those in close proximity, in influencing the final FMS evaluation

results (for instance, the knee and hip joints both play a crucial role in assessing the thigh angle during the HS test), we organized all body

joints into four distinct groups: facial joints, hand joints, upper limb joints, and lower limb joints (refer to Table S1). Through a series of ablation

experiments, we investigated the impact of these distinct joint groupings on the outcomes of the FMS evaluation, as presented in Table 4.

In Table 4, we examine the impact on theGCN-based (Front) model’s performance by removing one set of joints from the 32 skeletal joints

extracted using Microsoft’s Kinect Azure. We observations reveal that the exclusion of the facial joints or hand joints has a minimal or even a

positive effect on the final result. However, removing the upper or lower limb joints distinctly leads to a significant decrease in the model’s

performance.
iScience 27, 108705, January 19, 2024 7



Figure 8. Confusion matrix for per-level assessment in FMS test
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Splitting the training and test sets by individuals

To further validate the generalization performance of our proposed model on new subjects, we adopted an individual-based partitioning of

the training and test sets. More precisely, we randomly selected samples from 40 individuals for the training set, setting aside samples from

the remaining 5 individuals for the test set. Considering that there are only 7 standard actions with 2 scores in the IL test, all action clips from

the other 6 FMS movement tests are used in our experiments. We conducted experiments using the CNN-based, LSTM-based, and GCN-

based models, with the experimental results summarized in Table 5.

Overall, we observe relatively lower performance with the individual-based dataset splits. This can be attributed to the inherent challenges

posed by this validation scheme, stemming fromdifferences in data distribution between the training and test data, particularly when dealing

with a small dataset. Among the three types of models, the GCN-based methods continue to achieve the best performance. This further em-

phasizes that this graph-based model is more suitable for modeling human skeletal joints. Additionally, unlike the sample-based dataset

splits, feature fusion strategies did not yield improved performance in this scenario. This could be due to the increased model complexity

introduced by the feature fusion process, potentially leading to overfitting issues, particularly in the context of small datasets.
8 iScience 27, 108705, January 19, 2024



Joint index Joint name Joint index Joint name

0 Pelvis 16 Right hand tip

1 Spine navel 17 Right thumb

2 Spine chest 18 Left hip

3 Neck 19 Left knee

4 Left clavicle 20 Left ankle

5 Left shoulder 21 Left foot

6 Left elbow 22 Right hip

7 Left wrist 23 Right knee

8 Left hand 24 Right ankle

9 Left hand tip 25 Right foot

10 Left thumb 26 Head

11 Right clavicle 27 Nose

12 Right shoulder 28 Left eye

13 Right elbow 29 Left ear

14 Right wrist 30 Right eye

15 Right hand 31 Right ear

A B C

Figure 9. The skeleton structure and relevant information used in our paper

(A) The skeleton structure extracted by the Azure Kinect camera.

(B) The skeleton structure used in our methods.

(C) The joints index and joints name.
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Comparison with existing studies

Due to the time-consuming nature ofmanual FMSmovements test and the potential for bias in subjective evaluation, researchers have turned

to automatic FMS tests in recent years. The study in 2014 byWhiteside et al.10 is the first attempt in this direction. They aimed to evaluate the

criterion validity ofmanual gradingby a certified FMS tester using an objective grading systembased on IMUmotion capture data. Their study

revealed poor consistency between manual FMS scores and inertial-based motion capture system results, suggesting that manual grading

may not be a valid measurement tool.

To develop an automatic image-capture and angle tracking system for assisting the FMS test, Chang et al.30 developed an automatic angle

tracking system using motion capture software to assist in the FMS test. Mrozek et al.12 proposed a mechanical model for assessing physical

performance in the trunk stability push-up exercise using BTSmotion capture data, and the final experiment results show that even the players

who obtained the highest marks in the test do not always perform the exercises flawlessly. For all above three studies, assessment model is

built based on humandynamics, andmanual threshold values are set for distinguishing different levels of FMS test. Different threshold value is

appropriate to different FMS test. Each threshold value should be chosen separately and carefully, whichmakes the threshold setting process

very difficult. To develop a universal automatic FMS scoring system for all FMS exercises, Wu et al.28 view this problem as a classification task.

Combined subset feature selection with ensemble learning classifier, they develop the automatic scoring system based on full-body inertial

measurement unit sensors for six FMS exercises. However, this work treats feature learning and classifier model as two independent stages,

thus can hardly achieve a good performance.

