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Abstract
Clinical implementation of online adaptive radiation therapy requires initial and
ongoing performance assessment of the underlying auto-segmentation and
adaptive planning algorithms, although a straightforward and efficient process
for this in phantom is lacking.The purpose of this work was to investigate robust-
ness and repeatability of the artificial intelligence-assisted online segmentation
and adaptive planning process on the Varian Ethos adaptive platform, and to
develop an end-to-end test strategy for online adaptive radiation therapy. Five
synthetic deformations were generated and applied to a computed tomography
image of an anthropomorphic pelvis phantom, and reference treatment plans
were generated from each of the resulting deformed images. The undeformed
phantom was repeatedly imaged, and the online adaptive process was per-
formed including auto-segmentation, review and manual correction of contours,
and adaptive plan creation. One adaptive fractions in five different deformation
scenarios were performed. The manually corrected contours had a high degree
of consistency (> 93% Dice similarity coefficient and < 1.0 mm mean sur-
face distance) across repeated fractions,with no significant variation across the
synthetic deformation instance except for bowel (p = 0.026, one-way ANOVA).
Adaptive treatment plans also resulted in highly consistent dose–volume val-
ues for targets and organs at risk. A straightforward and efficient process was
developed and used to quantify a set of organ specific contouring and dosimet-
ric action levels to help establish uncertainty bounds for an end-to-end test on
the Varian Ethos system.
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1 INTRODUCTION

Adaptive radiation therapy (ART) is the process of
adjusting the treatment plan in response to daily
anatomy changes. When ART occurs immediately prior
to treatment delivery without moving the patient, the
process is called “online ART”. Studies have shown
promising results for improving outcomes with online
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ART for several disease sites.1 Currently,online ART can
be carried out based on magnetic resonance imaging,
computed tomography (CT), and cone beam computed
tomography (CBCT).2 An example is the recently avail-
able Varian Ethos system (Varian Medical Systems,
Palo Alto, CA), which offers the flexibility to adapt to
changing patient anatomy in the online setting based on
CBCT images. This platform utilizes a highly integrated
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workflow with artificial intelligence (AI) tools to assist
with the online segmentation and adaptive planning pro-
cess of ART with the goal of improving consistency and
efficiency in these processes. The AI models are based
on convolutional neural networks and are designed,
trained, and validated by the vendor. Training is done
in supervised learning setting with ground-truth con-
tours derived from several hundred patients collected
from multiple clinics. As is common for deep learning-
based autosegmentation algorithms, a cost function
is constructed and iteratively optimized to reduce
the errors between predicted value and ground truth
value.

Prior to clinical deployment, the robustness and
reproducibility of the AI-assisted online ART process
needs to be evaluated.3 There have been several stud-
ies evaluating performance of the Ethos system on
clinical data. Sibolt et al. evaluated adaptive planning
and AI-assisted contouring for 39 pelvic cases using
a pre-clinical emulator of the Ethos software.4 Byrne
et al. evaluated the need for editing of AI-generated
contours for intact prostate and prostate bed and the
quality of adaptive plans generated online.5 Moazzezi
et al. reported similar results for prostate cancer, investi-
gating the frequency of needed edits to the AI-assisted
automatic segmentations and quality of the adaptive
plans.6

In addition to these important studies to evaluate
system performance on clinical data, there is a need
for studies to evaluate robustness and reproducibility
to develop quality assurance guidelines for online ART.
End-to-end (E2E) tests which evaluate the full online
adaptive planning process are useful to verify opera-
tion and stability of the clinical treatment process,3,7,8

and should include assessment of auto-segmentation
and plan adaptation—two critical steps of online ART.
However, tools and processes for efficient and straight-
forward E2E of online ART are lacking. Deformable
phantoms present a means for E2E tests, but are
typically site-specific,8 not widely available, and may
not represent anatomically-realistic deformations. Here,
we present a comprehensive E2E process and results
focusing on testing the reproducibility and robustness
of the online adaptation process on the Ethos sys-
tem. The goal of this work is to develop an E2E test
strategy and determine uncertainty bounds for online
segmentation and adaptive planning of the Ethos sys-
tem to help establish action levels for the test. Our
design goals for the E2E test strategy were to ensure
it can be implemented at any clinic using only open
source tools and is therefore easy and economical
to realize. Rather than a deformable phantom, we
developed a procedure to employ a deformed image
of a rigid phantom which can be used with any num-
ber of anthropomorphic phantoms available in the
market.

