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Quantifying yeast colony 
morphologies with feature 
engineering from time-lapse 
photography
andy Goldschmidt  1 ✉, James Kunert-Graf2 ✉, adrian C. Scott2, Zhihao tan2,3, 
aimée M. Dudley2,3 & J. Nathan Kutz4

Baker’s yeast (Saccharomyces cerevisiae) is a model organism for studying the morphology that 
emerges at the scale of multi-cell colonies. to look at how morphology develops, we collect a dataset 
of time-lapse photographs of the growth of different strains of S. cerevisiae. We discuss the general 
statistical challenges that arise when using time-lapse photographs to extract time-dependent 
features. In particular, we show how texture-based feature engineering and representative clustering 
can be successfully applied to categorize the development of yeast colony morphology using our 
dataset. the Local binary pattern (LBP) from image processing is used to score the surface texture of 
colonies. this texture score develops along a smooth trajectory during growth. the path taken depends 
on how the morphology emerges. a hierarchical clustering of the colonies is performed according to 
their texture development trajectories. the clustering method is designed for practical interpretability; 
it obtains the best representative colony image for any hierarchical cluster.

Background & Summary
Saccharomyces cerevisiae, or Baker’s yeast, is a model organism that can grow a diverse range of strain-dependent 
morphologies at the scale of cell colonies1–3. Manifesting as macroscopic tubes, cracks, and ridges that mark the 
colony surface, these morphologies influence how the organism interacts within a biological environment4,5. 
Beer brewers and bakers have historically relied on visual identification of morphology to make practical dis-
tinctions among encountered strains of S. cerevisiae6,7.

Easy access to digital cameras and video recording allows for the eyes of a well-trained expert to be replaced 
with computer algorithms well-trained on large collections of image data. The data can be brought to bear on 
scientific questions, of which yeast morphology identification is only one emblematic example. The challenge 
of this broad paradigm shift toward data-driven science is how to leverage statistical methods and algorithms 
to translate the abundant big data into useful information8. This is especially pertinent when navigating the 
high-dimensional pixel spaces associated with digital photographs and video.

The dataset introduced by this article involves large ensembles of S. cerevisiae growth experiments photo-
graphed hourly over days. We provide a suite of statistical methods to translate these time-lapse images into 
actionable information for understanding colony morphology. Although our analysis is illustratively applied to 
the specific question of yeast colony morphology, our approach can be understood more broadly as a strategy 
for quantitatively extracting desired features from time series of photographs. Toward this end, we emphasize in 
our Methods section the general challenges faced in the analysis of time-lapse image data. We review alternative 
approaches using the literature on colony morphology as a guide, and explain the general benefits of the per-
spective introduced by this paper. All of our statistical methods are implemented with generic Python packages 
prioritizing easy adaptation to any time-lapse image datasets.
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Fig. 1 (a–d) Show the result of feature engineering for some colonies in the dataset. Later in Fig. 3 these 
colonies are shown to be the top level prototypes returned by the hierarchical clustering algorithm. We will 
illustrate how to read this figure by taking (a) as an example. In the left block, the colony image and the local 
binary pattern (LBP) categorization of the colony image are compared at beginning, middle, and end times 
measured in hours. In the right block, the images have been projected onto the three Principal Component 
Analysis (PCA) modes used for dimensionality reduction of the images at all measurement times. The 
corresponding feature space trajectories are plotted. Bold lines correspond to existing data that has been binned. 
Thin lines are missing values filled in using interpolation of the existing data. Distances between the trajectories 
shown here are used to define the pairwise distances used for clustering.

