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Abstract

With the continuous improvement of automation and informatization, the electromagnetic

environment has become increasingly complex. Traditional protection methods for elec-

tronic systems are facing with serious challenges. Biological nervous system has the self-

adaptive advantages under the regulation of the nervous system. It is necessary to explore

a new thought on electromagnetic protection by drawing from the self-adaptive advantage

of the biological nervous system. In this study, the scale-free spiking neural network

(SFSNN) is constructed, in which the Izhikevich neuron model is employed as a node, and

the synaptic plasticity model including excitatory and inhibitory synapses is employed as an

edge. Under white Gaussian noise, the noise suppression abilities of the SFSNNs with the

high average clustering coefficient (ACC) and the SFSNNs with the low ACC are studied

comparatively. The noise suppression mechanism of the SFSNN is explored. The experi-

ment results demonstrate that the following. (1) The SFSNN has a certain degree of noise

suppression ability, and the SFSNNs with the high ACC have higher noise suppression per-

formance than the SFSNNs with the low ACC. (2) The neural information processing of the

SFSNN is the linkage effect of dynamic changes in neuron firing, synaptic weight and topo-

logical characteristics. (3) The synaptic plasticity is the intrinsic factor of the noise suppres-

sion ability of the SFSNN.

Introduction

With the development of science and technology, the automation and informatization of

human society have been continuously improved, which makes the electromagnetic environ-

ment become increasingly complex. Various electromagnetic interference can affect or even

damage the operation of the electronic system [1]. The deficiency of traditional protection

methods for electronic system including shielding, filtering, grounding and so on become

increasingly prominent in the complex electromagnetic environment, which makes electro-

magnetic protection be faced with increasing serious challenges [2–4]. Biological nervous
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system has the self-adaptive advantages under the regulation of the nervous system, such as

self-learning, self-organizing and self-repairing [5]. It is necessary to explore a new thought on

electromagnetic protection by drawing from the self-adaptive advantage of the biological ner-

vous system [6]. Artificial neural network (ANN) is the theoretical and model basis of compu-

tational neuroscience, so it is significant to study the robustness of ANN based on brain-like

intelligence. The spiking neural network (SNN) is the most biologically interpreted ANN,

which can simulate the information processing of the biological brain network by establishing

the nonlinear state dynamics behavior of neurons and the regulation process of synaptic

weight dynamics [7, 8]. Therefore, an SNN can process complex spatio-temporal information

because of its powerful computing capacity [9–11]. SNN can be widely applied in robot control

[12], brain-like research [13, 14], pattern recognition [15] and other fields.

The dynamic process of neurons is described by a mathematical model in the form of spik-

ing firing in an SNN. The early integral and fire neuron model are too simple, which is quite

different from real neuron characteristics. The H-H model is the fourth-order nonlinear differ-

ential equation, which closely represents biological characteristics [16]. The Izhikevich neuron

model is the second-order nonlinear differential equation, which not only relatively closely

represents real neurons but also has high computing performance [17]. Therefore, most stud-

ies are based on the Izhikevich neuron model to construct SNNs. An Izhikevich neuron model

was introduced by Nobukawa to evaluate the signal responses of chaotic resonance in SNNs.

They confirmed that chaotic states could sensitively respond to weak signals in chaotic reso-

nance [18].

Synaptic plasticity is the basis of information transmission between neurons [19]. The excit-

ability regulation of a synapse can enhance the efficiency of neural information transmission.

Most studies are based on excitatory STDP to construct SNNs. A four-pathway excitatory

spike-timing dependent plasticity (STDP) rule was proposed by Ebner, who applied the rule to

the connection of the pyramidal neuron model, which revealed the interaction between local

dynamics of dendritic voltage and plasticity mechanisms [20]. However, biological experi-

ments show that the inhibitory regulation of synapses also plays a vital role in the neural sys-

tem [21]. Chen et al. [22] used fluorescently tagged gephyrin to track inhibitory synapses in

the rat visual cortex and show that visual experience-dependent plasticity is associated with

clustered and location-specific of inhibitory synapses. Joana et al. [23] studied the modulation

of inhibitory synaptic plasticity on coordinated activity across cortical layers, which found that

modulation of inhibitory synaptic strength can effectively influence the participation of corti-

cal neurons to cognition-relevant network activity in the rat barrel cortex. The synaptic plastic-

ity model, including excitability and inhibition synapses, regulates the SNN dynamically,

which is more biologically reasonable. The Matthew effect in the network with inhibitory syn-

aptic plasticity showed that good burst synchronization with higher bursting measure

improves with long-term potentiation, whereas bad burst synchronization with lower bursting

measure becomes worse with long-term inhibition [24]. Research on SNN including both

excitatory synapses and inhibitory synapses can reflect the fact that because of change in syn-

aptic strengths, the degree of higher synchronization becomes decreased under the noise of

intermediate intensity, while the degree of lower synchronization gets increased under the

noise of large intensity [25]. Su et al. [26] studied the regulation process of an SNN under high

frequency current stimulation based on synaptic plasticity. It was found that the dynamic

behavior of the network is realized by the dynamic weights of synapses, which indicates that

synaptic plasticity is the key factor of neurodynamics.

