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Due to the cost and complexity of biological experiments, many computational methods

have been proposed to predict potential miRNA-disease associations by utilizing

known miRNA-disease associations and other related information. However, there are

some challenges for these computational methods. First, the relationships between

miRNAs and diseases are complex. The computational network should consider the

local and global influence of neighborhoods from the network. Furthermore, predicting

disease-related miRNAs without any known associations is also very important.

This study presents a new computational method that constructs a heterogeneous

network composed of a miRNA similarity network, disease similarity network, and

known miRNA-disease association network. The miRNA similarity considers the

miRNAs and their possible families and clusters. The information of each node in

heterogeneous network is obtained by aggregating neighborhood information with

graph convolutional networks (GCNs), which can pass the information of a node

to its intermediate and distant neighbors. Disease-related miRNAs with no known

associations can be predicted with the reconstructed heterogeneous matrix. We apply

5-fold cross-validation, leave-one-disease-out cross-validation, and global and local

leave-one-out cross-validation to evaluate our method. The corresponding areas under

the curves (AUCs) are 0.9616, 0.9946, 0.9656, and 0.9532, confirming that our approach

significantly outperforms the state-of-the-art methods. Case studies show that this

approach can effectively predict new diseases without any known miRNAs.

Keywords: miRNA disease, matrix completion, GCNs, heterogeneous graph, association prediction

1. INTRODUCTION

MicroRNAs (miRNAs) are a class of short non-coding single-stranded RNA molecules (22 nt)
encoded by endogenous genes (Ambros, 2001). Studies have shown that miRNAs are involved
in the emergence and development of various human diseases (Alvarez-Garcia and Miska,
2005; Jopling et al., 2005). Therefore, finding the associations between miRNAs and diseases
could contribute to pathological classifications, individualized diagnoses, and disease treatments.
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However, experimental methods for identifying associations
between miRNAs and diseases are expensive and time-
consuming. Therefore, computational methods have drawn
wide attention to reveal potential associations between miRNAs
and diseases.

Based on the known miRNA-disease associations, a number
of computational methods have been proposed to predict
candidate miRNAs for diseases. These methods cover three main
categories: network algorithms, machine learning, and matrix-
based methods.

Jiang et al. (2010) proposed the first computational method,
which integrated a miRNA functional similarity network,
disease phenotype similarity, known disease-miRNA association
network and discrete probability distribution named the
hypergeometric distribution to predict the potential associations.
Xuan et al. (2013) developed a model named HDMP. The
miRNA functional similarity was calculated according to disease
terms and the disease phenotype similarity. HDMP could not
predict candidate miRNAs for new diseases without any known
associated miRNAs, however. Both methods considered only
local neighbor similarity information of each miRNA, so they
did not achieve satisfactory performance. To make full use
of network information, Chen et al. (2012) developed the
global network method RWRMDA that implemented random
walks on a miRNA functional similarity network. However,
this model could not address new diseases associated with
no miRNAs. Many other models have incorporated complex
interaction networks to present the relationship between miRNA
and disease. For example, Mørk et al. (2014) proposed a model
of miRNA-protein-disease (miRPD) association prediction with
proteins as mediators. The authors verified the associations
between miRNAs and diseases by integrating both miRNA-
protein and protein-disease associations.

Recently, some machine-learning-based models were also
developed to predict potential miRNA-disease associations.
Based on the K-nearest-neighbor approach for miRNAs and
diseases, RKNNMDA (Chen et al., 2017) was used to rank K-
nearest neighbors with SVMs and utilized weighted voting for
each predicted miRNA-disease association. Zhao et al. (2019)
developed a novel model of adaptive boosting for miRNA-
disease association prediction (ABMDA). They used a decision
tree as a weak classifier and combined weak classifiers, which
could score samples to form a strong classifier based on
corresponding weights.