Fig. 2 (a) Shows how the radius parameter of the local binary pattern (LBP) is adjusted to select the 
neighboring pixels for the algorithm. In (b), the LBP of one pixel is calculated. Neighboring pixels are judged 
according to the center pixel and the result is categorized. (c) shows the nine LBP categories. In Category 0, all 
eight neighbors are bright. In Category 1, all neighbors are bright except for a single pixel that is dark, and so on. 
Category 8 is a dark spot. Any discontiguous blend of light and dark pixels falls within the catch-all Feature 9.
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Even in scientific settings, past categorization methods of yeast colony morphology have relied on qualitative 
scoring in which a single investigator identified colony categories by eye9–11. Additional tools such as ImageJ12 
and CellProfiler13 have been used to identify colonies based on shape, size, and color. Another approach was 
categorization based on principal component analysis at fixed time points14. For time-series of images, size tra-
jectories have been studied for characterizing morphology15,16. In this article, we demonstrate the unsupervised 
categorization of morphology based on complete texture trajectories as shown in Fig. 1. Our contribution can be 
understood in two ways. First, by introducing the texture analysis tools from image processing we demonstrate 
feature engineering appropriate for the practical quantification of morphology. Second, our approach enables 
the study of time series of images because of the smooth trajectories of the images once projected into our 
engineered feature space. From this perspective, this article is a tutorial on a general framework enabling the 
principled categorization of datasets involving time-lapse image data.

In particular, we introduce a novel statistical framework combining texture analysis tools from image pro-
cessing with clustering algorithms from machine learning. All the necessary tools for the analysis pipeline of the 
framework are readily available in Python (refer to Code Availability). In addition, a supplementary open-source 
Python package has been introduced by the authors for the purpose of improving upon the available clustering 
algorithms17. The supplemental provides a Python implementation of a hierarchical clustering algorithm that 
finds a prototypical representative for each data cluster it obtains18. Prototypical representatives of clusters are 
practical aides especially relevant for large image-based datasets. This article will use its photographic dataset of 
S. cerevisiae colonies to demonstrate that this novel framework combining texture analysis and machine learning 
provides a simple, interpretable, and effective approach for the categorization of colony morphologies.

Methods
This section describes (i) the experimental design for image data acquisition, (ii) image pre-processing, (iii) 
texture-based feature engineering, and (iv) representative clustering. These steps are part of the characterization 
pipeline as shown in Fig. 1. All code used in these methods are available in standard open-source Python librar-
ies or are provided by the authors as fully-documented Python packages downloadable from the Python Package 
Index (see Code Availability).

Yeast strains and genetic manipulation. Unless noted, standard media and methods were used for the 
growth and manipulation of yeast19 The S. cerevisiae strains used in this study are listed in Table 1. Strains with a 
YPG prefix, which are included in the image dataset, are the haploid progeny of two yeast strains. The first strain, 
YO502, was derived from an Ethiopia white tecc brewing strain20. The second strain, YO1817, is isogenic to the 
YO486 Japanese sake brewing strain20, except that it is monosomic for chromosome I and disomic for chromo-
some XII. YO502 and YO1817 were mated, the heterozygous diploid was sporulated, and haploid recombinant 
progeny were isolated by manual tetrad dissection.

Image data acquisition. Colonies of S. cerevisiae were generated by arraying approximately 48 individual 
cells of the same strain onto an agar plate in a checkerboard pattern using a Sony SH800 fluorescent cell sorter 
with 488 nm and 531 nm excitation lasers. Photographs were acquired while these colonies grew at 30 °C in rich 
(YPD) medium (1% yeast extract, 2% peptone, 1.5% glucose). Colony images were acquired at a median rate of 
one image every 23 minutes over the course of 3 days using a Canon 5d Mark II camera outfitted with an MP-E 
65 mm 1–5x macro lens. This camera was attached to a custom-built motorized 2-axis gantry that moved the cam-
era over a set of up to 13 plates. For this particular study, 5500 colonies were selected as a representative ensemble 
of experimental data. These colonies represent 196 unique strains of the species. More information about this 
dataset is discussed in the Data Records section. Access to a larger library of data from which this dataset is sam-
pled can also be made available upon request. Contact the corresponding author(s) for more information.