Limitations of the study

There are two limitations in this study. First, model interpretability31–33 is crucial for practical applications of deep learning methods. If pre-

dictivemodels lack interpretability, users may lose trust in them. Therefore, additional research is necessary to develop interpretablemachine

learning models that can explain automatic scoring from neural networks. Second, it is important to have access to large datasets in order to

train models that can be generalized to real-world scenarios. To test the proposed architectures, more substantial datasets, including FMS

tests from a more extensive range of subjects, will be required.

Conclusions

In this paper, we propose a markerless vision-based automatic FMSmotion analysis methods. The proposed method can handle FMSmove-

ments assessment without human intervention. By extensive experiments, we verified that it was feasible to conduct FMS test using vision

sensor, and FMS movement tests with different manual scores can be distinguished by models. We compared the performance achieved

by three mainstream neural network architectures and found that CNN-based and GCN-based models have a clear advantage over the

LSTM-based models. Additionally, late fusion strategy which use two different neural networks to extract features from front view and side

view separately can boost the performance of models more effectively.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
iScience 27, 108705, January 19, 2024 9



Table 3. A summary of the FMS scoring criteria29

Tests

Scoring criteria

Related skeleton joints3 points 2 points 1 point 0 point

DS Upper torso is parallel with tibia

or toward vertical.

Femur is below horizontal.

Knees are aligned over feet.

Dowel is aligned over feet.

Meet criteria of 3 points with compensation. Tibia and upper torso

are not parallel.

Femur is not below horizontal.

Knees are not aligned over feet.

Lumbar flexion is noted.

Complete with pain in

any part of the body.

0,1,2,3,7,14,18,19,

20,21,22,23,24, 25,26

HS Hips, knees, and ankles remain

aligned in sagittal plane.

Minimal to no movement is

noted in lumbar spine.

Dowel and hurdle remain parallel.

Foot remains dorsiflexed.

Alignment lost between hips, knees, and ankles.

Movement is noted in lumbar spine.

Dowel and hurdle do not remain parallel.

Contact between foot

and hurdle occurs.

Loss of balance is noted.

Complete with pain in any

part of the body.

2,4,5,7,11,12,14,18,

19,20,22,23,24

ILL Minimal to no torso movement is noted.

Feet remain in sagittal

plane on 2 x 6 board.

Knee touches 2 x 6 board behind

heel of front foot.

Movement is noted in torso.

Feet do not remain in sagittal plane.

Knee does not touch behind heel of front foot.

Loss of balance is noted. Complete with pain in any

part of the body.

0,1,2,3,4,5,6,7,11,12,13,

14,18,19,20,22,23,24

SM Fists are within 1 hand length. Fists are within 1.5 hand length. Fists are not within 1.5 hand length. Complete with pain in any

part of the body.

0,1,2,3,4,5,6,7,11,12,13,14

ASLR Dowel resides between mid-thigh and

anterior superior iliac spine.

Opposite hip remains neutral, toes

remain pointing up.

Knees remain in contact with board.

Dowel resides between mid-thigh and

mid-patella.

Dowel resides below mid-patella. Complete with pain in any

part of the body.

18,19,20,22,23,24

TSPU Males perform 1 repetition with thumbs

aligned with top of head.

Females perform 1 repetition with

thumbs aligned with chin.

Body is lifted as one unit

(no lag in lumbar spine).

Feet remain dorsiflexed.

Subjects perform 1 repetition

in modified position.

Male-thumbs aligned with

chin Female-thumbs

aligned with chest.

Subjects are unable to perform 1

repetition in modified position.

Complete with pain in

any part of the body.

0,1,2,3,4,5,6,7,11,12,

13,14,18,19,20,22,23,24,26,27

RS Subjects perform 1 correct repetition

while keeping torso parallel to board.

Knee and elbow touch in

line over the board.

Subjects perform 1 correct diagonal

flexion and extension lift while maintaining

torso parallel to board and floor.

Subjects are unable to perform

diagonal repetition.

Complete with pain in

any part of the body.

0,1,2,3,6,13,19,23
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Figure 10. The comparison results of the original 32 skeleton joints with 22 artificial selected skeleton joints
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d QUANTIFICATION AND STATISTICAL ANALYSIS
le 4. The effect of different joint groups on FMS movement assessment with the GCN-based (Front) method

asures Without facial joints Without hand joints Without upper limb joints Without lower limb joints All joints

1 0.803 0.814 0.788 0.756 0.804

F1 0.689 0.716 0.665 0.626 0.698

pa 0.534 0.572 0.501 0.437 0.543
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Table 5. Overall comparisons for the FMS movement assessment with individual-based training and test set splits