Network topology can reflect the connection form among neurons and affect network func-

tions. A study showed that the distribution of neural connections could affect the propagation

of firing rate (FR) and firing pattern in the feed-forward networks [27]. However, an
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enormous amount of evidence based on fMRI and EEG investigations have suggested that the

biological brain function network has a scale-free property and/or small-world property [28,

29]. In our previous work, Zhang et al. found that the rat brain network has the small-world

property and that correct working memory storage can increase the connection of the network

and efficiency of information transmission [30]. Based on the research results on the biological

brain network, an ANN with complex network topology has been studied. Investigations have

shown that time delays tuned appropriately can induce multiple stochastic resonances in

small-world SNNs based on the WS generation algorithm [31]. Additionally, the influence of

STDP on burst synchronization in a scale-free spiking neural network (SFSNN) based on the

Barrat Barthelemy Vespignani (BBV) generation algorithm was studied by Kim [32].

The external stimulation can affect the function of the brain network, and the brain net-

work has the self-adaptive response to external stimulation. In the aspect of the study of anti-

injury function of robustness in human brain networks, Saeedeh et al. [33] found that human

brain networks have a certain degree of anti-injury ability against targeted attack to hub nodes

in biological experiment. In the aspect of the anti-injury function in ANN, Nie et al. [34] evalu-

ated the robustness of complex network through the variant of the characteristics (maximal

degree, average degree and betweenness), which concluded that the SFN has a certain anti-

injury function under node failure or attacks. The researches on the anti-injury function are

conducted in the ANNs without nerve electrophysiological characteristics. In other words, the

node is not a neuron model and the edge is not a synapse model in the networks. Therefore,

this kind of networks cannot receive the external stimulation. The response of the networks

without nerve electrophysiological characteristics to external stimulation cannot be studied.

SNN is a network with electrophysiological characteristics, so researchers have carried out the

researches on the impact of external stimulation on the SNN.

At present, most of the researches on self-adaptive regulation are firing synchronization

and neural coding in SNNs under external stimulation. Etémé et al. found that electromagnetic

stimulation induces not only regular firing activity of the neuron with spiking and bursting

regimes but also synchronous neuronal modes in neural network under magnetic stimulation

[35]. In our previous work, the responses of the time coding and the rate coding of the small-

world SNN both showed respective specificity under white Gaussian noise and impulse noise

[36]. The study of the noise suppression ability of the SNN based on synaptic plasticity is still

in the stage of exploration. The research on the robust function of the SNN is of great impor-

tant for brain science and engineering applications with noise suppression ability based on

brain-inspired intelligence. Therefore, we carry out the research on noise suppression ability

and its mechanism analysis of SFSNN under white Gaussian noise.

In this study, the SFSNN is constructed and the noise suppression abilities of the SFSNNs

with the high average clustering coefficient (ACC) and the SFSNNs with the low ACC are stud-

ied comparatively. under white Gaussian noise. Additionally, the noise suppression mecha-

nism of the SFSNN is explored. The main contributions of this study are as follows.

(1). The SFSNN with more biological rationality are constructed. The construction of more

brain-like SNNs is an inevitable trend for the development of artificial intelligence.

(2). The noise suppression abilities of the SFSNNs are comparatively analyzed. The results

show that the SFSNNs with the high ACC have higher noise suppression performance

than the SFSNNs with the low ACC. The result provides a theoretical foundation for the

engineering application based on the self-adaptive advantage of the biological nervous

system.
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(3). The dynamic evolution processing of neuron firing, synaptic weight and topological

characteristics is clarified in this study. The result is helpful to understand brain informa-

tion processing.

(4). The relationship between the external noise suppression ability of the SFSNN and inter-

nal synaptic plasticity is established. The result shows that the dynamic regulation of syn-

aptic weight is significantly correlated with the noise suppression ability based on the

Pearson correlation coefficient and implies that synaptic plasticity is the intrinsic factor of

the noise suppression ability of the SFSNN.

Methods

Construction of the SFSNN

The three basic elements of the network construction are the node, edge and topology. In this

study, to construct SFSNN, the Izhikevich neuron model is used as a node, which directly

affects the information expression. The synaptic plasticity model including excitability and

inhibition synapses is used as an edge, which is the basis of information transmission among

neurons. The generation algorithm is used to generate the SFNs with a high ACC, which deter-

mines the connection form among neurons.

