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A B S T R A C T   

The focus of this paper is the investigation of an Arrhenius-driven chemical reaction in an up
standing micro-channel over an imposed transverse magnetic field with fully developed constant 
free convection flow. Subject to suitable boundary conditions, the temperature and velocity 
equations are resolved in non-dimensional form employing the homotopy perturbation method 
(HPM). the fundamental flow behaviors of temperature, velocity, and volumetric flow are 
explored as a consequence of regulating characteristics such as fluid-wall interaction parameter, 
rarefaction parameter, chemical reaction parameters, wall-ambient temperature difference ratio, 
and Hartman number. The findings are carefully investigated and graphically represented in 
several mesh grid graphs. It was established that increasing the values of the rarefaction pa
rameters and chemical reaction results in an upsurge in the fluid velocity and volume flow rate, 
respectively, whereas increasing the Hartman number results in observable flow retardation. 
Additionally, when the chemical reactant parameter is ignored, the numerical comparison is in 
excellent agreement with the previously published results.   

1. Introduction 

Microfluidics and heat transfer problems have grown in prominence in the past few decades largely because of the broad spectrum 
of cooling-related uses they provide for manufacturing and fabrication, micro heat pipes, aerospace, micro-channel heat sink, high- 
performance density chips in supercomputers, and other electronic devices. Since most of these compositions are internal micro
channel flows, understanding the flow behavior becomes essentially critical for appropriate and precise projections and formulation 
[1,2]. New studies on the effects of fluid flow on microgeometry under different natural conditions have been published. In an up-flow 
microchannel with an applied magnetic field, Jha and Malgwi [3] studied the effects of Hall current and ion slip constraints on hy
dromagnetic free convection. Later, Jha and Aina [4] looked closely at hydromagnetic convection flow in an upright microchannel 
constructed from two immeasurable, electrically non-conductive plates. In their work, Jha et al. [5] examined how Hall current 
affected hydro magnetic free convection flow in an upward micro-channel. Other investigations in this area include [6,7,8,9,and10]], 
to name a few. 

The significance of the electrically conducting fluid phenomena, also known as magnetohydrodynamics (MHD), has piqued the 
interest of engineers and scientists in recent years in numerous MHD applications, including MHD generators, biomaterials for wound 
treatment, sterilization of devices, and MHD accelerators. Electrically conducting fluids are already transported in a number of atomic 
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energy centers using (MHD) pumps in chemical energy technology. In addition to these advantages, a magnetic field can greatly speed 
up natural convection movement when the fluid is electrically conducting [11]. There have been numerous investigations into MHD 
convective flow in diverse physical contexts. With these concerns in mind, Chu et al. [12] discussed the thermal characteristics induced 
by the hybridization of Fe3O4 with MWCNT in a permeable cavity with viscous fluid and MHD. It is concluded from the study that heat 
transfer along walls is increased against Rayleigh and Darcy parameters, while the magnetic field effect is seen to lower the fluid 
velocity. The impact of hybrid nanofluids on hydromagnetic boundary wall flow for reactive fluids was demonstrated by Gul et al. 
[13]. Islam et al. [14] considered the numerical computation of natural convection heat transfer flow through the heating technique 
inside a prismatic enclosure saturated with Cu–H2O nanofluid and affected by two different heat boundary conditions. Their findings 
revealed that the magnetic number has a significant control on the fluid flow and temperature gradient. Saeed and Gul [15] inspected 
the hydromagnetic Casson nanofluid flow for heat and mass transfer along a non-stationary plate. Ibrahim et al. [16] deliberated on a 
two-dimensional simulation of free convection of the Al2O3–H2O nanofluids in a cavity having a heat source in its middle. As part of 
their findings, it was discovered that heat transfer is boosted drastically as Ra and nanoparticle volume fraction parameters rise, but a 
decaying effect is observed for mounting levels of magnetic field intensity. Aziz and Shams [17] studied the generation of entropy for 
the hydromagnetic Maxwell nanofluid flow having slip conditions, radiant heat, and variable thermal conductivity. Gurivireddy et al. 
[18] modeled the effects of thermal generation and chemical reactions on magneto-hydrodynamics flow utilizing a semi-infinite 
shifting upward porous plate with a Soret factor. Gangadhar et al. [19] recently explored the influence of magnetic field and 
convective heating boundaries on second-grade nanofluid flow due to the Riga pattern. In another work, to analyze the 
two-dimensional MHD heat and mass transfer coefficient of a water-based nanofluid containing gyrotactic microorganisms toward an 
upright plate struck by a heat source or sink, Gangadhar et al. [20] proposed a unique spectrum relaxation approach. 