Method miF1 maF1 Kappa Level of Agreement

LSTM-based(Front) 0.632 0.412 0.122 Fair

LSTM-based(Side) 0.656 0.430 0.181 Fair

LSTM-based(Early Fusion) 0.672 0.448 0.171 Fair

LSTM-based(Late Fusion) 0.655 0.407 0.119 Fair

CNN-based(Front) 0.681 0.499 0.285 Fair

CNN-based(Side) 0.688 0.409 0.12 Fair

CNN-based(Early Fusion) 0.666 0.519 0.263 Fair

CNN-based(Late Fusion) 0.615 0.39 0.08 Fair

GCN-based(Front) 0.725 0.540 0.358 Fair

GCN-based(Side) 0.596 0.452 0.205 Fair

GCN-based(Early Fusion) 0.690 0.516 0.270 Fair

GCN-based(Late Fusion) 0.643 0.509 0.286 Fair
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

The study involved 45 healthy participants (22 females and 23 males) aged between 18 and 59 years (with an average age of 28.7 years

and a standard deviation of 10.76 years). They were recruited from the campus of Beijing Sport University. The participants had a weight

range of 46-116 kg (with an average weight of 68.8 kg and a standard deviation of 13.01 kg), and a height range of 158-190 cm (with an

average height of 171.9 cm and a standard deviation of 7.98 cm). Their body mass index (BMI) varied from 17.1 to 32.82, with an average

BMI of 23.14 and a standard deviation of 3.1. Prior to the experiment, all participants confirmed that they did not have any known move-

ment disorders or other health issues that could affect their ability to exercise. Each participant was fully informed about the procedure,

introduced to the experimental instruments, and made aware of any potential risks. Data collection took place between May 2021 and

June 2021. All the patients were Han Chinese from mainland China and provided written informed consent for the use of the FMS tests

data.

METHOD DETAILS

Problem formulation

For all FMS movements assessment, we adopt a unified neural network framework which takes the 3D skeleton sequence data of FMS

tests collected from the Azure Kinect sensor as input signals, and predict the categories information of the performance levels. Given

a fixed number of training samples N, we define the commonly-used categorical cross entropy (CE) loss as cost function for training

our network:

JðqÞ = �
XN
i = 1

XC
c = 1

I
�
yðiÞ = c

�
log p

�
yðiÞ = c

��xi; q�; (Equation 4)

where C is the level number of FMS movements. Ið:Þ is the indicator function and q is the network parameters to be learned.
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Neural network architectures

Different from the task of the action type determination, FMSmovements assessment is a fine-grained classification problem. For this kind of

problem, the critical issue is how to learn discriminative global features. In this section, we will discuss three types of network structures to

extract feature from original 3D skeletonal data.

LSTM-based neural network

LSTM has the characteristic of capturing long-term dependencies, and has been widely used in time series analysis. Attention has the capa-

bility of paying attention to the most obvious features in the line of sight, so it is widely used in feature engineering. According to the char-

acteristics of LSTM and attention, a time-series model which combine LSTM and attention is established. The architecture of the LSTM-based

model is illustrated in Figure 3.

Taking the joints data for each frame as a feature vector, FMS test assessment based on 3D skeleton sequence can be treated as a task of

multivariate temporal classification. To efficiently incorporate both past and future features within a specific time range, we adopt a bi-direc-

tional long short-term memory (Bi-LSTM) layer to extract temporal features. A Bi-LSTM layer consists of two LSTM layers in opposite direc-

tions: one for forward processing and the other for backward processing. Two Bi-LSTM layers in our models are stacked to create a deeper

network architecture.

Different frames of input sequence provide different importance for FMS test assessment. To better capture the temporal context and

automatically learn the importance of each frame for FMS test assessment, we utilize an attention mechanism that assigns higher weights

to important frame features and reduces the weight of redundant ones. The resulting feature vectors from different frames are then aggre-

gated to form a weighted FMS test movement feature representation. Two attention layers are placed after the last Bi-LSTM layer, with tem-

poral attention computed using themethodproposedby Yang et al.24 Taking the forward LSTMas an example, supposeH˛Rd3T be amatrix

consisting of hidden vectors ½h1;h2; :::;hT � that the LSTM produced, where d is the size of hidden layers and T is the length of the given action

sequence, then attention score can be computed as follows:

ut = tanhðWht +bÞ;

at =
exp

�
uT
t v

�
P
t
exp

�
uT
t v

� ;

s =
X
t

atht ;

(Equation 5)

whereW ˛Rd3d , b˛Rd and v ˛Rd are the weightmatrices to be learned in ourmodel. Finally, the forward feature and backward feature from

the attention layer are concatenated to form the feature representation of each FMS movement.

