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Self-optimized superconductivity attainable by
interlayer phase separation at cuprate interfaces

Takahiro Misawa,1* Yusuke Nomura,2 Silke Biermann,2 Masatoshi Imada1†
Stabilizing superconductivity at high temperatures and elucidating itsmechanismhave longbeenmajor challenges of
materials research in condensedmatter physics.Meanwhile, recent progress in nanostructuring offers unprecedented
possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature
superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures)
than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for
cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting
metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the
carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but
consistent with the astonishing independence of the critical temperature from the carrier density x observed at
the interfaces of La2CuO4 and La2−xSrxCuO4. Furthermore, we identify a self-organizationmechanism as responsible
for the pinning at the optimumamplitude: An emergent electronic structure inducedby interlayer phase separation
eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces
provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of
shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices.
INTRODUCTION

Thin films and interfaces offer unique platforms for designingmaterials
functions, beyond what is possible in the bulk. Above all, super-
conductivity at interfaces was observed even in cases where the bulk
compounds sandwiching the interface are both nonsuperconducting.
Furthermore, critical temperatures Tc in thin films that are higher than
or equal to the maximum Tc of the bulk material were observed (1, 2).
These findings suggest the superiority of interfaces for designing high-
Tc superconductivity.

We do not have a thorough understanding of cuprate high-Tc super-
conductors in the bulk, and our knowledge stemming from exper-
imental measurements has been constantly updated since the discovery
of superconductivity in the cuprates. However, the dome structure of Tc
as a function of carrier (doping) concentration is a common property
irrespective of the compounds. In particular, the optimum Tc is rea-
lized only at a specific doping concentration d around 0.15 per Cu.

In contrast, at the interface of La2CuO4 andLa2−xSrxCuO4 (schemat-
ically illustrated in Fig. 1A), for x in the range of 0.2 to 0.5, stable super-
conductivity with Tc ~ 40 K was observed, irrespective of the value of x
(2). This discovery was even more unexpected as the value of this
“pinned” Tc is very close to the maximum value for the bulk super-
conductivity in La2−xSrxCuO4, which was realized in the bulk only for
the optimum carrier doping concentration of d = x∼ 0.15. If the mech-
anism of this superiority and stability at the interface is understood, we
may gain insight not only into the unsolved mechanism of super-
conductivity but also into how to reach higher critical temperatures in
elaborately designed devices.

For the bulk superconductivity of the cuprates, noteworthy theore-
tical progress was recently made: Numerical calculations using various
tools have been able to reproduce the basic experimental character-
istics, particularly the d-wave symmetry of the gap and the dome
structure (3–11).

Using cutting-edge variational Monte Carlo simulations (10, 12) for
a stacked layer model shown in Fig. 1B (top panel), we show here that
superconductivity emerges dominantly at a single layer of the interface
between aMott insulator and an overdopedmetal and that its amplitude
is independent of the carrier density in the metallic side. The amplitude
is indeed pinned at the maximum of the dome structure in the bulk in
perfect agreement with the experiment.

Our numerical result shows that this pinning originates from the
underlying electronic phase separation in the bulk (10, 13–15), which
by itself would destroy the superconductivity in the bulk but is now re-
placed by an interlayer phase separation around the interface instead of
the phase separation within a layer (schematically shown in the bottom
panels in Fig. 1B). In general, strong coupling superconductivity with a
high critical temperature would require a strong effective attraction be-
tween electrons. However, this strong attraction works like a “double-
edged sword.” Namely, it also makes the system prone to charge in-
homogeneity that destroys superconductivity. The interface cleverly
eludes this trade-off.
RESULTS

Theoretical model
Weanalyze themultilayer single-bandHubbardmodel, which is suitable
for studying interfaces of the cuprates, defined by
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where c†isn (cisn) is the creation (annihilation) operator of an electron at
the ith site on the nth layer with spin s and nisn ¼ c†isncisn is the
corresponding number operator. For simplicity, we only consider the
nearest-neighbor pair 〈i, j〉 for the intralayer transfer t. For the interlayer
transfer, we take tz = 0.05t, and the onsite Coulomb interaction is set to
U = 8t. These are realistic values in terms of first-principles and numer-
ical estimates (10, 16, 17) compared to the experimental optical gap and
transport measurements (18, 19). Hereafter, we set the energy unit t =
1 (~0.5 eV in the cuprates). The layer-dependent onsite hole level is
represented by en. We confirmed that details of the parameter values
do not alter our results.