Based on the information of known miRNA-disease
associations and the similarity matrix, an inductive matrix
completion algorithm was used to complete the missing entries
of a known miRNA-disease association matrix. Li et al. (2017)
released a method of matrix completion for an miRNA-disease
association prediction model (MCMDA), which updated
the adjacency matrix of known miRNA-disease association
networks using matrix completion algorithms. Chen et al. (2018)
also developed a model of inductive matrix completion for
miRNA-disease association prediction (IMCMDA).

The methods of the three categories mentioned above
have their own strengths and limitations. Combining the
network algorithm, machine learning and matrix completion,

we developed a matrix completion method based on graph
convolutional networks for miRNA-disease association
prediction. First, we constructed a heterogeneous network
by integrating the miRNA similarity network, disease similarity
network and known miRNA-disease associations. Inspired by
Wan et al. (2019), we then obtained new node embedding
by aggregating neighborhood information derived from
the heterogeneous network based on graph convolutional
operations, which can pass the information of a node to its
intermediate and distant neighbors. To the largest extent, to
preserve the topological information of the heterogeneous
network, the loss function of reconstructing the entire
heterogeneous network (matrix) was minimized during the
training process. Finally, by comparing the reconstructed
and original matrices, we discovered novel miRNA-disease
associations. To evaluate the effectiveness of the proposed
method, we implemented 5-fold cross-validation, leave-one-
disease-out cross-validation (LODOCV), and global and local
leave-one-out cross-validation (LOOCV) and obtained AUCs of
0.9616, 0.9946, 0.9656, and 0.9532, respectively. Furthermore,
two types of case studies were carried out. As a result, most of
the predicted miRNAs were confirmed by related databases.
In conclusion, the proposed method can effectively predict
potential miRNA-disease associations.

2. MATERIALS AND METHODS

2.1. MiRNA-Disease Network
To construct the known miRNA-disease network, we
downloaded the verified miRNA-disease associations from
the HMDD database (Li et al., 2014). We used an adjacency
matrix RD to describe the network. The element RD(i, j) is
1 if miRNA mi is associated with disease dj and 0 otherwise.
We obtained 6,441 associations between 577 miRNAs and 336
diseases after duplicates were removed.

2.2. Disease Functional Similarity Network
Similar diseases have a great probability of being regulated by
similar genes. Therefore, we constructed a disease similarity
network based on the gene functional information. The data can
be downloaded from the HumanNet database (Li et al., 2011),
which contains an associated log-likelihood score (LLS) of each
interaction between two genes or gene sets. The similarityDS(i, j)
between diseases di and dj can be calculated as follows:

DS(i, j) =











∑

x∈S(di))
LLS(x,S(dj))+

∑

y∈S(dj))
LLS(y,S(di))

|S(di))|+|S(dj))|
, |S(di))|

+|S(dj))| 6= 0
0, otherwise

(1)
where S(di) represents the gene sets related to disease di; |S(di)|
represents the cardinalities of S(di); and LLS(x, S(dj)) is the LLS
between gene x and gene set S(dj).

2.3. MiRNA Similarity Network
MiRNA families feature a common sequence or structure
configuration in sets of genes (Kaczkowski et al., 2009). The
miRNA cluster is a set of two or more miRNAs that are
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FIGURE 1 | Schematic workflow of the proposed method. (A) A miRNA similarity network, disease similarity network, and miRNA-disease association network are

used to construct a heterogeneous network. (B) To extract information from the neighborhood, a neighborhood information aggregation operation (Formula 5) is

applied on every node. Then, each node updates its feature representation by concatenating its current representation with the aggregated information (Formula 6).