Izhikevich neuron model. The firing characteristics of the Izhikevich neuron model are

close to those of real neurons, and it is appropriate for large-scale construction of the network

[17]. It is described as:

dv
dt
¼ 0:04v2 þ 5vþ 140 � uþ I;

du
dt
¼ aðbv � uÞ;

if v � 30; then

(
v c

u uþ d
;

ð1Þ

where v represents the membrane potential of the neuron, and u represents the recovery vari-

able of membrane voltage, which reflects the activation of the potassium channel current and

the inactivation of the sodium channel current. And u provides negative feedback for the

membrane potential v. Excitatory and inhibitory neurons are generated by adjusting the

dimensionless parameters a, b, c, and d. I represents the sum of the external input current and

synaptic current. Regular spiking pattern is employed as the firing pattern of the excitatory

neuron and low-threshold spiking pattern is employed as the firing pattern of the inhibitory

neuron, as shown in Figs 1 and 2, respectively.

Synaptic plasticity model. The synaptic plasticity model with excitatory synapses and

inhibitory synapses plays an important role in regulating the network dynamically. The synap-

tic output current and input voltage show an approximately linear relationship, which can be

described as:

Isyn ¼ gsynðtÞðE � VjðtÞÞ; ð2Þ

where Isyn is the synaptic currents, gsyn is the synaptic conductance, Vj(t) is the membrane

potential of postsynaptic neuron, and E is the reversal potential. In this study, the excitatory

reversal potential Eex and the inhibitory reversal potential Ein are 0mV and −70mV, respec-

tively. Both excitatory and inhibitory synapses regulate the efficiency of information
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Fig 1. Firing patterns of the regular spiking mode of the Izhikevich neurons. The parameters of the excitatory

neuron are: a = 0.02, b = 0.2, c = −65, and d = 8.

https://doi.org/10.1371/journal.pone.0244683.g001

Fig 2. Firing patterns of the low-threshold spiking mode of the Izhikevich neurons. The parameters of the

inhibitory neuron are: a = 0.02, b = 0.25, c = −65, and d = 2.

https://doi.org/10.1371/journal.pone.0244683.g002
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transmission among neurons through the changes of the synaptic conductance, and each syn-

apse has two regulation rules.

(1) When postsynaptic neuron j does not receive the action potential of presynaptic neuron

i, the excitatory synaptic weights and inhibitory synaptic weights are in exponential attenua-

tion. The excitatory and inhibitory synaptic weights are defined as gex and gin, respectively,

which are described as:

tex
dgex
dt
¼ � gex; ð3Þ

tin
dgin
dt
¼ � gin; ð4Þ

where τex and τin are the attenuation constants of excitatory and inhibitory conductance,

respectively [37].

(2) When postsynaptic neuron j receives the action potential of the presynaptic neuron i,
the changes of the excitatory synaptic weight and inhibitory synaptic weight can be described

by formulas (5) and (6), respectively.

gexðtÞ ! gexðtÞ þ �gex;

�gex ! wij
�gmax;

ð5Þ

ginðtÞ ! ginðtÞ þ �g in;

�gin ! mij
�gmax;

ð6Þ

where �gex is the excitatory conductance increment caused by the action potential, and it is reg-

ulated by synaptic modification function wij. �g in is the inhibitory conductance increment

caused by the action potential, and it is regulated by synaptic modification function mij. In this

study, gmax is 0.015. When the synaptic weight is less than 0, it is 0. When the synaptic weight

is more than gmax, it is 0.015. wij and mij are related to the spiking firing of presynaptic neurons

and postsynaptic neurons, respectively, which can be described as:

wij ¼

(Aþ expðDt=tþÞ;Dt < 0

� A� expð� Dt=t� Þ;Dt � 0
; ð7Þ

mij ¼

(
� Bþ expðDt=tþÞ;Dt < 0

B� expð� Dt=t� Þ;Dt � 0
; ð8Þ

where A+ and A− are the maximum modified value of strengthened and weakened synaptic

conductivity during excitation process, respectively. B+ and B− are the maximum modified

value of strengthened and weakened synaptic conductivity during inhibition process, respec-

tively. Δt is the time interval between presynaptic and postsynaptic neuron firing. τ+ and τ− are

the time interval ranges between presynaptic and postsynaptic neuron firing when synapses

are strengthened and weakened, respectively.

In this study, the ratio of excitatory synapses to inhibitory synapses is 4:1 in the synaptic

plasticity model following the neuroanatomical experiment result of the mammalian cerebral

cortex [38]. The parameters are as follows: τ+ = τ− = 20ms, A+ = 0.1, A− = 0.105, B+ = 0.02, and

B− = 0.03 [39].
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Generation of the SFN with the high ACC. The BBV generation algorithm is used to

generate a weighted SFN in which the topology and network weights can evolve with time.

The algorithm steps for network generation are as follows [40]:

(1). Initial network: the network contains m0 nodes, and the weight w0 of each edge is 1,

where m0 = 4.