Over time, interest in the composition of flow designs over chemically reactive fluids with MHD convection has increased due to 
their interesting and potential applications in transpiration cooling of reentry vehicles and rocket boosters, film evaporation in 
combustors, and cross-hatching on ablative surfaces [21]. Frank-Kamenetskii [22] is credited with being the first to offer a framework 
for reactive viscous fluids. The majority of lubricants employed in engineering and manufacturing procedures, including synthetic 
esters, hydrocarbon oils, polyglycols, and others, are reactive, as stated by Makinde [23]. With this goal in mind, the analytical study 
by Hamza et al. [24] on the effects of chemically reactive liquid flow in an up-flow porous annulus with mixed convection and thermal 
diffusion has been presented. Ojemeri et al. [25] studied the effects of slip and thermal diffusion on the free convective flow of a 
reactive fluid through an upward porous disk subjected to a radial magnetic field. Ahmad and Jha [26] studied the steady and 
time-dependent effects of fully developed natural convection and heat transfer flow of a viscous fluid in an upright porous tube. They 
discovered that steady-state and time-dependent heat transfer rates between tube layers increased over time. Jha et al. [27,28] pre
sented reactive viscous flow in unsteady natural convection in an up-channel and a tube, respectively. The results show that increasing 
the reactant consumption parameter causes both the friction factor and the heat transfer at the channel surfaces to increase. Hamza 
[29] studied the steady and transient natural convection of an exothermic chemically reactive liquid in an up-flow channel in terms of 
the velocity slip factor and the Newtonian heating effect. 

Due to their relevance in the emerging MEMS, engineering, and lubrication industries, there is a need to further investigate the 
effects of chemically reactive liquids (in the case of Arrhenius heating) through microchannels. This is because most of the lubricants 
used in engineering and industrial processes such as synthetic esters, hydrocarbon oils, polyglycols, etc. are reactive; hence the 
motivation for this study. Therefore, by using the homotopy perturbation approach to determine the effects of a chemical reactant 
parameter influenced by an applied magnetic field on steady natural convection in an upright microchannel, the current study extends 

Fig. 1. The coordinate system of the flow domain.  
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the work of Jha et al. [2]. The unique aspect of this work is that HPM was used to provide an approximate treatment for the Arrhenius 
kinetics-controlled flow of viscous, electrically conductive fluid inside two upright micro-channel. The results of this study have 
potential applications in a variety of fields, such as biomedical engineering, microelectromechanical systems (MEMS), microdevices 
made using microfabrication techniques, and other therapeutic approaches. The results of this study are also crucial for establishing 
standards for confirming the accuracy of certain numerical or empirical methods. 

2. Mathematical structure of the flow 

An applied magnetic field is considered when studying the steady natural convection of a chemically reacting fluid in an upward- 
facing microchannel confined to two electrically non-conductive, infinitely vertical, parallel plates. The y-axis is perpendicular to the 
upright plate, whereas the x-axis is orthogonal to but opposite from the force of gravity, g. Fig. 1 shows the flow configuration along 
with the coordinate system for this flow scenario. It is proposed that a homogeneous magnetic field of B0 strength is applied in a 
direction orthogonal to the flow orientation. An extremely small magnetic Reynolds number is also suspected, suggesting that the 
magnetic field produced would be quite small to the externally applied field. The channel surfaces are heated unevenly, with one of the 
plates held at T1 while the other remains at T2, with T1 > T2. 

According to Jha et al. [2] and Hamza [29], the momentum and temperature equations for the current state are given in the basic 
dimensional form considering the chemically reactive parameter. This follows the fundamental idea of the Boussinesq’s 
approximation. 