CNN-based neural network

The architecture of the CNN-based model is illustrated in Figure 4. To obtain a more powerful representation learning, we adopt a multi-

branchCNNwith similar network structures to extract different features from input skeleton data in this section. The primary difference among

the branches is the dilated rate used in the convolution operation, allowing for the aggregation of temporal information from receptive fields

of different sizes. In other words, each branch in our network architecture can capture temporal dependencies at different temporal levels.

Our network architecture consists of four branches, with dilated rates set as 1, 2, 4 and 8, respectively.

Each branch in our network architecture is represented by a single composite function: CONV1D-BN-RELU-CONV1D-BN-RELU-

POOLING. Here, CONV1D, BN, RELU, and POOLING represent the 1D convolutional layer, batch normalization operator, ReLU activation,

and global average pooling, respectively. Temporal local features fromdifferent frames within a single FMS test episode are first extracted via

Conv1D operation with a kernel size of 3 and stride of 1. Joint features from different body parts are simultaneously fused to generate global

features through input-output channels of the Conv1D operation. A batch normalization layer is added after the convolutional calculation to

avoid the covariate shift problem caused by changes in data distribution. At the end of each network branch, a global average pooling layer

reduces the dimension of the feature vector by averaging the activation values across the temporal dimension. Finally, CNN features from all

four branches are concatenated into a single feature vector that represents each FMS test movement.

GCN-based neural network

As the geometric properties of the human skeleton lend themselves well to graph-based representation algorithms, we adopt the spatial

temporal graph convolutional network (ST-GCN) model for human action and interaction recognition. Inspired by the success of Yan

et al.,25 our GCN-based network structure is illustrated in Figure 5.

The GCN-based model is composed of three parts: graph construction, feature extraction, and FMS score prediction. For the graph con-

struction, each FMS test movement is represented as a graphGðV ;EÞ over time, where V and E are used to represent the joint points and the

connected relationship between them, respectively. The graph includes intra-body edges defining natural connections in human bodies and

inter-frame edges connecting the same joints between consecutive frames. For feature extraction, we utilize ten consecutive ST-GCN blocks
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consisting of graph convolutions for extracting spatial features and temporal convolutions for learning the transition between frames. By the

process of iterative messages passing and information fusion over a joint graph, the GCN-based model can effectively extract discriminative

spatial and temporal features based on human skeleton sequence data. Considering the complexity of our task, the numbers of output chan-

nels for each ST-GCN blocks are set as 16, 16, 16, 16, 32, 32, 32, 64, 64 and 64. The detailed ST-GCN block structure refer to the work of Yan

et al.25 For FMS score prediction, we perform global average pooling after the ST-GCN blocks to fuse features through temporal average

pooling, then use a softmax classifier to obtain the FMS score prediction.
Multi-view fusion models

A specific FMS test action is captured simultaneously by the front and side Azure Kinect sensors, each providing diverse and complementary

information. To improvemodel performance using both views, the central problem is how to properly fuse information frommultiple views. In

our experiments, we investigate two general feature fusion techniques: early fusion and late fusion.
Early fusion

The early fusion strategy fuses information at the beginning of processing and involves training a single model to extract features from

different data sources. In our case, 3D skeletal features from the front view and side view are first concatenated into a joint representation,

followed by adoption of a single-streamdeep neural network to estimate FMS action quality. An overview of the early fusion strategy is shown

in Figure 6A. Since data fusion begins at the outset, this method can more fully integrate the features of different views.
Late fusion

In contrast to early fusion, where features from different data sources are integrated into a multimodal input, the late fusion strategy begins

with representation learning of unimodal features. Two separate neural networks are adopted to extract features from the front view and side

view, followed by concatenation of these features to obtain better representation learning. Compared to the early fusion strategy, late fusion

has a higher computation cost since every modality requires a separate supervised learning stage. A general scheme for late fusion is illus-

trated in Figure 6B.
QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical analysis was carried out utilizing Python software (version 3.6; https://www.python.org/). Inter-annotator agreement among

three expert annotators was assessed using Spearman’s rho and Fleiss’ Kappa coefficient (see Figure S1). The performance of the learning

model in scoring FMS movements was evaluated using the F1 measure (see Tables 2, 4, 5, Figures 7 and 10). Measurement consistency be-

tween human experts and neural network prediction results was examined through the kappa statistic (see Tables 1, 2, 4, and 5). To delve

deeper into the accuracy of scoring at each level, a confusion matrix was constructed, where rows corresponded to manual scoring results

and columns represented the automatically predicted levels by the learning models (see Figure 8).
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