(2). Add new nodes: new node v is added with probability P, where P 2 (0, 1]. The newly

added node has m edges, and it is connected with the existing nodes according to priority

selection of weight, where m = 3. The probability that old node i is selected as:

Y

v!i

¼
siP
si
; si ¼

X

j2GðiÞ

wij; ð9Þ

where j is the node connected to node i.

(3). Add new edges: new edges are added according to probability 1 − P in the network, only

adding mt edges, where mt = 2. The two endpoints of the newly added edge are selected

according to the triangular mechanism. First, edge (i, j) of the network is selected ran-

domly, and then another adjacent node k of node j is selected (excluding node i). The

probability of selecting node k can be calculated as:

Y

k

¼
wjk

sj � wij
: ð10Þ

If there is no connection between node i and k, a new edge is established. Otherwise, the

weight is increased by σ. In both cases, the weights of edges wij and wjk are increased by σ,

where σ = 1.

In this study, a SFN with the high ACC is generated according to the algorithm above. A

SFN is a complex network with the degree distribution following power-law distribution. The

probability that a node is connected to other k nodes is P(k) * k−γ. Different SFNs can be

obtained by adjusting probability P. According to the research results of the functional charac-

teristics of human brain [41], the power-law exponent γ is usually in the range of [2, 3], and

the clustering coefficient of the SFN is relatively high. Therefore, the SFSNN with a high ACC

is constructed, which probability P of the SFN is 0.3. The power-law exponent γ is 2.15, and

the clustering coefficient C is 0.5. Among these, clustering coefficient can characterize the

aggregation degree of the network. The clustering coefficient of node i is defined as the proba-

bility that two neighbor nodes of node i are connected. It is described as:

Ci ¼
2ei

kiðki � 1Þ
; ð11Þ

where ki is the degree of node i, ki(ki − 1)/2 is the possible maximum number of edges, and ei is

the number of edges connected between node i and neighbor nodes. The average clustering

coefficient of all nodes is used to characterize the clustering coefficient of the network. It is

described as:

C ¼
1

N

XN

i¼1

Ci ð12Þ

A topological diagram of the SFN is illustrated in Fig 3. The probability distribution of

node degree for the SFN when P = 0.3 is illustrated in Fig 4.
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Fig 3. Topological diagram of the SFN. The red dots on the boundary of the ellipse represents 500 nodes, and the

internal black line represents the connections between nodes.

https://doi.org/10.1371/journal.pone.0244683.g003

Fig 4. Degree distribution of the SFN. The abscissa represents the node degree value, and the ordinate represents the

frequency of the corresponding degree value in the network. The degree distribution of the SFN follows the power-law

distribution.

https://doi.org/10.1371/journal.pone.0244683.g004
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In this study, to construct SFSNN, the Izhikevich neuron model is used as a node, the syn-

aptic plasticity model is used as an edge, and the BBV generation algorithm is used to generate

the SFN. Through the experimental results, the size of the SFSNN is 500 neurons for the fol-

lowing reasons: when the number of neurons of an SFSNN exceeds 1000, a computer cluster

needs to be used to compute rather than a single computer due to the computing ability, and

we found that noise suppression ability of an SFSNN with the number of neurons in the range

of 500-1500 shows no obvious difference. The construction and noise suppression ability anal-

ysis of SFSNN are implemented on a PC with a 2.60 GHz CPU and 4 GB RAM.

Indexes of noise suppression ability

Before and after noise stimulation, the change degree of index is used to evaluate the noise sup-

pression ability of the network. The closer the index of evaluating the noise suppression ability

before stimulation to that after stimulation is, the better the noise suppression ability of the

network is. In this study, we use two indexes to evaluate the noise suppression ability of the

SFSNNs under white Gaussian noise from different angles. One is the relative change rate of

the firing rate δ which reflects the degree of variation in FR before and after noise stimulation.

The other is the correlation coefficient between membrane potentials ρ which reflects similar-

ity between membrane potential of neuron before and after noise stimulation.

Relative change rate of the firing rate. The interspike interval (ISI) is the difference

between two adjacent firing moments of a neuron, which can be calculated as:

ISIn ¼ tn � tn� 1: ð13Þ

where ISIn is the firing moments difference between the nth neuron and the n-1th neuron, tn
is the firing moment of the nth neuron. In this study, n is 500.

In this study, the FR of a neuron is estimated by dividing simulation duration (1000 ms) by

the average ISI value. The average FR of all neurons can represent the FR of the SFSNN. The δ
can quantitatively analyze the degree of variation in the FR before and after white Gaussian

noise, which is described as:

d ¼
jfj � fij

fi
� 100%; ð14Þ

where fi is the FR before stimulation and fj is the FR after stimulus, respectively. Under noise

stimulation, the smaller the δ is, the smaller the degree of change in the FR, and the stronger

the noise suppression ability of the SFSNN.