υ d2u′

dy′2
+

μeB
′
0u′

ρ + gβ(T′ − T0) = 0 (1)

k
ρCρ

d2T′

dy′2
+
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0A

ρCρ
e

(

− E
RT′

)

= 0

(2)  

u’(y′) =
2 − σv

σv
λ
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2 − σv

σv

2γ
γ + 1

λ
Pr

dT′
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u’(y′) = −
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σv
λ

du′
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⎫
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(3)

Introducing the non-dimensional quantities as follows: 
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Applying equation (4) to equations (1) to (3), the dimensionless governing equations become 

d2U
dy2 − M2U = − θ (5)

d2θ
dy2 + λe

θ
1+εθ = 0

(6) 

The relevant boundary conditions at the wall surfaces are assumed to be; 

U(Y) = βvKn
dU
dy

, θ(Y) = ξ + βvKnIn
dθ
dy
, at y = 0

U(Y) = − βvKn
dU
dy

, θ(Y) = 1 − βvKnIn
dθ
dy
, at y = 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(7)  

where M is the magnetic number, λ is the viscous heating parameter, also referred to as Frank–Kamenetskii parameter, and ε is the 
activation energy. It is, however, relevant to state that, in the expansion of heat source term λ (1 + εθ)me θ

1+εθ, the Arrhenius heating case 
(i.e. when m = 0) was investigated in this article. The approximate expansion of the term e θ

1+εθ is given as e θ
1+εθ ≈ 1+ θ+ θ2( 1

2 − ε
)
+

θ3( ε2 − ε + 1
6
)
. 
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3. Method of solution 

3.1. Closed-form solution 

To resolve the equations that govern the problem, we used the homotopy perturbation approach, creating a convex homotopy on 
equations (1) and (2) to obtain: 

H(U, p) = (1 − p)
d2U
dy2 − p

[
M2U − θ

]
= 0 (8)

H(θ, p) = (1 − p)
d2θ
dy2 + p

[
λe

θ
1+εθ

]
= 0

(9)  

Assume that the solutions to U and θ are in an infinite series form as: 

θ(Y) = θ0 + pθ1 + p2θ2 + ...

U(Y) = u0 + pu1 + p2u2 + ...

}

(10)  

and by inserting equation (6) into equations (4) and (5), as well as matching the coefficient of similar powers p, we obtain the sets of 
differential equations with the associated transformed boundary conditions: 

p0 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2θ0

dy2 = 0

d2u0

dy2 = 0
(11) &; (12)  

Therefore, the transformed boundary conditions are now, 

θ0 = ξ + βvKnIn
dθ0

dy

u0 = βvKn
du0

dy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

at y= 0 (13)  

θ0 = 1 − βvKnIn
dθ0

dy

u0 = − βvKn
du0

dy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

at y= 1 (14)  

p1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2θ1

dy2 + λ
(
1 + θ0 + (2 − ε)θ2

0

)
= 0

d2u1

dy2 − M2u0 + θ0 = 0 (16)
(15)  

Hence, the transformed boundary conditions are now, 

θ1 = βvKnIn
dθ1

dy

u1 = βvKn
du1

dy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

at y= 0 (17)  

θ1 = − βvKnIn
dθ1

dy

u1 = − βvKn
du1

dy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

at y= 1 (18)  

p2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2θ2

dy2 + λ(θ1 − 2εθ1θ0 + 4θ1θ0) = 0

d2u2

dy2 − M2u1 + θ1 = 0 (20)
(19)  

Now, the transformed boundary conditions are given by, 
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θ2 = βvKnIn
dθ2

dy

u2 = βvKn
du2

dy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

at y= 0 (21)  

θ2 = − βvKnIn
dθ2

dy

u2 = − βvKn
du2

dy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

at y= 1 (22) 

Setting p to equal to1, the approximate solutions of the differential problems become: 

θ = lim θ
p→1

= θ0 + θ1 + θ2 + ...

U = lim U
p→1

= u0 + u1 + u2 + ...