2 MATERIALS AND METHODS

This study involved an E2E procedure which utilized the
following workflow:(1) a CT scan of an anthropomorphic
pelvis phantom was taken; (2) synthetic deformations
were applied to the CT image of the pelvis phantom
near the area of the planning target volume (PTV); (3)
the synthetically deformed datasets were used as the
planning CT to generate reference plans; (4) a CBCT
of the non-deformed phantom was taken on the Ethos
system, and the system adapted the deformed anatomy
to the CBCT and automatically generated contours on
the CBCT scan; (5) after the auto-segmentation step,we
either accepted the contours as generated or corrected
them (explained further below); (6) scheduled (original
reference plan re-computed on the CBCT anatomy) and
adapted (re-optimized) plans were generated; and (7)
adapted plan was evaluated relative to the reference
plan. Each of these steps is explained in greater detail
in the following sections.

2.1 Generating the synthetically
deformed planning CT

A simulation CT scan of a CIRS Model 801-P pelvis
phantom (CIRS, Norfolk, VA) was acquired on a CT sim-
ulator, with baseline contouring of the following regions
of interest: prostate, seminal vesicles, bladder, rectum,
bowel, femoral heads, and clinical target volume (CTV).
The pelvis phantom was chosen as it is available to us
and has clearly defined and realistic organ boundaries.

The clinical online adaptive process of the Ethos
system can only be used with a CBCT acquired by
the system during a treatment session. In other words,
an artificially-deformed CBCT cannot be “injected” into
the online adaptive process. To get around this limi-
tation, we chose to deform the planning CT, and then
image the undeformed phantom with CBCT. The plan-
ning CT used as the basis for creating the reference plan
was generated by applying a synthetically generated
deformation to this simulation CT in order to introduce
deformed anatomy at the time of planning. By imag-
ing the (undeformed) phantom with CBCT, the known,
applied deformation could then be recovered by the
Ethos registration and auto-segmentation process.

To generate the synthetic deformation, a three-
dimensional Gaussian deformation was randomly
located within an inscribed rectangular parallelepiped
of size 22.3 mm left/right, 10.6 mm anterior/posterior,
62 mm superior/inferior within the PTV to ensure that
deformations were centered near the target. A Gaus-
sian deformation was selected as it has a known form
which can be used as a ground truth and which can
be easily implemented using a variety of off -the-shelf
deformation and image analysis packages. While there
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TABLE 1 Gaussian parameters used for synthetic deformations applied to the initial planning computed tomography (CT) image

Magnitude (mm) Center (mm)

Patient X Y Z X Y Z
Standard
deviation

1 10.9 10.9 10.9 −13.4 119.6 707.7 18.7

2 −14.2 14.2 −14.2 −21.1 118.6 700.6 29.4

3 18.8 −18.8 −18.8 −6.2 119.8 708.1 15.6

4 −17.8 −17.8 17.8 −3.2 116.4 707.3 29.3

5 10.9 −10.9 10.9 −17.3 124.7 699.8 15.8

are more realistic deformations that could be applied,
such as implementing sliding organ boundaries or using
more complex deformation basis functions, a Gaussian
deformation ensures the developed E2E process can
be implemented reproducibly at any clinic while still
providing anatomically realistic deformations of the
soft tissue within the pelvis for testing. The magnitude
of deformation at the center of the Gaussian was
randomly sampled between magnitudes of 10 and
20 mm. Standard deviations (falloff of the Gaussian
deformation from the center) were randomly sampled
between 15 and 25 mm. Deformations were generated
and applied using the open source Plastimatch software
(v 1.8.0, http://plastimatch.org/).

Using a single deformation repeatedly in an end-to-
end test may bias the test results if the test performance
depends heavily on the deformation applied. To study
this effect and to trigger plan adaptation, five sepa-
rate synthetic Gaussian deformations were generated
and separately applied to the original CT image of
the pelvis phantom, generating five separate deformed
images.Table 1 gives the parameters for each of the five
deformations applied, and each of the deformations is
visually depicted in Figure 1.