Correlation coefficient between membrane potentials. The ρ of SFSNN is the average

correlation coefficient between membrane potentials of all neurons in the network. The ρ can

measure the degree of similarity between membrane potentials before and after noise stimula-

tion, which is described as:

rijðtÞ ¼

Xt2 � tþ1

t¼t1

xiðtÞxjðt þ tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xt2 � tþ1

t¼t1

xi
2ðtÞ

Xt2 � tþ1

t¼t1

xj
2ðt þ tÞ

v
u
u
t

; ð15Þ

where ρij(τ) is the correlation coefficient between the neuron membrane potential before and

after noise stimulation, xi is the neuron membrane potential before noise stimulation, xj is the

neuron membrane potential after noise stimulation, [t1, t2] is the simulation duration. In this
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study, the simulation duration is 1000ms. Under noise stimulation, the higher the ρ is, the

smaller the change in membrane potential, and the stronger the noise suppression ability of

the SFSNN.

The Pearson correlation coefficient

The Pearson correlation coefficient r is used to calculate the correlation between the variable X
and Y, which can be described as:

r ¼

Xn

i¼1

ðXi �
�XÞðYi �

�Y Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXi �
�XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðYi �
�Y Þ2

q : ð16Þ

To determine whether the sample r is from the X and Y related population, it needs to be

tested for significance. In this study, we employ the t-test, which is described as:

t ¼
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � r2Þ=ðn � 2Þ

p : ð17Þ

When the correlation coefficient is not zero at the significance level of 0.05, it is marked signifi-

cant with “�” in the top right. When the correlation coefficient is not zero at the significance

level of 0.01, it is marked very significant with “��” in the top right. The P value is considered

statistically significant as follows: “�”means P< 0.05, “��” means P< 0.01.

Results and discussion

Noise suppression ability

White Gaussian noise is the main source of noise for many practical systems, such as radar

and communication systems. Therefore, it is currently important to investigate the noise sup-

pression ability of the SFSNN under white Gaussian noise. White Gaussian noise is a kind of

noise whose amplitude follows Gaussian distribution, and power spectral density follows uni-

form distribution. Gaussian distribution function is described as:

f ðxÞ ¼
1
ffiffiffiffiffiffi
2p
p

s
e�
ðx� mÞ2

2s2 : ð18Þ

Probability density function of uniform distribution is described as:

f ðxÞ ¼

( 1

b� a ;a < x < b

0;else
ð19Þ

In this study, white Gaussian noise is the current stimulation. Adding the current stimula-

tion to the neuron model formula (1) can get the neuron model under noise stimulation and

then get the SFSNN stimulated by white Gaussian noise. The change of current stimulation

amplitude of white Gaussian noise with time as shown in Fig 5.

In this section, δ and ρ are used as two indexes to evaluate the noise suppression ability of

the SFSNNs under white Gaussian noise from different angles. And the noise suppression abil-

ities of the SFSNNs with the high ACC and the SFSNNs with the low ACC are analyzed com-

paratively and discussed.

Noise suppression ability by relative change rate of the firing rate. To investigate the

noise suppression ability of the SFSNN under white Gaussian noise from the angle of δ, the

change of the FRs before and after noise stimulation is studied according to formula (13). The
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change of the FRs with time under noise intensities of 0, 5, 10, 15, 20, 25 dBW are illustrated in

Fig 6.

From Fig 6, the FR gradually decreases and tends to be stable with time under different

intensities of noise. The FR under noise intensities of 5, 10, 15, 20, 25 dBW have small change

compared with that before noise stimulation (the noise intensity is 0 dBW), and the degree of

the change of the FR gradually increases with the increase of noise intensity. Experiment

results show that the SFSNN has a certain degree of noise suppression ability.

To measure the degree of variation in the FR before and after noise stimulation, the change

of the δ with time under noise intensities of 5, 10, 15, 20, 25 dBW are illustrated in Fig 7.

From Fig 7: with the time, the all of δ rise sharply in the first 200 ms, rise slowly from 200

ms to 700 ms and tend to be stable after 700 ms under noise intensities of 5, 10, 15, 20, 25

dBW; when δ tend to be stable, the overall trend of the change of δ increase with the increase

of noise intensity and δ are about 7%, 15%, 37%, 84% and 180% under noise intensities of 5,

10, 15, 20, 25 dBW, respectively. The experiment results show that SFSNN has a certain degree

of noise suppression ability, and the noise suppression ability becomes weak gradually with the

increase of noise intensity from the δ.

Noise suppression ability by correlation coefficient between membrane potentials. To

investigate the noise suppression ability of the SFSNN under white Gaussian noise from the

angle of ρ, the change of membrane potentials before and after noise stimulation is studied.

The change of the membrane potentials with time under noise intensities of 0, 5, 10, 15, 20, 25

dBW are illustrated in Fig 8.