}

(23) 

Convergence for series (23) occurs for a small number of terms in most cases. However, the nonlinear operator has control over how 
fast the convergence occurs. According to Ayati and Biazar [30], the homotopy perturbation converges to the series solution, which 
highlights the fact that only a limited number of terms from the HPM results can be used to arrive at an approximate solution. 

The solutions θ0, θ1, θ2... and u0, u1, u2... have been derived as: 

θ0 =A0 + A1y (24)  

θ1 = − λ
[

y2
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6
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(
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3
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1
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θ2 = − (4λ − 2ελ)
[

λ{A0
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0
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(
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0
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1
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6
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2
− λ

{
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1
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(
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1
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1
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)}
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y4

12
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6

]

+ λ2
{
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y4
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+ (2 − ε)

(

A2
0
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24
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1
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)}

+λ
(

A3
y3

6
+ A2

y2

2

)

+ A5y + A4

(26)  

u1 = − A0
y2

2
− A1

y3

6
+ D3y + D2 (27)  

u2 =M2
(

− A0
y4

24
− A1

y5

120
+D3

y3

6
+D2

y2

2

)

+ λ
{

y4

24
+A0

y4

24
+A1

y5
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+(2 − ε)

(

A2
0
y4

24
+A0A1

y5
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+A2

1
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)}

− A3
y3

6
− A2

y2

2
+D5y+D4

(28) 

Equations 24–28 give the solutions for the energy and momentum as 

θ(Y)= θ0 + θ1 + θ2 + ...

U(Y)= u0 + u1 + u2 + ...

Two crucial factors for buoyancy-driven micro heat transfers are volume flow and heat transfer rates. The following formula can be 
used to compute the non-dimension volume flow rate: 

Qm =

∫1

0

UdY (29)  

Qm = −
A0

6
−

A1

24
+

D3

2
+ D2 + M2

(

−
A0

120
−

A1

720
+

D3

24
+

D2

6

)

+ λ
[

1
120

+
A0
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+

A1

720

(2 − ε)
(

A2
0
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+

A0A1
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+

A2
1

2520

)]

−
A3

24
−

A2

6
+

D5

2
+ D4

(30)  

And the heat transfer rate at both plates is calculated as: 
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Nu0 =
qb

(T1 − T0)k
=

dθ
dy

⃒
⃒
⃒
⃒

y=0
=A1 +A3 + A5 (31)   

Nu1 =
qb

(T1 − T0)k
=

dθ
dy

⃒
⃒
⃒
⃒

y=1
=A1 − λ

[
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2
+(2 − ε)

(

A2
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A2
1

3
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[
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6
+
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0

6
+
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(
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0

6
+
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+

A0A2
1
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)

+
A0A3

2
+A0A2 − λ

{
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8
+

A0A1

8
+

A2
1
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+(2 − ε)

(
A2

0A1

8
+

A2
1A0
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+

A3
1
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)}

+
A3A1

3
+

A0A1

2

]

+λ2
{

1
6
+

A0

6
+

A1
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+

(2 − ε)
(
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0

6
+

A0A1
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+
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1
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+λ
(

A3

2
+A2

)
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(32)

We obtained the sheer stress (τ) at the plates as follows 

sk inf riction(τ0)=
dU
dy

⃒
⃒
⃒
⃒

y=0
=D3 + D5 (33)  

sk inf riction(τ1)=
dU
dy

⃒
⃒
⃒
⃒

y=1
= − A0 −

A1

2
+D3 +M2

(

−
A0

6
−

A1

24
+

D3

2
+D2

)

+ λ
{

1
6
+

A0

6
+

A1

24
+(2 − ε)

(
A2

0

6
+

A0A1

12
+

A2
1

60

)}

−
A3

2
+A2 +D5 (34) 

The appendix contains a list of all the constants utilized. 