Image pre-processing. To be studied further, colony images must be extracted from the image back-
grounds. Backgrounds included agar plate edges or segments of other colonies in the grid. Image selection was 
accomplished with an image processing pipeline using algorithms in the scikit-image library for Python21.

The pre-processing pipeline involved three main steps. (i) Canny edge detection (skimage.feature.canny) 
determined the edges and boundaries of any objects in the image. This included the colony boundary. (ii) The 
circular Hough transform (skimage.transform.hough_circle_peaks) found the maximal radius of the largest 
(approximately) circular object in the Canny edge detection image. This was assumed to encompass the col-
ony boundary. Anything outside this circle was masked. (iii.) A convex hull (skimage.morphology.convex_hull_
image) was drawn around the unmasked region of the original image to capture the true (non-circular) colony 
boundary in detail. Parameters in these functions were tuned by hand to the data. Finally, the high-resolution 
images were re-sized to one-half of the approximate average pixel dimensions, 100 × 100. Images were padded 
before re-sizing to preserve colony shapes.

Strain name Genotype Source

YO502 MAT α hoΔ0::hphMX6, SPS2:EGFP:natMX4 Ref. 20

YO486 MATa hoΔ0::hphMX6, SPS2:EGFP:kanMX4, ser1-S, Disomy I Ref. 20

YO1817 MATa hoΔ0::hphMX6, SPS2:EGFP:kanMX4, ser1-S, Disomy XII This study

YPG11406-YPG11693 Haploid progeny of the YO502 × YO1817 cross This study

Table 1. S. cerevisiae strains used in this study.
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Feature engineering using local binary patterns. The dominant visible morphology of a growing yeast 
colony is the unique and complicated pattern of folds and lumps that evolve primarily on the colony surface. This 
texture is an ensemble of 2-dimensional coherent spatio-temporal structures. Dimensional reduction of this kind 
of complex texture space is important for discovering the appropriate descriptors to distinguish the available 
morphologies.

A de facto standard for dimensionality reduction is the Principal Component Analysis (PCA)22. Given an 
image dataset, PCA finds the minimal set of basis images that inform the majority of the variability in the 
dataset. If a PCA algorithm was applied to the yeast image dataset, one might expect a set of 2-dimensional 
static images describing the full variety of colony image textures. Unfortunately, a well-known issue with PCA 
is that even the simplest dynamic structure requires a large set of static basis images to accurately describe its 
motion. For example, a movie of a bouncing ball travelling across a fixed field of view would need an entire 
flip-book of static images to show the traversal. When applied to growing yeast colonies, PCA is being asked 
to use static basis images to simultaneously describe the patterns of folds and lumps on a colony surface as well 
as the outward-bound radial traversal of those patterns. The generic growth information is dominant and will 
win out at the expense of the more subtle distinctions between texture patterns. This discussion is intended to 
communicate why the naive application of standard dimensional reduction via the PCA in the image space is not 
robust to growth; distinctions among morphologies are lost.

Two straightforward options remain. Either (1) remove time altogether, or (2) engineer better features for 
texture that are robust to growth. As to the former option, Ref. 14 showed how yeast colonies could be clustered 
according to their two-dimensional image at the final recorded time. A disadvantage of using a fixed time is 
this ignores a lot of the available information in our dataset. Hence, the analysis in this article follows the latter 
option. We engineer accessible and appropriate features for yeast texture via a standard image processing tool 
called the local binary pattern (LBP)23. We will show that the LBP is robust to growth. A Python implementa-
tion of the LBP algorithm is available in scikit-image as skimage.feature.local_binary_pattern allowing for ready 
accommodation to our data processing pipeline.