(C) A feature matrix is constructed, each row of which is a new node feature representation (Formula 7). Then, the feature matrix is used to reconstruct the

heterogeneous network, and topology-preserving learning is implemented by minimizing the reconstructed error (Formula 8).

transcribed from physically adjacent miRNA genes. MiRNAs
belonging to the same family or cluster are expected to
have similar functions and thus be associated with the
same diseases. Therefore, we constructed a miRNA similarity
network by combining verified miRNA-target associations,
family information, cluster information, and verified miRNA-
disease associations. In this process, first, the verified miRNA-
target associations is downloaded from miRTarBase (Hsu et al.,
2014). TwomiRNAs are connected if they share common targets.
The element value of RST (miRNA similarity based on target)
represents the number of shared targets between miRNAs. Then,
we can obtain the family information of miRNAs from miRBase
(Griffiths-Jones et al., 2003). If two miRNAs belong to the same
miRNA family, we set their RSF (miRNA similarity based on
family) value to 1; otherwise, we set it to 0. Third, the miRNA
cluster information is accessible in miRBase (Kozomara and
Griffiths-Jones, 2014). If two miRNAs belong to the same cluster,
then the RSC (miRNA similarity based on cluster) value is set
to 1. Finally, we utilize MISIM, a miRNA similarity network
based on verified miRNA-disease associations, to define RSD

(miRNA similarity based on disease). Once the data are prepared,
we combine the four matrices to calculate the similarity RS(i, j)
between miRNA ri and miRNA rj:

RS(i, j) = α·RST(i, j)+β·RSF(i, j)+γ ·RSC(i, j)+θ ·RSD(i, j) (2)

where α = 0.2,β = 0.1, γ = 0.2, and θ = 0.5 are described as in
the work (Zeng et al., 2018).

2.4. Heterogeneous Graph Convolutional
Networks
2.4.1. Heterogeneous Network Construction
As shown in Figure 1, we constructed a heterogeneous
network based on the miRNA similarity network RS, disease
similarity network DS, and miRNA-disease network RD. The
heterogeneous network can be represented as follows:

G = (N,E) =

(

RS RD

RDT DS

)

(3)

where N is the node set that contains two kinds of nodes NT =

{miRNA, disease} , and E is the edge set ET = {miRNA-miRNA,
miRNA-disease, disease-disease}. The three kinds of edges and
their weights are described as miRNA similarity network,
miRNA-disease network, and disease functional similarity
network, respectively. For s ∈ ET and network As ∈

{RS,RD,DS}, normalization is first implemented before further
processing as follows:

As
′ =

As(i, j)
∑k=Col(As)

k=1
As(i, k)

(4)
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where Col(As) is the size of the As column dimension and As(i, j)
is the element in the ith line and jth column.

2.4.2. Neighborhood Information Aggregation
To take full advantage of the heterogeneous network
information, we adopted the neighborhood information
aggregation strategy. First, an initial node embedding function
f :N → Rd maps each node u to its d-dimensional vector
representation f (u). In our experiment, d is equal to 1024, and
f is a function that outputs random values from a truncated
normal distribution. Then, the neighborhood information
aggregation can be defined as:

au =
∑

s∈ET

∑

A′
s(u,v) 6=0As

′(u, v) · σ (f (v) ·Ws + bs) (5)

where Ws ∈ Rd×d and bs ∈ Rd are the parameters trained in
the neural network. In addition, σ (·) is the activation function in
the neural network, and we used the RELU function here. Based
on the graph convolutional operation, we pass the information

of a node to its intermediate and distant neighbors and therefore
realize the implicit influence among nodes on the network level.

2.4.3. Updating the Node Embedding
Obtaining the aggregated neighbor information au, the process
of updating the node embedding can be defined as:

f 1(u) =
σ (W1concat(f (u), au)+ b1)

|| σ (W1concat(f (u), au)+ b1) ||2
(6)

where f 1(u) is a new node embedding, W1 ∈ Rd×2d is the
weights, b1 ∈ Rd is the bias and || · ||2 is the l2 norm.