From Fig 8, the membrane potentials gradually decrease and tend to be stable with time

under different intensities of noise. The membrane potentials under different intensities of

Fig 5. The white Gaussian noise current stimulation.

https://doi.org/10.1371/journal.pone.0244683.g005
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Fig 6. The change in the FR before and after noise stimulation.

https://doi.org/10.1371/journal.pone.0244683.g006

Fig 7. The change in the δ with different noise intensities.

https://doi.org/10.1371/journal.pone.0244683.g007
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noise have small change compared with the membrane potentials before noise stimulation

(the noise intensity is 0 dBW), and the degree of the change of membrane potentials gradually

increases with the increase of noise intensity. Experiment results show that the SFSNN has a

certain degree of noise suppression ability.

To measure the degree of similarity between membrane potentials before and after noise

stimulation quantitatively, the change of the ρ with time under noise intensities of 5, 10, 15, 20,

25 dBW are illustrated in Fig 9.

From Fig 9: with the time, the all of ρ rise sharply in the first 200 ms, rise slowly from 200

ms to 700 ms and tend to be stable after 700 ms under noise intensities of 5, 10, 15, 20, 25

dBW; when ρ tend to be stable, the overall trend of the change of ρ increase with the increase

of noise intensity and ρ are about 0.98, 0.97, 0.96, 0.94 and 0.93 under noise intensities of 5, 10,

15, 20, 25 dBW, respectively. The experiment results show that SFSNN has a certain degree of

noise suppression ability, and the noise suppression ability becomes weak gradually with the

increase of noise intensity from the ρ.

In this study, δ and ρ are measured to evaluate the noise suppression ability of the SFSNN

under white Gaussian noise. δ and ρ are focused on measuring the degree of variation in FR

and similarity between membrane potential of neuron before and after noise stimulation,

respectively. Thus, we evaluate the noise suppression ability of the SFSNN from different

angles and get the consistent experiment result that the SFSNN has a certain degree of noise

suppression ability under white Gaussian noise.

Fig 8. The change in the membrane potentials before and after noise stimulation.

https://doi.org/10.1371/journal.pone.0244683.g008
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Comparison of the SFSNNs with the high ACC and the SFSNNs with the

low ACC

To investigate the noise suppression abilities of the SFSNNs with the high ACC and the

SFSNNs with the low ACC, we attempt to use the BBV algorithm to construct the SFSNNs.

However, the ACCs of the SFNs are relatively high and differ slightly based on the BBV algo-

rithm when the power-law exponent is in the range of [2, 3]. Therefore, we can construct the

SFSNNs with the high ACC based on BBV algorithm. SFNs with the low ACC is constructed

based on the Barabási Albert (BA) generation algorithm [42]. However, the ACCs of the SFNs

are relatively low and differ slightly based on the BA algorithm when the power-law exponent

is in the range of [2, 3]. Therefore, we can construct the SFSNNs with the low ACC based on

BA algorithm.

In order to comparatively analyze the noise suppression abilities of the SFSNNs with the

high ACC and the SFSNNs with the low ACC more statistically, we construct three SFSNNs

with the randomly generated high ACC topologies, whose clustering coefficients are 0.50, 0.53

and 0.56, and the corresponding power-law exponents are 2.15, 2.11 and 2.06 based on the

BBV algorithm, respectively. And we construct three SFSNNs with the randomly generated

low ACC topologies, whose clustering coefficients are 0.01, 0.02 and 0.03, and the correspond-

ing power-law exponents are also 2.24, 2.17 and 2.06 based on the BA algorithm, respectively.

The SFSNNs with the low ACC are stimulated under the same noise intensity range of white

Gaussian noise. The noise suppression abilities of the SFSNNs with the high ACC are com-

pared with that of the SFSNNs with the low ACC. The noise suppression abilities of the two

kinds of SFSNNs are compared by the δ and the ρ, as illustrated in Figs 10 and 11, respectively.

Fig 9. The change in the ρ with different noise intensities.

https://doi.org/10.1371/journal.pone.0244683.g009
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Fig 10. The change of the δ of the three SFSNNs with the high ACC and the three SFSNNs with the low ACC.

https://doi.org/10.1371/journal.pone.0244683.g010

Fig 11. The change of the ρ of the three SFSNNs with the high ACC and the three SFSNNs with the low ACC.

https://doi.org/10.1371/journal.pone.0244683.g011
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It can be seen from Figs 10 and 11 that all of the δ show an increasing trend, and all of the ρ
show a decreasing trend in the two SFSNNs with the increase of noise intensity. The δ of the

three SFSNNs with the randomly generated low ACC topologies are lower than that of the

three SFSNNs with the randomly generated high ACC topologies. And the ρ of the three

SFSNNs with the randomly generated high ACC topologies are higher than that of the three

SFSNNs with the randomly generated low ACC topologies. Therefore, from two indexes δ and

ρ of evaluating noise suppression ability, we get the consistent experiment result that the

SFSNNs with the high ACC have higher noise suppression performance than the SFSNNs with

the low ACC on the whole.