2.2 Treatment planning and delivery

For each synthetic deformation applied to the CT
dataset,a corresponding patient (a total of five patients)
was created in Ethos (v1.0, Varian Medical Systems,
Palo Alto,CA.),and a plan was generated using the tem-
plate shown in Table 2 to simulate a standard prostate
treatment. For each patient, Ethos auto-segments the
structures listed in Table 2 using a proprietary algorithm,
and then generates three intensity-modulated radiation
therapy (IMRT) and two volumetric modulated arc ther-
apy (VMAT) plans. We began our study by selecting the
IMRT plan and the VMAT plan that best met our planning
goals.

For each patient, a 28 fraction plan was created but
only 26 adapted and delivered. Three fractions each
for the IMRT and VMAT plans were delivered without
making any changes to the auto-generated contours to
assess the performance of the Ethos auto-contouring

TABLE 2 Planning constraints used in generating Ethos
reference plans. Rx = prescription dose

Total Rx Total fractions (per patient)

26

Region of interest Constraint

Planning target volume* D98% > = 100% of Rx

Dmax < = 110% of Rx

Bladder V35 Gy < 50%

V57 Gy < 25%

Rectum V35 Gy < 35%

V57 Gy < 17%

Bowel V45 Gy < 150cm3

Left femur V45 Gy < 10%

Right femur V45 Gy < 10%

*PTV = prostate + 5 mm.
+A prescription dose of 2.5 Gy/fraction to 70 Gy was used. However, only 26/28
fractions were used in the study.

algorithms. In the remaining 20 fractions, contours were
corrected manually by a single observer, as would be
done in clinical practice (10 fractions each for IMRT and
VMAT plans). Because the E2E test is expected to be
performed by a medical physicist, for this study a single
medical physicist performed all the contour adjustments
and approvals.

Each fraction was then delivered, and the sched-
uled and adapted plan parameters were recorded. In
total, 130 fractions were delivered (26 fractions times 5
patients total).

2.3 Data collection and analysis

To evaluate variability of the AI-based auto-
segmentation algorithm (AI contours) and manual
correction process (manually corrected contours), the
consistency of contours across multiple runs was mea-
sured. For each set of repetitions within each variable
(plan type, deformation instance, and contour correction
type), contour variability was measured in the following
manner.First,a consensus contour was generated using
STAPLE.9 Each organ contour for each repetition was
then compared to the consensus contour for that set

http://plastimatch.org/
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F IGURE 1 Original and synthetically deformed geometries used in this study. Contours shown: body (green), bladder (yellow), left femur
(pink), right femur (blue), prostate (teal), seminal vesicles (light green), rectum (orange), PTV (red)

of repetitions. Contour comparisons included volume
overlap as measured by Dice similarity coefficient and
a distance metric (mean symmetric surface distance).
The distribution of each metric across all repetitions
was calculated to estimate variability.

A one-way analysis of variance (ANOVA) was per-
formed on the Dice similarity coefficient distributions to
evaluate the impact of each synthetic deformation on
contour variability.ANOVA was conducted separately for
each region of interest (ROI). Based on the results of
this ANOVA, 95% confidence intervals for the distribu-
tion of contour variability (separately, for Dice similarity
coefficient and mean symmetric surface distance) were
computed for each ROI.

3 RESULTS

3.1 Contour variability

Figure 2 shows the contour variability after manual cor-
rection for all five deformations applied for each ROI
listed in Table 2. Figure 3 shows the same results, aver-
aged over all five deformations.Dice similarity coefficient
has a known dependence on volume and shape of
the organ,10 but assessing both the Dice and distance
measures, repeatability of the online contouring pro-
cess varied with organ. Despite the known dependence

of Dice similarity coefficient on shape and volume,
Figure 3 shows that the organ-specific performance
as measured by Dice similarity and distance mea-
sures generally agree, with the repeatability and overall
accuracy for bowel and femoral heads being the highest.