2.4.4. Topology-Preserving Learning
Considering the same importance of preserving the known
miRNA similarity (RS), disease similarity (DS) and miRNA-
disease association (RD), we share all the parameters among
these three subnetworks and minimize the loss function of
reconstructing the entire heterogeneous network during the
training process, as shown in Figure 1C. First, we use RF ∈ Rm×d

FIGURE 2 | The results of our method and baseline methods in terms of (A) local LOOCV, (B) global LOOCV, (C) 5-fold cross-validation, and (D) LODOCV.
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and DF ∈ Rn×d to represent the feature matrix of miRNA
and disease, respectively, where each row of the feature matrix
represents a new node embedding f 1(u), m is the number of
miRNA nodes, n is the number of disease nodes and d is the
dimension of new node embedding. Then, topology-preserving
learning of the node embedding can be defined as:

F =

(

RF

DF

)

(7)

minW1 ,b1 ,Ws ,bs ,P,H
|| G− FPHFT ||22 (8)

where P ∈ Rd×k and H ∈ Rk×d are projection matrices used
to extract the principle features from node representations, and
G is the graph constructed in Equation (3). We set k to 512 in
our experiment. The unknown parameters can be trained in an
end-to-end manner by performing gradient descent to minimize
the total squared reconstruction error. In the training phase, we
iterate 2,000 epochs to establish the optimal parameters with the
minimum error value.

2.5. Interaction Probability Between MiRNA
and Disease
Finally, the predicted interaction probability between
miRNAs and diseases can be obtained from the reconstructed
heterogeneous network as follows:

(

RS
′
RD

′

DR
′
DS

′

)

= FPHFT (9)

RDpredicted = (RD′ + DR′T)/2 (10)

By comparing the reconstructed RDpredicted and the original RD
matrix, we can discover potential miRNA-disease associations.
The prediction procedure is summarized in Algorithm 1. The
code and data can be obtained online1.

2.6. Baseline Methods
We choose the following state-of-the-art methods as our baseline
methods:

1) MiRNA-disease association prediction based on matrix

completion and label propagation (MCLPMDA): Yu et al.
(2019) proposed a novel method named MCLPMDA. This
method first reconstructs a similarity matrix of miRNA and
disease by a matrix completion algorithm based on known
experimentally verified miRNA-disease associations and then
utilizes the label propagation algorithm to reliably predict
potential disease-related miRNAs.

2) Ensemble of decision tree based MiRNA-disease

association prediction (EDTMDA): Chen et al. (2019)
proposed a method named EDTMDA, which innovatively
builds a computational framework integrating ensemble
learning and dimensionality reduction.

1https://github.com/aI-area/DMA

Algorithm 1:The proposed algorithm.

Input:

MiRNA similarity network, RS;
Disease similarity network, DS;
MiRNA-disease association network, RD;

Output: Predicted miRNA-disease associations, RDpredicted;
1: Construct a heterogeneous network G based on RS, DS and

RD;
2: For each node u in graph G, initialize its embedding as f 0(u);

3: Initialize parameters: θ1 = (W1
s , b

1
s ,W

1, b1, P1,H1);
4: epochs = 2000;
5: minLoss = Inf ;
6: η = 0.0005;
7: i = 1;
8: while i <= epochs do
9: for each node u do

10: aiu =
∑

s∈ET

∑

A
′
s(u,v) 6=0

A
′

s(u, v) · σ (f
i−1(v) ·W i

s + bis);

11: f i(u) =
σ (Wiconcat(f i−1(u),aiu)+bi)

||σ (Wiconcat(f i−1(u),aiu)+bi)||2
;

12: end for

13: RFi = (f i(1), f i(2), ..., f i(m))T ;
14: DFi = (f i(m+ 1), f i(m+ 2), ..., f i(m+ n))T ;

15: Fi =

(

RFi

DFi

)

;

16: ℓ =|| G− FiPiHi(Fi)T ||22;
17: if ℓ < minLoss then
18: minLoss = ℓ;

19:

(

RS
′

RD
′

DR
′

DS
′

)

= FiPiHi(Fi)T ;

20: RDpredicted = (RD
′
+ DR

′T)/2;
21: end if

22: θ
i+1 = θ

i − η∇
θ
iℓ(θ i);

23: i = i+ 1;
24: end while

25: return RDpredicted;

3) Predicting microRNA-disease associations based on sparse

neighborhoods (SNMDA): Qu et al. (2018a) presented a
method named SNMDA that takes advantage of the sparsity
of the miRNA-disease association network and integrates the
sparse information into the current similarity matrices for
both miRNAs and diseases.