We perform high-accuracy many-variable variational Monte Carlo
(mVMC) calculations at temperature T = 0 for an Ns = L × L square
lattice stacked as a slab with thickness Llayer (seeMaterials andMethods
for details of the model andmethod). ThemVMCmethod is capable of
describing quantum and spatial fluctuations (10, 12), allowing for an
accurate estimate of the superconducting stability among the competing
orders.

The experimental interface illustrated in Fig. 1Ahas a transient region
caused by the interlayer diffusion and exchange between La and Sr atoms
(blue line in Fig. 1C) (2, 20). To realisticallymimic the interlayer diffusion
effect that gradually changes the onsite energy level within a few layers,
we construct a slab around the interface, with the layer-dependent onsite
level as en+1 = en −De (3≥ n≥ 1)with a constantDe (see the red line in
Fig. 1C). The 0th layer is assumed to be insulating, and the other layers
(n≥ 1) become metallic. For the 0th layer, we use e0 = e1 + 1, ensuring
the insulating nature. On the other hand, density functional theory cal-
culations for a sharp interface predict a more abrupt change in the on-
site energy level (see Fig. 1D and the Supplementary Materials for the
first-principles estimate).
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Note that the properties around the interface embedded in a suffi-
ciently thick slab with en = e4 for n ≥ 4 can be well simulated by a slab
with a total thickness of Lz = 5. This is because the transient region near
the interface is confined to the region n < 4 if the Sr concentration is
similar to that illustrated in Fig. 1C. The density at n ≥ 4 converges to
a constant corresponding to the bulk value in the overdoped metallic
side. In practical calculations, the bulk hole densities at n = 4 are con-
trolled by changing De and the total electron number in the slab.

Pinning of electron density at the interface
In Fig. 2A, we plot the layer dependence of the hole density dn defined
by dn = 1 − Nn/(L × L), where Nn is the average electron number in the
nth layer (seeMaterials andMethods for the method used to determine
the charge profile). The bulk hole density, dbulk = d4, monotonically in-
creases with increasing De. Experimentally, this corresponds to x in the
metallic side of the interface. Even if dbulk changes substantially, at the
interface, d1 is pinned.

To understand this counterintuitive pinning, we show the calcula-
tion for the m-d relation of a single layer in Fig. 2B, where m is the chem-
ical potential (10). We essentially find the same m-d relation for the
uniform bulk (m = mbulk, d = dbulk) consisting of stacked layers with
the same single-particle level coupled by the small interlayer transfer
tz = 0.05t. Nonmonotonic d dependence of m leads to a thermodynamic
instability with the phase separation for 0 < d = dbulk ≲ dPS ∼ 0.20 (see
also “Method to determine charge profile” in Materials and Methods).
The e4-d4 relation traces the m-d relation by mapping e4↔ 4Dem and
d4 ↔ d (green curve in Fig. 2A). Remarkably, the mn-dn and en-dn rela-
tions at all the nth layers trace the same relation.

This indicates that each layer is well represented by the single-layer
model, and the effect of tz (= 0.05t) is small, as for the m-d relation. The
Fig. 1. Experimental setup and present theoretical model of the cuprate interface. (A) Schematic experimental setup of the cuprate interface (2).
(B) Top: Illustration of the interface model for cuprates. The dotted line denotes the interface between the metallic and the insulating layer. The color
schematically illustrates the change in the carrier concentration obtained in the present work. Bottom: Two hypothetical bulk or single-layer phases with
charge inhomogeneity within a layer. (C) Layer dependence of onsite energy level chosen to model the interface (red line). In the metallic phase, the onsite
energy level is assumed to change linearly. This is an approximation that takes into account the effect of interlayer atomic diffusion [blue curve; taken from the
study of Logvenov et al. (20)] combinedwith effects from theMadelung potential and the spatial extension of theWannier orbital at the interface. (D) Onsite
level of a sharp interface modeled by means of an ab initio calculation for x = 0.4.
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main role of tz is to distribute the holes across the layers, where
neighboring layers simply work as carrier reservoirs. A doping concen-
tration that would lie in the region 0 < d < dPS is prohibited at any layer.
Consequently, the first layer that would lie in the phase separation
region is in reality pinned at the border dPS as in Fig. 2C. The
consequences of the pinning of d1 at dPS are further discussed later.