The LBP was designed to capture the essential notions of texture in 2-dimensional images. For example, 
texture should not depend on the lighting or orientation at which the original image was viewed–therefore, the 
LBP is scale and rotationally invariant by its design. The LBP algorithm uses ten pattern categories to label each 
pixel in an image. The pattern category for a pixel is chosen by comparing that pixel to eight of its surrounding 
neighbors (Fig. 2). We can apply the LBP to every pixel in an image from our colony image dataset. Next, we can 
record the relative frequency of each LBP-pattern category amongst all the image’s pixels. This produces a vector 
of 10 numbers which we can associate to that image. In this article, we refer to this engineered feature space of 
vectors describing our colony images as the LBP space. Importantly, the LBP space has no spatial information. 
The spatial information was integrated out by computing the relative frequencies of the LBP-pattern categories 
for each image. This is the critical step for making our LBP feature robust to growth. We have replaced the com-
plicated image of texture–many folds and lumps evolving together on a 2-dimensional surface–with a simple 
trajectory that changes smoothly in the 10 coordinates that define the LBP-space.

Because LBP-space trajectories are robust to growth, dimensionality reduction can be applied in this feature 
space. A PCA algorithm was used to determine the best set of static basis modes for describing the full variety 

Fig. 3 (a) Shows the dendrogram constructed using the pairwise distances defined by the feature engineering 
depicted in Fig. 1. A fixed-height cut of the dendrogram (dotted line) has produced four color-coded dendrogram 
branches. From left to right, these four branches correspond to the cluster prototypes shown in (b–e). The prototypes 
have also been underlined by the color that matches the dendrogram branch they represent. Clustering is based 
upon the entire time-lapse trajectory. The displayed images of each prototype show the colony at the latest available 
time in its time-lapse: 58 hr., 60 hr., 24 hr., and 58 hr. for (b–e).
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of our dataset in this 10-dimensional LBP-space. Each PCA mode returned by the algorithm was a vector of 
10 numbers. Taken together, these LBP PCA modes provided an optimal set of coordinates to describe the 
LBP-space trajectories. We found that 3 LBP PCA modes were sufficient to characterize a majority of the varia-
tion of the LBP-space trajectories. Hence, we ultimately described our photographed morphology growth using 
this reduced 3-dimensional feature space.

We now make a few practical comments regarding the robustness advantages of this feature space. First, in 
the provided dataset our photographs of yeast colonies were taken at inconsistent times. The lack of uniform 
measurement time is due to the sporadic traversal of the camera during the experiment. Favorably, the smooth 
trajectories in the LBP space allowed for interpolation. Therefore, all the colonies could be made to share the 
same measurement times. This interpolation could not have been done in the full image space. In our study, we 
also simplified by setting a universal final time which was fixed to be the median ending time of our dataset. The 
median is robust to short-time outliers involving failed-growth experiments. If an experiment ended earlier than 
our chosen final time, growth was assumed to have saturated and the final data point was extrapolated.

representative clustering. We categorized colony texture within the 3-dimensional feature space defined 
by the LBP PCA modes. To do so, model-free clustering was applied to the feature-space trajectories of the colo-
nies. Model-free emphasizes that distances were defined directly between trajectories without fits or other mod-
elling assumptions. To define colony distances, the usual Euclidean distance was used to compute a distance 
between points in the 3-dimensional feature space at each time. Summing this distance over all times in the 
trajectory gave us a valid distance metric to use for the yeast colonies.

There are a wide variety of machine learning methods for finding clusters once pairwise distances have been 
obtained; in this paper, hierarchical clustering24 was used because of its natural emphasis on differences at var-
ious scales. Distinct clusters at the top of the hierarchy can be expected to have obvious morphological differ-
ences. Meanwhile, differences amongst clusters making up the lower rungs of the hierarchy are expected to have 
more subtle contrasts. The standard implementation of agglomerative hierarchical clustering assembles clusters 
from the bottom up according to some linkage rule for joining pairs of clusters. A variety of Python algorithms 
for hierarchical clustering are found in e.g. SciPy25.