4) MiRNA-disease association prediction based on global

linear neighborhoods (GLNMDA): Yu et al. (2018) proposed
a novel method that obtains a new miRNA/disease similarity
matrix by linearly reconstructing each miRNA/disease
according to the known experimentally verified miRNA-
disease associations and then adopts label propagation to infer
the potential associations between miRNAs and diseases.

5) Predicting miRNA gene and disease relationship based

on locality-constrained linear coding (LLCMDA): Qu
et al. (2018b) proposed LLCMDA. This method first
reconstructs similarity networks for both miRNAs and
diseases using locality-constrained linear coding and then
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TABLE 1 | The top 30 predicted miRNAs associated with breast neoplasms.

miRNA(1-15) Evidence miRNA(16-30) Evidence

hsa-mir-30e dbDEMC; PhenomiR hsa-mir-192-2 Unconfirmed

hsa-mir-449a dbDEMC; PhenomiR hsa-mir-138-2 dbDEMC; PhenomiR

hsa-mir-15b dbDEMC; PhenomiR hsa-mir-142 dbDEMC; PhenomiR

hsa-mir-99b dbDEMC; PhenomiR hsa-mir-138-1 dbDEMC; PhenomiR

hsa-mir-542 dbDEMC hsa-mir-29b dbDEMC; PhenomiR

hsa-mir-98 dbDEMC; PhenomiR hsa-mir-19b-2 dbDEMC; PhenomiR

hsa-mir-92b dbDEMC hsa-mir-185 dbDEMC; PhenomiR

hsa-mir-211 dbDEMC; PhenomiR hsa-mir-32 dbDEMC; PhenomiR

hsa-mir-494 dbDEMC; PhenomiR hsa-mir-130a dbDEMC; PhenomiR

hsa-mir-150 dbDEMC; PhenomiR hsa-mir-99a dbDEMC; PhenomiR

hsa-mir-330 dbDEMC; PhenomiR hsa-mir-186 dbDEMC; PhenomiR

hsa-mir-378a dbDEMC; PhenomiR hsa-mir-153-1 PhenomiR

hsa-mir-192 dbDEMC; PhenomiR hsa-mir-451 dbDEMC; PhenomiR

hsa-mir-106a dbDEMC; PhenomiR hsa-mir-219-2 PhenomiR

hsa-mir-95 dbDEMC; PhenomiR hsa-mir-128 Unconfirmed

TABLE 2 | The top 30 predicted miRNAs associated with lung neoplasms.