4. Discussion of the results 

The effects of the chemical reaction parameter (λ), magnetic number (M), rarefaction parameter (βvKn), fluid-wall interaction 
parameter (In), and wall-ambient temperature difference ratio (ξ) are studied for a steady-state natural convection and heat flow 
problem. To demonstrate the influence of these relevant parameters, Figs. 2–10 and Tables 1 and 2 exhibits the fluctuation of energy, 
volume flow rate, momentum, and various physical characteristics of engineering significance such as the frictional force and the 
amount of heat transfer. The current calculation was performed between a reasonable interval of 0 ≤ βvKn ≤ 0.1, and 0≤ In ≤ 10 in 
the continuum and slip-flow region (Kn ≤ 0.1). The result of (βvKn) represents a degree of departure from the continuum regime, while 
(In) represents a feature of the fluid-wall interaction. According to Chen and Weng [6], the standard values for (βvKn) and (In) are 0.05 
and 1.667, respectively, and M = 2 was used by Jha et al. [2]. Additionally, for this computation, the default values employed are λ =
0.01 and ε = 0.01 to elucidate the actions of various flow configurations. 

Fig. 2(a–c) and 3(a - c) demonstrate the functions of λ and ξ based on the temperature and velocity distributions for each of the three 
cases of the wall-ambient temperature difference ratio; (ξ = − 1: one wall is cooling and the other wall is heating; ξ = 0: one wall is not 
heating and the other wall is heating, ξ = 1: the case were both walls are heated). It is readily evident that when the value of (λ) grows, 
the temperature jump rises significantly. Similarly, it was established that as the value of (λ) increases, the flow movement accelerates. 
Also, as the velocity slip expands at the micro-channel wall, the fluid surface impact diminishes, leading to a surge in the speed of gas at 

Fig. 2. Temperature distribution for λ at (a) ξ = − 1, (b) ξ = 0 and (c) ξ = 1.  
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the boundary of the channel. This result corroborates those of Obalalu et al. [31] and Hamza [29]. 
Fig. 4(a–c) and 5(a - c) describe the variations of rarefaction parameters (βvKn) on the temperature and velocity profiles respec

tively. These figures revealed that, as (βvKn) levels are raised, the velocity slip at the surface is strengthened, which contributes to a 
decaying tendency at the walls. This effect yields a noticeable spike in the gas velocity near the wall. In addition, increasing (βvKn) the 
parameter makes the temperature to jump significantly and lowers the rate of heat transfer from the wall to the fluid. These findings 
coincide with those obtained by Ojemeri and Hamza [32]. 

The fluctuations of (λ) on the volume flow is portrayed in Fig. 6(a–c). It is worthy of note that growing values of (λ) yield a 
noticeable enhancement in the volume flow rate as asserted by Ojemri and Hamza [32]. 

For different ascending values of (ξ), Fig. 7(a–c) and 8(a - c) demonstrate the variation of sheer stress versus (βvKn) parameter for 
(λ) at both micro-channel plates. It is plain from the figures, uplifting the chemical reactant parameter empowers the skin friction at y 
= 0 whereas the reverse case happens at y = 1. The actions of (βvKn) and (λ) on the heat transfer gradient are depicted in Fig. 9(a–c) and 
10(a - c). It is worth mentioning that at y = 0, a drastic growth in the rate of heat transfer is recorded as (βvKn) and (λ) factors are raised 
respectively, while at y = 1, the opposite effect is observed, as displayed in these figures. 

5. Validation 

To confirm the accuracy of our study, we compare the numerical results from Jha et al. [2] to the present investigation to verify its 
precision. Tables 1 and 2 demonstrate how the comparison for velocity and volume flow rate were in good agreement. The accuracy of 
the present solution, using three terms of the homotopy perturbation approach, confirms the fast convergence of the technique and 
proves that the homotopy perturbation technique is a suitable tool for solving nonlinear differential equation problems. 

Fig. 3. Velocity distribution for λ at (a) ξ = − 1, (b) ξ = 0 and (c) ξ = 1.  