To quantitatively analyze the difference in the noise suppression abilities of the SFSNNs

with the high ACC and the SFSNNs with the low ACC, the Euclidean distance is used to calcu-

late the difference of the δ between the SFSNN with the high ACC of 0.56 and the SFSNN with

the low ACC of 0.03, the result is 87.25 and illustration is shown in Fig 12; the Euclidean dis-

tance of the ρ between above these two SFSNNs is calculated, the result is 0.39 and illustration

is shown in Fig 13.

To eliminate the dimensional difference, the Euclidean distance of the δ and the ρ between

the above two kinds of SFSNNs are recalculated through data normalization and are 0.03 and

0.32, respectively. The experiment results show that the SFSNNs with the high ACC have

higher noise suppression performance than the SFSNNs with the low ACC.

Noise suppression mechanism analysis of the SFSNN

To explore the noise suppression mechanism of the SFSNN, we analyze intrinsic factor of the

noise suppression ability from the two aspects. (1) The dynamic evolution process of the

Fig 12. The change of the δ of a SFSNN with the high ACC and a SFSNN with the low ACC.

https://doi.org/10.1371/journal.pone.0244683.g012
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information processing of the SFSNN under white Gaussian noise. (2) The relationship

between the external noise suppression ability of the SFSNN and internal synaptic plasticity.

Neural information processing of the SFSNN. To explore the neural information pro-

cessing of the SFSNN, the dynamic evolution processes of the firing rate, synaptic weight and

clustering coefficient under white Gaussian noise of 10 dBW are investigated.

(1) Firing Rate

The external white Gaussian noise can lead to the change of the firing sequence of neurons

in the network. To describe the FR of all neurons of the SFSNN, the average FR is used, and its

dynamic evolution is illustrated in Fig 14.

From Fig 14, the average FR drops sharply in the first 150 ms, drops slowly from 150 ms to

700 ms and tends to be stable after 700 ms under white Gaussian noise of 10 dBW. And the fir-

ing moment of neurons is an important factor in the change in synaptic weight.

(2) Synaptic Weight

According to formulas (3), (4), (5), (6), (7) and (8), it can be found that the noise stimula-

tion can affect the firing moments interval between presynaptic and postsynaptic neurons Δt,
and the weight of excitatory synapses gex(t) and the weight of inhibitory synapses gin(t) is

affected by Δt. Therefore, the change of the FR can lead to the change of synaptic weight. The

average synaptic weight can be used to describe the synaptic weight of all edges in the SFSNN.

The dynamic evolution of the average synaptic weight with time under the noise is illustrated

in Fig 15.

From Fig 15, the average synaptic weight drops obviously in the first 150 ms and decreases

slowly from 150 ms to 700 ms; the average synaptic weight tends to be stable after 700 ms.

Fig 13. The change of the ρ of a SFSNN with the high ACC and a SFSNN with the low ACC.

https://doi.org/10.1371/journal.pone.0244683.g013
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Fig 14. The change in the average FR with time.

https://doi.org/10.1371/journal.pone.0244683.g014

Fig 15. The change in the average synaptic weight with time.

https://doi.org/10.1371/journal.pone.0244683.g015
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And according to formula (2), it can be found that the change of synaptic weight gsyn can

change synaptic currents Isyn. And the synaptic currents include excitatory and inhibitory cur-

rents. In this study, excitatory synaptic current is the mean of excitatory current received by all

postsynaptic neurons; inhibitory synaptic current is the mean of inhibitory current received by

all postsynaptic neurons. To investigate the change in the inhibitory and excitatory synaptic

currents with time under white Gaussian noise, their dynamic evolution are illustrated in

Fig 16.

From Fig 16, the excitatory current drops sharply in the first 200 ms, drops slowly from 200

ms to 700 ms and tends to be stable after 700 ms. The inhibitory current drops sharply in the

first 100 ms, drops slowly from 100 ms to 200 ms and tends to be stable after 200 ms. Because

of the influence of synaptic dynamic regulation on synaptic current, excitatory and inhibitory

current also gradually decreases and tends to be stable during the process of regulation. From

the experiment results, synaptic plasticity plays a role in regulating the SFSNN under white

Gaussian noise. During the process of regulation, the synaptic weight gradually decreases and

tends to be stable.