Pinned superconducting order at the interface
To investigate the superconducting properties, we calculate the layer-
dependent equal-time superconducting correlations of dx2�y2 -wave
symmetry, defined as

Pn;d rð Þ ¼ 1
2Ns

∑
ri

〈D†
n;dðriÞDn;dðri þ rÞ〉þ 〈Dn;dðriÞD†

n;dðri þ rÞ〉
��

Dn;d rið Þ ¼ 1ffiffiffi
2

p ∑
j
fd rj � ri
� �

ci↑ncj↓n � ci↓ncj↑n
� �

fdðrÞ ¼ dry ;0ðdrx ;1 þ drx ;�1Þ � drx ;0ðdry ;1 þ dry ;�1Þ ð2Þ
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where Dn,d denotes thedx2�y2-wave superconducting order parameter at
the nth layer, fd(r) is the form factor that describes the dx2�y2 -wave
symmetry, and di,j denotes the Kronecker’s delta, with r = (rx,ry) being
the two-dimensional lattice coordinate scaled by the lattice constants of
the square lattice.

In Fig. 3A, we plot Pn,d(r) for n = 1 at De = 0.2 (blue squares). The
superconducting correlation becomes a nonzero constant at the long-
ranged part (essentially for r ¼ jrj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rx2 þ ry2
p

≥ 3) at the interface
layer (n = 1), implying long-ranged order. Here, Pn,d(r) is similar to the
value for the uniform bulk system with a hole density similar to that at
the interface.Pn,d(r) for the bulk system (red circles) is calculated for uni-
formly stacked layers that have the same single-particle level for all the
layers (see Materials and Methods).

In Fig. 3B, we plot the dbulk (metallic bulk density) dependence of the
superconducting correlations in the long-range limit, which is, in prac-
tice, calculated from

�Pn;d ¼ 1
M

∑
2<r¼∣r∣<

ffiffi
2

p
L
Pn;d rð Þ ð3Þ

for sufficiently large L, where M is the number of vectors satisfying
2 < r <

ffiffiffi
2

p
L.

In previous work (10), this quantity was shown to allow for a prac-
tical estimate of the long-range order, and Fig. 3A also supports this
Fig. 2. Layer dependence of doping concentration around the inter-
face. (A) Layer and level-slope dependence of carrier density (filled circles
and blue surface). At the fourth layer, the green curve is taken from the mbulk-
dbulk relation, and the two horizontal gray sheets show the phase separation
boundaries determined in (B). Note that mbulk = m4 ~ e4 − 2.4 is satisfied, in-
dicating that the grand canonical ensemble is realized for n = 4. The phase
separation region in the bulk is also evaded around the interface in any layer
n. In contrast, the noninteracting case with the same d4 plotted for De = 0.1
(red line) enters the present phase separation region. (B) Relation between
theholedensitydbulk=d andthechemicalpotentialmbulk=m in theuniformbulk
system calculated within the canonical ensemble for a single layer representa-
tive of the bulk (10). The Maxwell construction (dashed line) determines the
phase separation as the gray region between dbulk ~ 0.2 and 0. (C) Hole density
at interfaces d1 shows pinning against bulk hole density dbulk.
Fig. 3. Superconducting correlations and amplitudes. (A) Spatial
dependence of d-wave superconducting correlations at the interface (n = 1)
for De = 0.2 and dbulk ~ 0.32 (blue squares) comparedwith that of the uniform
bulk for a hole density similar to that at the interface (~0.20). The red circles
are obtained for the bulk (stacked layers) with uniform chemical potential.
The saturation at long distances r indicates long-range order. The data sets are
for the linear size in the plane direction, L = 14, for which we confirmed con-
vergence to the thermodynamic limit. (B) Bulk hole density dependence of
squared superconducting amplitude at the interface (n = 1) defined by �P1;d .
�P1;d hardly depends on the bulk hole densities. (C) Layer dependence of �Pn;d.
This function is strongly peaked at the interface n = 1.
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criterion. Note that �Pn;d converges to the square of the order parameter
(superconducting amplitude) 〈D†

n;dðrÞ〉 in the thermodynamic limit.We
find in Fig. 3B that the squared superconducting order parameter is
pinned irrespective of the bulk hole densities, in accordance with the
pinned dPS≃ 0.20 at the interface. Note that the pinned superconducting
amplitude is equal to the maximum value achievable in the stable uni-
form bulk as we discuss below. This pinning at themaximum is a central
result of the present report. Thepinned superconducting order parameter
is consistent with the anomalous pinning of Tc independent of dbulk ob-
served at the interfaces (2). It is natural that the same order parameter at
T = 0 yields the same Tc.