Fig. 4. βvKn on the temperature profile at (a) ξ = − 1, (b) ξ = 0 and (c) ξ = 1.  
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6. Conclusion 

The analysis of steady-state free MHD flow of a chemically reactive, and electrically conducting fluid in a micro-channel was 
performed using the homotopy perturbation method. Analytical solutions have been derived for temperature, frictional force, velocity, 
heat transfer rate, and volume flow. The effects of controlling factors such as rarefaction parameters, chemically reacting parameters, 
magnetic number, wall ambient temperature difference ratio parameters, and fluid wall interaction parameters were estimated, and 
the results were detailed using mesh grid graphs. A summary of the noteworthy outcomes is highlighted below.  

i It is revealed that an escalation in the fluid velocity and volume flow rate is noticed as the chemical reacting parameter, λ and 
rarefaction, βvKn term increase.  

ii Similarly, higher levels of reaction rate parameter, λ and rarefaction, βvKn factor improve the temperature profile significantly.  
iii As the reaction rate parameter, λ and rarefaction, βvKn factor are uplifted, the skin friction impact becomes stronger at y = 0, 

whereas it diminishes at y = 1.  
iv As the fluid is heated at y = 0, the rate of heat transfer increases dramatically with increasing values of rarefaction, βvKn factor, and 

chemically reacting parameters, λ, whereas a contrast phenomenon occurs at y = 1. 

Fig. 5. βvKn on the velocity profile at (a) ξ = − 1, (b) ξ = 0 and (c) ξ = 1.  

Fig. 6. Volume flow rate for λ at (a) ξ = − 1, (b) ξ = 0 and (c) ξ = 1.  
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Fig. 7. Skin friction at y = 0 versus βvKn for various values of λ at (a) ξ = − 1, (b) ξ = 0 and (c) ξ = 1.  

Fig. 8. Skin friction at y = 1 versus βvKn for various values of λ at (a) ξ = − 1, (b) ξ = 0 and (c) ξ = 1.  

Fig. 9. Nusselt number at y = 0 versus βvKn for various values of λ at (a) ξ = − 1, (b) ξ = 0 and (c) ξ = 1.  
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Fig. 10. Nusselt number at y = 1 versus βvKn for various values of λ at (a) ξ = − 1, (b) ξ = 0 and (c) ξ = 1.  

Table 1 
Numerical comparison of the current study on the velocity gradient with the work of Jha et al. [2], for ξ = − 1, 0,1 at βvKn = 0.05, In = 1.667, M = 1 as 
λ → 0.  

Y Jha et al. [2] U(Y) Present work U(Y) 

ξ = − 1 ξ = 0 ξ = 1 ξ = − 1 ξ = 0 ξ = 1 

0.1 0.0068 0.0156 0.0244 0.0068 0.0155 0.0243 
0.2 0.0067 0.0153 0.0239 0.0066 0.0152 0.0239 
0.3 0.0066 0.0150 0.0235 0.0065 0.0150 0.0234 
0.4 0.0065 0.0148 0.0230 0.0064 0.0147 0.0230 
0.5 0.0063 0.0145 0.0226 0.0063 0.0144 0.0225  

Table 2 
Numerical comparison of the current study on the velocity gradient with the work of Jha et al. [2], using volume flow rate for ξ = 0 and 1 at 
βvKn = 0.0, 0.05, and 0.1, In = 1.667, M = 1 as λ → 0.  

βvKn Jha et al. [2] Qm Present work Qm 

ξ = 0 ξ = 1 ξ = 0 ξ = 1 

0.0 0.0379 0.0758 0.0375 0.0751 
0.05 0.0479 0.0958 0.0472 0.0953 
0.1 0.0575 0.1150 0.0571 0.1143  
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Appendix 
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Nomenclature 

B0 constant magnetic flux density 
g gravitational acceleration 
b channel width 
CpCv specific heats at constant pressure and constant volume respectively 
fpfv thermal and tangential momentum accommodation coefficients, respectively 
In fluid -wall interaction parameter 
Kn Knudsen number a/b 
λ chemical reactant parameter 
Q dimensionless volume flow rate 
M Hartmann number 
Pr Prandtl number 
Nu dimensionless heat transfer rate 
e activation energy 
T temperature of the fluid 
T0 reference temperature 
u velocity component in x direction 
U dimensionless velocity 

Greek letters 

β thermal expansion coefficient 
βtβv dimensionless variables 
μ dynamic viscosity 
α thermal diffusivity 
γs ratios of specific heats (CpCv) 
ξ wall-ambient temperature difference ratio 
σ electrical conductivity of the fluid 
ρ density 
v fluid kinematic viscosity 
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