(3) Clustering Coefficient

As an important index to measure the topological characteristics of an SFSNN, the cluster-

ing coefficient reflects local information transmission efficiency of the network. For a weighted

network, the clustering coefficient of the node i is described as [43]:

ci ¼
1

siðki � 1Þ

X

j;k

ðgij þ gikÞ
2

aijajkaki ð20Þ

Fig 16. The change in the synaptic current with time. (A) The excitatory current. (B) The inhibitory current.

https://doi.org/10.1371/journal.pone.0244683.g016
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where gij, gik are the synaptic weight of weighted network W and ki, si are the degree and

strength of the node i, respectively. In this study, the SFSNN is a network with dynamic regula-

tion of synaptic weight. And according to formula (20), we can found that the change of synap-

tic weight g can lead to the change of the clustering coefficient Ci. Therefore, the dynamic

regulation of the synaptic weight forms synaptic plasticity and it also can change the topologi-

cal structure of the SFSNN. The ACC can describe the clustering coefficient of all neurons in

the SFSNN, and dynamic evolution of the ACC with time under white Gaussian noise is illus-

trated in Fig 17.

From Fig 17, the ACC decreases gradually within 450 ms, increases gradually from 450 ms

to 700 ms and becomes stable from 700 ms to 1000 ms.

From the theory and experiment results, white Gaussian noise can lead to the change of the

firing sequence of neurons in the network. Synaptic plasticity regulates synaptic weight

through the change of firing moment of presynaptic neurons and postsynaptic neurons.

Therefore, the change of the FR can lead to the change of the synaptic weight. In this study, the

SFSNN is a network with dynamic regulation of synaptic weight. Therefore, the dynamic regu-

lation of the synaptic weight also can change the topological structure of the SFSNN. The

experiment results show that the dynamic evolution of neural information processing presents

a trend from intense to gradually stable. Furthermore, the neural information processing of

the SFSNN is the linkage effect of dynamic evolution in neuron firing, synaptic weight and

topological structure.

Correlation analysis based on the Pearson correlation coefficient. To further explore

the noise suppression mechanism of the SFSNN, the relationship between the external noise

suppression ability of the SFSNN and the internal synaptic plasticity is established. An analysis

Fig 17. The change in the ACC with time.

https://doi.org/10.1371/journal.pone.0244683.g017
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of the correlation between the synaptic plasticity and the noise suppression ability of the

SFSNN is conducted based on the Pearson correlation coefficient. To analyze the correlation

between the dynamic regulation of synaptic weight and the δ, and the correlation between the

dynamic regulation of synaptic weight and the ρ, the Pearson correlation coefficient is calcu-

lated according to formula (16) and (17). In this study, X represents the average synaptic

weight in every 50 ms; Y represents the average FR or the average ρ in every 50 ms; and n rep-

resents the numbers of X and Y. The simulation time is 1000 ms, and the time interval is 50

ms. Thus, n is 20.

The correlation coefficient between the average synaptic weight and the δ is -0.961��

(P< 0.01), and the correlation coefficient between the average synaptic weight and the ρ is

-0.995�� (P< 0.01), which shows that the dynamic regulation of synaptic weight is signifi-

cantly correlated with the noise suppression ability of the SFSNN at the significance level of

0.01 (two-sided t-tests). The above results imply that synaptic plasticity is the intrinsic factor of

the noise suppression ability of the SFSNN.

Conclusion

In this study, the SFSNN with more biological rationality is constructed to study the noise

suppression ability under white Gaussian noise. Furthermore, the neural information pro-

cessing of the SFSNN is investigated, and the noise suppression mechanism of the SFSNN is

explored. The experiment results indicate the following. (1) We evaluate the noise suppression

ability of the SFSNN from different angles and get the consistent experiment result that the

SFSNN has a certain degree of noise suppression ability under white Gaussian noise. (2) The

δ of the SFSNN with the high ACC are lower than that of the SFSNN with the low ACC,

whereas the ρ of the SFSNN with the high ACC are higher than that of the SFSNN with the

low ACC. The result shows that the SFSNN with the high ACC have higher noise suppression

performance than the SFSNN with the low ACC on the whole. (3) The neural information

processing of the SFSNN is the linkage effect of dynamic changes in neuron firing, synaptic

weight and topological structure. (4) The dynamic regulation of synaptic weight is signifi-

cantly correlated with the noise suppression ability, which shows that synaptic plasticity is the

intrinsic factor of the noise suppression ability of the SFSNN. This study can be helpful to

understand the brain information processing and provides theoretical foundation for the

engineering application of robustness drawing from the self-adaptive advantage of the biolog-

ical nervous system.

The ANNs without nerve electrophysiological characteristics cannot receive the external

stimulation, in which the node is not a neuron model and the edge is not a synapse model.

Therefore, the response of this kind of networks to external stimulation cannot be studied. For

the SNNs, most of the researches on self-adaptive regulation are firing synchronization and

neural coding under external stimulation. The study of the noise suppression ability of the

SNN based on synaptic plasticity is still in the stage of exploration. This study can be helpful to

understand the brain information processing under external stimulation and provides theoret-

ical foundation for the engineering application of robustness drawing from the self-adaptive

advantage of the biological nervous system.
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