A question arises on how robust the results are when the atomic
interlayer diffusion is absent, where the density functional calculation in-
dicates that the onsite level varies relatively suddenly at the interface (Fig.
1C). We show in the Supplementary Materials that the pinning still exists.

DISCUSSION

Relation between intralayer and interlayer
phase separations
In the bulk system, the phase separation and enhancement of charge
susceptibility near the Mott insulator were first theoretically pointed
out (21–23) and have long been debated (24–33) in experiments and
theories. Even in the simple Hubbard model on the square lattice, the
exact solution is not available in terms of the existence of the phase sep-
aration and superconductivity [see the study ofMisawa and Imada (10)
for detailed comparisons of the occasionally controversial theoretical
results and their accuracies]. Above all, many accurate numerical results
have indicated the existence of an extended region of phase separation
region for largeU/t. Furthermore, itwas shown that the superconducting
correlation exhibits its maximum inside the phase separation region, if
we allow for metastable states (10). However, as a thermodynamically
stable state, themaximumemerges at the phase separationborder d= dPS.
The region 0< d < dPS is subtle:Here, the long-rangedCoulomb repulsion
ignored in the Hubbard model would lead to a diverging electrostatic
energy, if the macroscopic phase separation occurs, which is prohibited
in reality. Consequently, the true ground state is replaced by mesoscale
inhomogeneous states or long-period charge order, thus compromising
the long-ranged Coulomb force as was previously observed (34). Even
for theHubbardmodel in the absence of long-range interactions, stripe-
type charge ordering is nearly degenerate with the phase-separated state
(10, 28, 29, 35). These inhomogeneities introduce pair breaking and sup-
press superconductivity, allowing for the maximum superconducting
order only at thepinpoint of d∼ dPS. Evenwhen the stripe (chargedensity
wave) is perfectly ordered and clean, this suppression occurs where the
superconductivity at the optimumcarrier concentration is connected by
the Josephson tunneling through the nonoptimized density region,which
has a similarity to continuous superconductor-insulator transition caused
by randomness (36–38).

In contrast, around the interface, our result indicates that the charge
inhomogeneity is circumvented by transferring holes between the
neighboring metallic layers and the interface to avoid the energy cost
due to the intralayer charge inhomogeneity. This transfer violates the
charge neutrality of each layer, but the electrostatic energy remains small,
because it corresponds to the formation of a capacitor, where the electric
field is confined only within the capacitor. This is a remarkable way of
eluding the harmful electronic inhomogeneity that is unavoidable in the
bulk. At the interface, the inhomogeneity is dissolved into an imbalanced
Misawa et al. Sci. Adv. 2016; 2 : e1600664 29 July 2016
density between the neighboring layers, pinned at both ends of the phase
separation region, d= dPS and0. The stable hole density at the interface at
dPS ensures the maximum superconducting amplitude ever realized in
the bulk, consistently with the pinned Tc ~ 40 K (2).