miRNA(1-15) Evidence miRNA(16-30) Evidence

hsa-mir-139 dbDEMC; PhenomiR hsa-mir-708 dbDEMC

hsa-mir-92b dbDEMC; PhenomiR hsa-mir-429 dbDEMC

hsa-mir-19b-2 dbDEMC; PhenomiR hsa-mir-192-2 unconfirmed

hsa-mir-152 dbDEMC; PhenomiR hsa-mir-193b dbDEMC; PhenomiR

hsa-mir-133a-2 dbDEMC; PhenomiR hsa-mir-199a-2 dbDEMC; PhenomiR

hsa-mir-302b dbDEMC; PhenomiR hsa-mir-24-1 dbDEMC; PhenomiR

hsa-mir-378a dbDEMC; PhenomiR hsa-mir-625 dbDEMC

hsa-mir-125b-2 dbDEMC; PhenomiR hsa-mir-451a dbDEMC; PhenomiR

hsa-mir-10a dbDEMC; PhenomiR hsa-mir-451 dbDEMC; PhenomiR

hsa-mir-302c dbDEMC; PhenomiR hsa-mir-149 dbDEMC; PhenomiR

hsa-mir-130a dbDEMC; PhenomiR hsa-mir-151a dbDEMC; PhenomiR

hsa-mir-106b dbDEMC; PhenomiR hsa-mir-128 unconfirmed

hsa-mir-125b Unconfirmed hsa-mir-128-1 dbDEMC; PhenomiR

hsa-mir-296 dbDEMC; PhenomiR hsa-mir-219-2 PhenomiR

hsa-mir-345 dbDEMC; PhenomiR hsa-mir-218-1 dbDEMC; PhenomiR

applies label propagation on the similarity networks to obtain
relevant scores.

6) Path-based computational model for miRNA-disease

association prediction (PBMDA): You et al. (2017)
constructed a heterogeneous graph consisting of three
interlinked subgraphs and further adopted a depth-first search
algorithm to infer potential miRNA-disease associations.

7) Heterogeneous graph inference for miRNA-disease

association prediction (HGIMDA): Chen et al. (2016)
developed the computational model of HGIMDA to uncover
potential miRNA-disease associations by integrating miRNA
functional similarity, disease semantic similarity, Gaussian
interaction profile kernel similarity, and experimentally
verified miRNA-disease associations into a heterogeneous
graph. HGIMDA adopts an iterative process to find the
optimal solutions based on global network similarity

information, which leads to superior performance over local
network similarity-based methods.

3. RESULTS

3.1. Performance Evaluation
Considering the uniqueness and limitedness of available miRNA
and disease samples, we implemented LOOCV, LODOCV, and 5-
fold cross-validation to evaluate the performance of our method
(Jiao and Du, 2016). In each framework, we selected 5 state-
of-the-art baseline models and plotted the receiver operating
characteristic (ROC) curves of our method and the selected
methods by calculating the false-positive rate (FPR) and true-
positive rate (TPR) at varying thresholds.

LOOCV is conducted in two different ways: global and local
LOOCV. In the framework of global LOOCV, one of the known

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 August 2020 | Volume 8 | Article 901

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zhu et al. HGCNs and MC for MDA

TABLE 3 | The top 30 predicted miRNAs associated with prostate neoplasms.

miRNA(1-15) Evidence miRNA(16-30) Evidence

hsa-mir-142 dbDEMC; PhenomiR hsa-mir-196a-2 dbDEMC; PhenomiR

hsa-mir-9-3 dbDEMC; PhenomiR hsa-let-7g dbDEMC; PhenomiR

hsa-mir-9-1 dbDEMC; PhenomiR hsa-mir-10b dbDEMC; PhenomiR

hsa-let-7f-2 dbDEMC; PhenomiR hsa-mir-429 Unconfirmed

hsa-mir-451a dbDEMC hsa-mir-196a-1 dbDEMC; PhenomiR

hsa-let-7f-1 dbDEMC; PhenomiR hsa-mir-125b Unconfirmed

hsa-mir-103a-1 dbDEMC; PhenomiR hsa-mir-138-1 PhenomiR

hsa-mir-135a-2 dbDEMC; PhenomiR hsa-mir-138-2 PhenomiR

hsa-mir-29b unconfirmed hsa-mir-210 dbDEMC; PhenomiR

hsa-mir-135a-1 dbDEMC; PhenomiR hsa-mir-139 dbDEMC; PhenomiR

hsa-mir-7-1 dbDEMC; PhenomiR hsa-mir-215 dbDEMC; PhenomiR

hsa-mir-103a-2 dbDEMC; PhenomiR hsa-let-7a-2 dbDEMC; PhenomiR

hsa-mir-7-2 dbDEMC; PhenomiR hsa-mir-181b-2 dbDEMC; PhenomiR

hsa-mir-7-3 dbDEMC; PhenomiR hsa-let-7a-3 dbDEMC; PhenomiR

hsa-mir-199b dbDEMC; PhenomiR hsa-mir-218-2 dbDEMC; PhenomiR

TABLE 4 | The top 50 predicted miRNAs associated with pancreatic neoplasms.