The output of a hierarchical clustering algorithm is a binary tree called a dendrogram. In a dendrogram, 
the leaves (made up of the initial data points) are nodes placed at height zero. Linked clusters are drawn as new 
nodes above their constituent pair and are placed at a height proportional to the linkage distance. The linkage 
distance is the quantity the hierarchical clustering algorithm uses to decide which cluster to join, and the defi-
nition can vary between implementations24. The assembly proceeds until the final linkage when the binary tree 
is crowned by one last node.

The dendrogram can be cut at different heights. A cut is a choice of partition of the initial data points accord-
ing to the subtrees appearing directly below the cut. For our dataset, we would like for the dendrogram cut 
height to say something interpretable about the differences between morphology among the partitions. That is, 
higher up in the tree we expect the differences to be more dramatic. Lower in the tree we expect the differences 
to be more subtle. In an image-based dataset, we have the opportunity to introduce additional interpretability. 
For each cluster, we can select an optimal representative image. The representative image should offer the best 
approximation to the shared yeast morphology approximated by the cluster. Of the many linkage rules in stand-
ard practice24,25 (summarized in Table 2), minimax linkage18 was the only choice that met the desired criteria of 
interpretable cuts and natural cluster representatives important for our image-based dataset.

The result of hierarchical clustering using minimax linkage is shown in Fig. 3. The upper section, Fig. 3(a), 
shows a dendrogram with a view that has been truncated to show only the last seven linkages computed by the 
algorithm. We do this to avoid viewing the full dendrogram which must eventually display a node for each point 
in the dataset. In Fig. 3(b–e), four prototype images are shown. These four prototypes, which display obvious 
differences in texture, are the optimal representatives of the four top-level clusters produced by the cut dendro-
gram. The cut occurs at a height that has been chosen according to the CH index. The CH index26 is a standard 
statistical measure balancing scores for variations within and between clusters. The index is a useful metric for 
selecting appropriate cut heights.

The advantage of hierarchical clustering is demonstrated by Fig. 4. In Fig. 4(a), the branch represented by 
Fig. 3(c) is shown with a new (lower) cut height. As such, Fig. 4(b–e) show prototypes with more subtle contrasts 
than those evident among the previous Fig. 3(b–e). Exploring the dendrogram tree obtained from minimax 
linkage allows for visual insights into the structure of texture-based clusters. Agglomerative hierarchical clus-
tering is able to provide texture information at multiple scales. Additionally, Fig. 4(b,c) show how subtle distinc-
tions can manifest in texture growth at early times–this additional contrast cannot be obtained by comparing 
only the terminal colony textures.

Linkage Interpretable cut
Natural cluster 
representatives

Single Yes No

Complete Yes No

Average No No

Centroid No Yes

Minimax Yes Yes

Table 2. Comparison of common linkage functions.
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Data records
There are four data records accompanying this report. These four data records (ImageData, CoordinatesTable, 
DistancesTable, and StrainsTable) are hosted on figshare27.

The first data record ImageData is a 3.4 GB zip file of yeast colony images stored as JPEG files hosted online27. 
The files are contained in folders named for the inception date of that experiment and the camera used to pro-
duce the images e.g. 2014-10-23-Cam1. There are 18 folders in total. Inside each folder are tens of thousands of 
image files with names like YPG11407_001_1080.jpg; we can break these names down into easy to understand 
pieces. First, the YPG refers to the growth medium of the yeast colony: in this case, for Yeast Extract–Peptone–
Glycerol (YPG) Agar. Second, the number 11407 refers to the strain (consult data record StrainsTable). Third, 
the number 001 identifies the strain experiment iteration because many redundant strains were grown. Finally, 
1080 is the photograph timestamp measured in minutes.