We further discuss our intuitive interpretation of why the interlayer
phase separation is more stable than a state with intralayer charge in-
homogeneities. Although the divergence of the electrostatic energy is
avoided even by the introduction of mesoscale inhomogeneities within a
layer, the formation of stripes or puddles costs a boundary energy propor-
tional to the length of the domain wall within the layer. From the energy
Fig. 4. Relation between chemical potential and hole concentration.
(A) Chemical potentials m4 (determined from Eq. 6) as a function of the hole
density d4 at the fourth layer for several choices of De are plotted as curves
with symbols. Here, dn is defined as dn ¼ 1� �Nn=ðL� LÞ. For a choice of De,
m4 curves are drawn by changing the total electron number in the whole
slab. We assume that m4 converges to the bulk chemical potential mbulk
(green curve), which was calculated in the study of Misawa and Imada
(10). Therefore, the realistic bulk hole density dbulk is determined from the
crossing point between the bulk chemical potential mbulk given by the green
curve and m4 for each choice of De. Cases with different dbulk are obtained
from different De. The nonmonotonic behavior of the green curve signals
the existence of a phase separation region. AMaxwell construction (horizontal
dashed line) allows us to determine the coexistence region as 0 < d < dPS ∼ 0.2
(gray area). (B) Chemical potentials mn (determined from Eq. 6) as a function of
the hole density dn for n = 1 to 4 for several choices of De are plotted as
symbols. It follows thebulkbehavior shownby thegreencurve, indicating that
each layer behaves as a single layer (or uniform bulk) in the m-d relation with
negligible effects from tz. (C) Chemical potential differencemn−mPS plottedas a
function of the onsite-level difference en − ePS. The straight bold line shows
that the chemical potential at each layer shifts in accordance with the shift of
the onsite level, again indicating that the effects of tz is negligible and each
layer behaves as the grand canonical ensemble with the hole onsite level en.
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cost due to the domain-wall formation, ED, there are two contributions—
ED1 and ED2—that will be crucially different between the intralayer and
interlayer domain-wall formations.

Because it is in the phase separation region, the energy as a function
of doping concentration has a double-well structure, whose twominima
are realized at the two phase-separated densities. Forming a domain
wall within a layer costs energy ED1 because in the transient region at
the domain wall, the charge density crosses through the maximum in
the center of this double-well structure. On the other hand, if the domain
wall is located between two layers, this energy cost can be largely avoided,
because the charge density can jump from low to high values, owing to
the small tz and the presence of the intermediate LaO layers.

The other energy cost,ED2, is that arising from the spatial dependence
of the charge density. Because the Coulomb contribution that arises from
the long-ranged part to this spatial dependence is material- and model-
dependent, we do not discuss it in detail. A crucial difference between the
interlayer and intralayer phase separations for the spatial-dependent part
of the energies arises from the kinetic energy: The kinetic energy is clearly
lost in the presence of the domainwall because of the carrier confinement
in the carrier-rich region. The kinetic energy is dominated by the intra-
layer hopping contribution; therefore, the domain wall within the layer
costs more kinetic energy than the interlayer domain wall.

Our finding offers possible ways for enhancing and stabilizing the
superconducting amplitude bymakinguse of the translational symmetry
breaking in the interlayer direction. Controlling the carrier density to
reach the end point of the phase separation in the bulk is the best way
to optimize superconductivity in the uniform bulk. However, it requires
careful tuning. At the interface, the situation is much more robust, be-
cause the optimal value is automatically reached in a self-organizedmanner.
One can therefore expect easier routes for materials preparation than
the careful tuning needed in the bulk.

Furthermore, elucidating the pinning mechanism provides guide-
lines for the design of materials and devices with enhanced super-
conductivity: A likely strategy is to attempt interface engineering; an
example is to keep the carrier density even in themetastable region inside
the phase separation region. Here, the superconducting amplitude would
be even larger than that at the end point of the phase separation region.

A related future issue is themechanism inmultilayer superconductors
(39, 40). The charge inhomogeneity and the resultant suppression of the
superconductivity can be avoided by the external breaking of the transla-
tional symmetry as in the case of the interface and themultilayer systems.
Because both the iron-based and cuprate superconductors are on the
verge of phase separation (10, 14), this strategymay universally apply
to materials where high-temperature superconductivity is driven by
electron correlation effects.
MATERIALS AND METHODS

Numerical methods
To analyze the multilayer Hubbard model in the ground state, we used
the mVMC method. Here, we briefly summarize this method. Details
can be found in the study of Tahara and Imada (12). The variational
wave function for the ground state is defined as

∣y〉 ¼ PGPJLS∣fpair〉 ð4Þ
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where PG and PJ are the Gutzwiller (41) and Jastrow (42, 43) factors,
respectively (10, 12). These correlation factors are defined as

PG ¼ exp
�
�∑

i;n
gnni↑nni↓n

�

PJ ¼ exp � 1
2
∑

i;j;n;m
vijnmninnjm

� �

where gn and vijnm are variational parameters. These factors express
many-body correlations beyond the mean-field starting point. To re-
store the symmetry of the Hamiltonian, we used the quantum number
projection method (44). Here, we used the total spin quantum number
projection operator LS , which restores SU(2) spin symmetry with the
total spin S, where S = 0. The one-body part |fpair〉 is the generalized
pairing wave function defined as