miRNA(1-25) Evidence miRNA(25-50) Evidence

hsa-mir-133b dbDEMC; PhenomiR hsa-mir-10a dbDEMC; PhenomiR

hsa-mir-103a-2 dbDEMC; PhenomiR hsa-let-7d dbDEMC; PhenomiR

hsa-mir-296 dbDEMC; PhenomiR hsa-mir-100 dbDEMC; PhenomiR

hsa-mir-196a-1 dbDEMC; PhenomiR hsa-let-7a-1 dbDEMC; PhenomiR

hsa-mir-143 dbDEMC; PhenomiR hsa-mir-216a dbDEMC; PhenomiR

hsa-mir-132 dbDEMC; PhenomiR hsa-mir-425 dbDEMC; PhenomiR

hsa-mir-34b dbDEMC; PhenomiR hsa-mir-200b dbDEMC; PhenomiR

hsa-mir-210 dbDEMC; PhenomiR hsa-mir-224 dbDEMC; PhenomiR

hsa-mir-212 dbDEMC; PhenomiR hsa-mir-99a dbDEMC; PhenomiR

hsa-mir-26a-2 dbDEMC; PhenomiR hsa-mir-128-2 dbDEMC; PhenomiR

hsa-mir-106a dbDEMC; PhenomiR hsa-let-7f-1 dbDEMC; PhenomiR

hsa-mir-26a-1 dbDEMC; PhenomiR hsa-mir-183 dbDEMC; PhenomiR

hsa-mir-101-1 dbDEMC; PhenomiR hsa-let-7f-2 dbDEMC; PhenomiR

hsa-let-7e dbDEMC; PhenomiR hsa-mir-135b dbDEMC; PhenomiR

hsa-mir-451a dbDEMC hsa-mir-338 dbDEMC; PhenomiR

hsa-mir-25 dbDEMC; PhenomiR hsa-let-7i dbDEMC; PhenomiR

hsa-let-7b dbDEMC; PhenomiR hsa-mir-107 dbDEMC; PhenomiR

hsa-mir-200c dbDEMC; PhenomiR hsa-mir-10b dbDEMC; PhenomiR

hsa-mir-27a dbDEMC; PhenomiR hsa-mir-191 dbDEMC; PhenomiR

hsa-let-7g dbDEMC; PhenomiR hsa-mir-186 dbDEMC; PhenomiR

hsa-mir-486 dbDEMC hsa-mir-218-1 dbDEMC; PhenomiR

hsa-mir-101-2 dbDEMC; PhenomiR hsa-mir-375 dbDEMC; PhenomiR

hsa-let-7a-2 dbDEMC; PhenomiR hsa-mir-218-2 dbDEMC; PhenomiR

hsa-let-7a-3 dbDEMC; PhenomiR hsa-mir-625 dbDEMC

hsa-mir-200a dbDEMC; PhenomiR hsa-mir-95 dbDEMC; PhenomiR

miRNA-disease associations is left out in turn as a test sample,
and the other known associations are regarded as training
samples. All the unknown associations in the original RDmatrix
can be candidate samples. We ranked the predicted interaction
scores of the test sample and the candidate samples. If the
ranking of the test sample was higher than a threshold for a

given true-positive rate (TPR), it was marked as positive. In the
framework of local LOOCV, only the unknown associations of a
specific disease are ranked with the test sample.

In 5-fold cross-validation, all the known miRNA-disease
associations were randomly divided into five subsets. Each subset
was taken as test samples in turn, and the others were considered
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training samples. All unknown miRNA-disease associations were
considered candidate samples.