The second data record CoordinatesTable is a CSV table hosted online27 for use in e.g. the Python database 
library Pandas28,29. An example row is given in Table 3. The full table contains the LBP PCA coordinates for 
each image (refer to the Methods section, under Feature engineering using local binary patterns). The relative 
path and image file from data record ImageData are included as the first two columns to allow for identification 
with images. For simplicity, the timestamp of the photograph is separated from the filename and included as a 
separate column. Finally, the values of the yeast colony image as measured in the coordinates of the 3 LBP PCA 
modes are provided. This table will allow the user to by-pass the data processing pipeline for image extraction 
and LBP calculation needed to produce the LBP PCA modes used for dimensionality reduction and trajectory 
analysis.

The third data record DistancesTable is a CSV table hosted online27. An example row is given in Table 4. 
The full table contains the distance matrix discussed in the Methods section under the heading Representative 
clustering. The distance matrix lists the pairwise distances between unique iterations of colony experiments; 
identification is by a unique number and a corresponding Root Filename like YPG11407_001 which stands in 
for the collected image files matching YPG11407_001_*.jpg where the time values have been replaced by the 
wildcard symbol, *. The data matrix is presented in a vector format. In the vector format, we do not store the 

Fig. 4 (a) is a reproduction of one of the dendrogram branches from (a): specifically, it is the second branch 
from the left, and the one represented by the prototype in Fig. 3(c). A new cut height has been chosen (dotted 
line in (a)) and four color-coded sub-branches have been created. Read left to right, the images in the columns 
labelled by (b–e) show the cluster prototypes for the four sub-branches. Also, in each column a colored 
line under the image in the bottom row matches the color of the corresponding sub-branch. Clustering is 
based upon the entire time-lapse trajectory, and multiple images taken at different times are show within the 
columns labelled by (b–e). The three times at the far right (<1 hr., 35 hr., and 70 hr.) label the elapsed time of 
the experiment (in hours) when the images in that row were recorded. (b) shows an outlier colony for which 
no growth data was recorded during the entire experiment. (c) displays only the final state (at 70 hr.). (d), (e) 
display cluster prototypes at three different times during the time-lapse to demonstrate how the complete 
texture trajectories inform the colony distances.

Folder Filename Time PCA mode 1 PCA mode 2 PCA mode 3

2014-10-23-Cam1 YPG11407_001_1080.jpg 1080 −0.077481 0.472005 0.372762

Table 3. An example line of the data record CoordinatesTable.

https://doi.org/10.1038/s41597-022-01340-3
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entire distance matrix. We only include the necessary list of index pairs (i, j) because a distance matrix is sym-
metric, distance(i, j) = distance(j, i). The first two columns are the pair of indices between which the distance is 
defined. The third and fourth column are the Root Filenames associated with these indices. The fifth column is 
the distance value. The distance values are the mean (integrated) distance between interpolated LBP PCA tra-
jectories (see the Methods section under Feature engineering using local binary patterns). Converting between 
the provided vector format for the distance matrix and the square distance matrix format is straightforward: in 
Python, consult the documentation for the scipy.spatial.distance.squareform method.

The fourth data record StrainsTable is included in the paper as Table 1 and hosted online27. It contains the 
genotype and source for each yeast strain appearing in our data.

technical Validation
In this section, we emphasize two points about the technical quality of the dataset of yeast colony images. First, 
we explain the reliability of the colony metadata. The metadata refer to the folder and file names in the data 
record called ImageData. We also make some comments on outlier detection. Second, we discuss why it is 
reasonable to conclude that growth conditions are approximately the same for all the colonies. Equal growth 
conditions are an important assumption when we create our basis of feature-space growth trajectories (see the 
Methods section).