∣fpair〉 ¼ ∑
i;j;n;m

fijnmc
†
i↑nc

†
j↓m

� 	N
2

∣0〉 ð5Þ

where fijnm denotes the variational parameters andN represents the total
number of electrons. Here, we allowed fijnm to have a 2 × 2 sublattice
structure for each layer (2 × 2 × Llayer sites exist in the unit cell). We
note that the variational wave function |y〉 defined in Eq. 4 can flexibly
describe different phases, such as the antiferromagnetic, superconduct-
ing, and correlated paramagnetic phases. This flexibility is necessary to
analyze the multilayer model where the competitions and/or the co-
existence of different phases appears. Although the number of variation-
al parameters becomes large to allow flexibility (in this calculation, the
number of variational parameters is more than 104), we simultaneously
optimized all the variational parameters by using the stochastic re-
configuration method (39, 45).

In the actual calculations, we took anL×L×Llayer lattice (whereL=10
and Llayer = 5) with antiperiodic-periodic boundary conditions in each
layer and with open boundary conditions at the two end layers in the di-
rection perpendicular to the layers. The system size was sufficiently large
even when one wishes to examine the long-range order of the super-
conductivity: We confirmed the saturation of the superconducting corre-
lation at long distances when the superconductivity emerged. The
obtained superconducting correlations at each layer were close to those
obtained for the uniform bulk simulation for the same hole density with
that layer. The superconducting correlation of the uniform bulk does not
appreciably depend on the thickness of the uniformly stacked layers if the
thickness exceeds three layers, although it is slightly smaller than the
single-layer result. The small difference originates from the small inter-
layer hopping tz.

Method to determine charge profile
We define the chemical potential of each layer after taking into account
many-body effects as

mnð�NnÞ ¼ ½EnðNÞ � EnðN′ Þ�=�NnðNÞ � NnðN′Þ� ð6Þ

NnðNÞ ¼ ∑
i;s



c†isncisn

�
ð7Þ
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EnðNÞ ¼ �t ∑
〈i;j〉;s



c†isncjsn þ h:c:

�þ U∑
i



ni↑nni↓n

� ð8Þ

where �Nn ¼
�
NnðNÞ þ NnðN′Þ�=2 and EnðNÞ (NnðNÞ) denotes

the total energy (electron number) at the nth layer, when the total elec-
tron number of themultilayer slab isN. Here, we ignored the negligible
contribution from the interlayer kinetic energy as we remark later.N′
should be close toN to approximate the derivative by the difference in
Eq. 6. In the definition of EnðNÞ, the site indices i and j run over the sites
contained within the nth layer.

For several choices of De, we show dn (hole density at the nth
layer) dependence of mn in Fig. 4A for n = 4, which was obtained by
changing the total electron number in the canonical ensemble of the
slab. Here, the hole density and the chemical potential in the bulk layer
at n = 4, d4 and m4, respectively, have to satisfy the relation between the
bulk hole density (dbulk) and the bulk chemical potential (mbulk)
calculated independently in the uniform bulk system. For the latter,
we used the result of the single layer (10) because of the periodicity of
the bulk and the negligible contribution of tz. We separately confirmed
that uniformly stacked layers (slab) coupled by tz=0.05tdid not provide
a difference in d dependence of m regardless of the layer thickness of the
slab. The m-d relation is shown as the green solid curve without symbols
in Fig. 4A. This posed a constraint wherein the total electron number in
the canonical ensemble of the slab was uniquely determined when we
fixed∆e. Namely, the point where the doping dependence of m4 crosses
with the chemical potential of the bulk (mbulk) represents the true bulk
hole density for a givenDe. For instance, forDe =0.2,m4 crosseswith the
mbulk around d4∼ 0.32. We then used d4∼ 0.32 as the bulk hole density
dbulk for De = 0.2. The results shown in the main text were obtained
from the calculations that satisfy this constraint. Figure 4 (B and C)
shows that the relation between the chemical potential m and the hole
density d in each layer follows the relation for the uniform bulk,
confirming that the interlayer transfer does not change this relation.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/7/e1600664/DC1
Text (sections A and B)
fig. S1. First-principles estimate of electronic structure around a sharp interface.
fig. S2. Chemical potential in bulk metal and saturated superconducting correlation at the
interface as functions of bulk hole concentration in the case of a sharp interface.
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