The results of one-way ANOVA for Dice similarity
coefficient are shown in Table 3. ANOVA for the mean
symmetric surface distance gave similar results and
are not shown. ANOVA showed that variations between
different deformations were not significantly different
than repeat measurements, except for the bowel con-
tour (p = 0.026). This result can also be observed
in Figure 2. Thus, all deformations for each ROI can
reasonably be grouped together to generate an esti-
mate of test uncertainty, as shown in Figure 3. Because
the data shown in Figure 3 include all deformations,
this figure can be used to estimate that uncertainty
bounds that one might expect from a random defor-
mation. In general, the AI-assisted online contouring
process showed a high degree of consistency among
fractions (Dice > 93% for the vast majority of data, all
mean surface distances < 1.0 mm).

Confidence intervals were also estimated directly
from the distributions over the fractions and deformation
plans, and these values are reported in Table 3.

Figures 4 and 5 show the contour variability results
of the AI contours (without manual correction). Overall,
there was more variability across the various synthetic
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F IGURE 2 Intra-observer repeatability of the manually-corrected contouring process, all regions of interest, for all synthetic deformations.
(a) Top: Dice similarity coefficient. (b) Bottom: mean symmetric surface distance
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F IGURE 3 Intra-observer repeatability of the manually-corrected contouring process, all regions of interest, averaged over all deformations.
(a) Top: Dice similarity coefficient. (b) Bottom: mean symmetric surface distance
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F IGURE 4 Intra-observer repeatability of the artificial intelligence (AI) contouring (no manual correction) process, all regions of interest, for
all synthetic deformations. (a) Top: Dice similarity coefficient. (b) Bottom: mean symmetric surface distance
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F IGURE 5 Intra-observer repeatability of the artificial intelligence (AI) contouring (no manual correction) process, all regions of interest. (a)
Top: Dice similarity coefficient. (b) Bottom: mean symmetric surface distance
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TABLE 3 ANOVA evaluating the impact of synthetic deformation on contour variability and confidence intervals for Dice similarity
coefficient, manually-corrected contours

p Value

Lower
95% CI,
DSC

Upper 95%
CI, DSC

Lower 95% CI,
mSSD (mm)

Upper 95% CI,
mSSD (mm)

Bladder 0.081 0.92 0.96 0.3 0.6

Bowel 0.026* 0.98 1.00 0.0 0.4

CTV_7000 0.095 0.93 0.97 0.2 0.5

Femur_L 0.71 0.98 1.00 0.0 0.3

Femur_R 0.51 0.98 1.00 0.0 0.2

Prostate 0.203 0.92 0.97 0.2 0.6

PTV_7000 0.87 0.95 0.98 0.2 0.5

Rectum 0.14 0.92 0.96 0.3 0.5

Note: Asterisk (*) denotes significance at the 0.05 level. DSC, Dice similarity coefficient; mSSD, mean symmetric surface distance.

TABLE 4 ANOVA evaluating the impact of synthetic deformation on contour variability and confidence intervals for Dice similarity
coefficient, artificial intelligence (AI) contours

p Value
Lower 95%
CI, DSC

Upper 95%
CI, DSC

Lower 95% CI,
mSSD (mm)

Upper 95% CI,
mSSD (mm)

Bladder 0.195 0.84 0.99 0.1 2.0

Bowel 0.98 0.99 1.00 0.0 0.2

CTV_7000 0.013* 0.76 0.98 0.1 2.2

Femur_L 0.56 0.98 1.00 0.0 0.2

Femur_R 0.80 0.98 1.00 0.0 0.2

Prostate 0.10 0.75 0.98 0.1 4.5

PTV_7000 0.10 0.80 0.99 0.1 1.9

Rectum 0.23 0.94 0.99 0.1 0.4

Note: Asterisk (*) denotes significance at the 0.05 level. DSC, Dice similarity coefficient; mSSD, mean symmetric surface distance.

deformations for bladder and target structures than with
manual correction. However, the repeatability of bowel
and femurs was higher for AI contouring alone than
with manual correction. Table 4 shows the results of
ANOVA for the AI contours, which showed one struc-
ture (CTV_7000) with statistically significant (p = 0.013)
impact of synthetic deformation on the variability. Confi-
dence intervals are also reported in Table 4.