The essential metadata for each image file in the ImageData data record are the strain number, the strain 
experiment iteration, and the photograph timestamp. For additional information on the manifestation of this 
information within the file, consult the Data Records section. The most straightforward metadata entry was 
the timestamp which we extracted directly from the metadata of the digital photograph itself. Next, consider 
the strain number. All the single colonies used in this study are replicates. Each agar plate was entirely filled by 
colonies of the same strain. With this redundancy, we can conclude that the strain number was reliable even if 
a single strain experiment iteration exhibited an uncharacteristic morphology. To address the reliability of the 
strain experiment iterations, we must recall some facts of the experiment design. Strain experiment iterations 
were arranged in a checkerboard pattern on a plate. A digital camera was attached to a custom-built motorized 
2-axis gantry that allowed the camera to move over the iterations. A computer program managed and tracked 
the motorized control of the camera. The tracking location and time could be compared with the image times-
tamp to correctly associate an image with its strain experiment iteration.

Even with these reliable designs in place, let us suppose a colony were mislabelled at some point during its 
growth. We can expect that the new image with the incorrect label will have poor correlation with the previously 
photographed image which had correctly been assigned this same label. Indeed, time correlations measurements 
like this are often used, e.g. to identify noise in gene expression profiles30. In our Methods section, we discuss 
clustering the photograph data using a texture score that develops along a smooth trajectory during growth. An 
important benefit of the proposed approach is that the smoothness of the trajectory emerges from the continuity 
of the colony growth. Mislabelling breaks the continuity. Hence, we naturally detect mislabellings as outliers in 
the hierarchical clustering results. As a final comment, we note that if the label is incorrectly assigned early in the 
growth like at the first timestep, there is not much that can be done to detect abnormalities. Care must be taken 
that the labels have been assigned correctly for the initial pass of the camera.

Next, we address the reliability of assuming that colonies develop under equal growth conditions. Again, 
recall that the colonies are arranged in a checkerboard pattern. This pattern was designed with appropriate spac-
ings to grant equal nutrient access regardless of the colony position. All colonies were grown under the same 
conditions: at 30 °C in rich (YPD) medium (1% yeast extract, 2% peptone, 1.5% glucose). The special-purpose 
camera rig was built within the growth environment. The camera rig was located at a distance from the colonies 
and run at a sufficiently slow speed to mitigate any undesired heating.

Usage Notes
A tutorial has been written for reproducing the pre- and post-processing results discussed in this report. This 
tutorial is implemented as an interactive Jupyter notebook31 and can be obtained on GitHub (https://github.
com/pyYeast/yeast-morphology-tutorial). Self-contained instructions are included with the tutorial. Questions 
about the tutorial can be directed to the repository manager(s) through GitHub.

Code availability
All algorithms used in this paper can be freely obtained from open source Python packages.

The image pre-processing pipeline and feature engineering (Canny edge detection, circular Hough transform, 
convex hull, local binary pattern) were performed by using the algorithms implemented in the scikit-image 
library21. The Principal Component Analysis was carried out with the Singular Value Decomposition using the 
numerical python library, NumPy32 (numpy.linalg.svd). Hierarchical clustering tools made available by SciPy25 in 
the module scipy.cluster.hierarchy were also used.

The algorithm for minimax linkage has been published as an R package on the CRAN repository under the 
name protoclust (https://CRAN.R-project.org/package=protoclust). Independently, the authors of this paper 
developed the pyprotoclust Python package17 (albeit with the retroactive incorporation of this previously estab-
lished naming convention). Our Python implementation allows us to obtain seamless integration with the 

I J I Root Filename J Root Filename Distance

0 3132 YPG11407_001 YPG11565_20 0.347

Table 4. An example line of the data record DistancesTable.

https://doi.org/10.1038/s41597-022-01340-3
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interface established by SciPy’s hierarchical clustering and the other Python-specific tools used in this study. Our 
implementation can also take advantage of multi-threading to improve algorithm performance. The open-source 
code for the pyprotoclust Python package can be obtained from the Python Package Index under the MIT license. 
The documentation is hosted publicly online by Read the Docs (https://pyprotoclust.readthedocs.io).
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