To further test the performance of our method in predicting
associations for diseases without any known related miRNAs, we
adopted LODOCV (Fu and Peng, 2017). In this framework, all
the knownmiRNAs associated with a given disease were regarded
as test samples.

The area under the curve (AUC) was then calculated to
evaluate the performance of our method. As a result, our method
obtained AUCs of 0.9656, 0.9532, and 0.9616 in global LOOCV,
local LOOCV, and 5-fold cross-validation, respectively, as shown
in Figure 2. The performance of our method outperformed
the baseline methods. For LODOCV, our method achieved
the highest AUC value of 0.9946, which proved that our
method could effectively predict new associations between
miRNAs and diseases. We also note that the AUC value of
LODOCV was much higher than that of LOOCV. The reason
may be that the test samples of LODOCV are from the
known miRNA-disease associations, the predicted interaction
scores of which can be higher than those of the original
unknown associations.

3.2. Case Studies
Two types of case studies were conducted to further validate the
performance of the proposed method for novel miRNA-disease
association prediction.

For the first type of case study, we applied the proposed
method to predict novel miRNA-disease associations for three
common human diseases (breast neoplasms, lung neoplasms,
and prostate neoplasms) based on the known associations
from HMDD. For a specific disease, known associations of
all diseases were regarded as training samples, and unknown
associations with this disease were regarded as candidate samples.
After training the network, we ranked the prediction score of
the candidate associations and selected the top 30 candidate
associations with this disease. The prediction results were then
verified by two databases: dbDEMC V2.0 (Yang et al., 2017)
and PhenomiR (Ruepp et al., 2010). As a result, 28 out of
the top 30 miRNAs were verified to be associated with breast
neoplasms (Table 1), 27 out of the top 30 miRNAs were
verified to be associated with lung neoplasms (Table 2), and
27 out of the top 30 miRNAs were verified to be associated
with prostate neoplasms (Table 3). The results proved that
our method can effectively predict potential miRNA-disease
associations.

In the second case study, we evaluated the ability of the
proposedmethod to predict new associations for diseases without
any known related miRNAs. We selected pancreatic neoplasms
as an example in this case study. First, we set the known
associations of pancreatic neoplasms as unknown associations,
and all miRNAs were considered candidate miRNAs. Then, we
implemented our method to obtain the prediction scores of
these candidate miRNAs associated with pancreatic neoplasms.
We found that 50 out of the top 50 miRNAs were confirmed
by at least one database from dbDEMC v2.0 and Phe-nomiR
v2.0 (Table 4). The results demonstrate that our method can be
applied to predict potential associations for disease without any
known related miRNAs.

4. DISCUSSION

In this paper, we propose a novel method to predict potential
associations between miRNAs and diseases. The method
constructs a heterogeneous network composed of the miRNA
similarity network, disease similarity network, and known
miRNA-disease association network. The miRNA similarity
depends on the miRNAs and their possible families and
clusters. The information of each node in this network is
obtained by aggregating neighborhood information through
graph convolutional networks. We compared the method with
several state-of-the-art baseline methods. Themethod performed
well in four types of cross-validations. Furthermore, two types of
case studies were implemented. The results demonstrate that our
proposed method is powerful in discovering potential disease-
related miRNAs. In addition, the method can be used to predict
the related miRNAs of diseases without any known association.

The reliable performance of the proposed method is due
mainly to the following several important factors. First, we
integrated useful datasets to construct a heterogeneous network.
Second, the method made full use of the available information
by aggregating neighborhood information derived from the
heterogeneous network. Third, the parameters of the neural
network were learned by minimizing the error of reconstructing
the whole heterogeneous network, rather than that of just the
miRNA-disease network.

However, there are still some limitations in our method.
First, the datasets we used to construct the network possibly
contain noise and outliers. Second, the heterogeneous network
we constructed was insufficient to represent the complex
relationships between miRNAs and diseases. Thus, our future
research will focus on the diverse relationships between miRNAs
and diseases.
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