3.2 Adapted plans

Action levels for adapted plans were quantified by
plotting delivered adapted plan parameters for all five
deformations applied for each organ listed in Table 2.
These data are plotted in Figure 6a, and is broken down
by plan type, with IMRT in red and VMAT in green. A
one-way ANOVA was performed on these data, which
showed significant variation between plan types for
several constraints. Thus, all deformations pertaining
to each ROI can be analyzed together, as shown in
Figure 6b, provided that the analysis is separated
by plan type. As before, because the data shown in

Figure 6b are across all deformations, this figure can
be used to estimate that uncertainty bounds that one
could expect from a random deformation applied in this
phantom. Table 5 shows the 95% confidence intervals
for these dose–volume values in Figure 6b.

In general, adapted plan dose–volume values were
within a few percentage points of planning goals. VMAT
plans achieved slightly improved target coverage while
IMRT plans slightly improved normal tissue sparing for
rectum and bladder, although all adaptive plans met the
baseline planning constraints.

4 DISCUSSION

In general, the online contouring process (auto-
segmentation followed by manual correction) showed
a high degree of consistency among fractions (Dice
generally > 93%, all mean surface distances < 1.0 mm).
Repeatability of this process varied with organ.
Performance (both repeatability and accuracy) for
bowel and femoral heads was highest. This is likely
due to these structures being farthest from the
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F IGURE 6 Repeatability of dose–volume values for adapted plans. (a) Top: for each synthetic deformation. (b) Bottom: grouped (all
deformations together)
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TABLE 5 95% confidence intervals for dose–volume constraint values, adaptive plans. Rx = prescription dose

Region of interest Constraint
Lower 95% CI,
value

Upper 95% CI,
value

Planning target volume D98% > = 100% of Rx 99% 100%

Dmax < = 110% of Rx 108% 111%

Bladder V35 Gy < 50% 23% 48%

V57 Gy < 25% 1.7% 9.9%

Rectum V35 Gy < 35% 27% 34%

V57 Gy < 17% 10% 15%

Bowel V45 Gy < 150 cm3 3.39 cm3 8.05 cm3

region of largest deformation, which was near the
prostate.

For AI-based auto-segmentation alone, repeatabil-
ity and accuracy were high for femoral heads, bowel,
and rectum. As the observer did not have access
to the ground truth when correcting the AI-based
contours, in some cases (rectum, femoral heads),
the AI-based contours outperformed the manually-
corrected ones. Performance in the prostate (and
related target volumes) and bladder demonstrated a
need for manual correction. Since the conduct of this
study, a maintenance update of the Ethos software
(v1.1) has been released which allows for rigid transfer
of the target volume. The results of this study sug-
gest that this functionality may be useful in reducing
the need for manual intervention to correct prostate
target volumes, although this will need to be verified
experimentally.

Compared to the results for auto-segmentation, there
was somewhat more variability between the five dif-
ferent deformations for the dose–volume values. One
explanation is that the different deformations recon-
figure the geometry between the targets and organs
at risk, which introduces higher variability in the dose–
volume value for each target and organ. Still, overall,
the repeatability of adaptive planning was high as all
constraints could be met despite the large deformation
in the target and surrounding organs at risk. Similar
results have been shown in clinical data in the pelvis
and other body sites.4–6

The selected study design had some limitations.While
a Gaussian deformation presents visually and anatom-
ically plausible deformations, synthetic deformations do
not completely represent ground truth,realistic deforma-
tion of anatomy. However, since the goal of this study
is to assess repeatability and robustness, and to assist
in setting baseline action levels for E2E testing of an
online ART platform, our study design did not intend to
perfectly match anatomically realistic deformation but
instead prioritized an economical approach that can be
completely implemented with open source tools and no
coding. Additionally, repeating this study with anthropo-
morphic phantoms in a variety of body sites would allow

for site-agnostic action levels to be generated. This is
reserved for future work.

5 CONCLUSION

This work assessed the repeatability of the AI-assisted
auto-segmentation and adaptive planning process. A
straightforward and efficient process was developed and
used to quantify a set of organ-specific contouring and
dosimetric action levels to help establish uncertainty
bounds for an end-to-end test on the Varian Ethos sys-
tem. Our procedure can be deployed worldwide using a
simple phantom.
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