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Abstract

We present a computational model of workflow in the hospital during a pandemic. The

objective is to assist management in anticipating the load of each care unit, such as the ICU,

or ordering supplies, such as personal protective equipment, but also to retrieve key param-

eters that measure the performance of the health system facing a new crisis. The model

was fitted with good accuracy to France’s data set that gives information on hospitalized

patients and is provided online by the French government. The goal of this work is both prac-

tical in offering hospital management a tool to deal with the present crisis of COVID-19 and

offering a conceptual illustration of the benefit of computational science during a pandemic.

Introduction

During a pandemic, such as the one of the coronavirus disease 2019 COVID-19, management

of patient flow and hospital resources are pushed to their limits: Hospital Emergency Treat-

ment Facilities through intermediate care unit (IMU) and intensive care unit (ICU) are or are

going to be be severely strained. Healthcare professionals are often times forced to make diffi-

cult decisions in patient care and resource allocation. Patient profiles might be out of the ordi-

nary routine of the hospital and workflow must be different. End-to-end on demand visibility

with identification of real constraints is needed for the senior management.

A manager may have simple but essential questions such as: how many beds do I need on

the floor, how many beds are available in the critical care unit, how much supplies should be

ordered to take care of our patients and protect our staff from infection, how long will the facil-

ity have to work at maximum capacity, is there enough staff to hold this workload long

enough, are we doing well with patient outcomes, etc.

Multiple governmental and private agencies have focused on creating dashboards for easy

access and understanding of global pandemic data. These applications are great to give the

general assessment of the pandemic but do not allow a projection of detailed information at

the local hospital scale that is necessary to optimize the management of patient workflow.

There is a significant amount of literature about mathematical models in epidemiology that

provide a rigorous framework to make predictions on the number of people who are going to

be symptomatic enough to require hospitalization. This approach has been quickly applied to
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COVID-19 with success [1, 2]. In the case of the COVID-19 pandemic, it is particularly diffi-

cult because large bodies of infected people are asymptomatic. Consequently, the basic repro-

duction number R0 factor of COVID-19 is still under active debate.

On the hospital workflow side, while there is a large amount of work on this topic [3], one

of the difficulties is to asses the death rate of patients hospitalized at the beginning of the pan-

demic because the Length of stay (LOS) is rather long and the disease is still not well under-

stood [4–6]. Every hospital has to adapt to the new crisis as it arrives, so clinical practice may

vary greatly from one institution to another. A number of guidelines and great reports have

been quickly edited to support the heath community, but it takes time to standardize the

healthcare process [7–10].

Our goal in the paper was to come up with a simple and robust mathematical framework

that is easy to use and that supports the management of the patient workflow during a pan-

demic. Such a model should operate on a relatively limited data set that reports daily on the

number of patients admitted for hospitalization, patient output of the facility (such as number

of patients healed per day or number of deaths per day), and at minimum the number of

patients staying in the most critical unit of the facility—the ICU. The model can then be cus-

tomized to the local hospital system with an optimization technique to achieve calibration

after a few weeks of data acquisition. Much more can be done with the patient electronic rec-

ords that detail patient comorbidities and chronic conditions, provided that the disease of the

pandemic is well understood.

We have used a Markov process description of the workflow’s graph with probability gov-

erning the patient transition from one care unit to another, as well as a simple statistical model

of patient LOS at each stage. We will show that with a minimum number of parameters used

to fit on the time series listed above for a period of a few weeks, one may start to assemble the

information needed to assist the senior management in getting answers and identifying real

constraints to reduce speculation or misallocation of resources.

This work is our first iteration to achieve a very ambitious goal: as data becomes available,

the quality and level of detail of modeling should keep improving to achieve better results. It is

our hope that such an effort, among many others, will once again prove how much digital

health can benefit from computational science to improve patient care.

The paper is organized as follows: Section 2 describes our method to construct the model

and details the choices we made to work with the data set on hand; Section 3 gives the main

results and solution to our initial goal in supporting management; Section 4 discusses the ben-

efit and limitation of our method and concludes with further potential development.

Materials and methods

Because of the sparsity of data available to construct a predictive model during a pandemic cri-

sis, we are going to use a very simple model that reproduces the workflow of Table 1. Let’s start

with a brief description of standard patient workflow—see Fig 1—with respect to disease pro-

gression—see Fig 2.

The patient moves from one care unit to another according to his/her condition. The first

two steps are registration and diagnostics, which in principle should be a relatively quick pro-

cess. For the patients who stay in the hospital because their health condition justifies a longer

stay, they are first put in a ward unit for further assessment and treatment. This step is where a

number of medical imaging steps start involving either a chest CT scan in the imaging center

or a chest X-ray with a mobile unit. Meanwhile, significant biological lab work starts to grade

the patient’s condition more precisely and continues during the patient’s stay. These resources,

i.e. imaging and lab work, are typically shared by all patients in the hospital and therefore may
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slow down the process. For simplicity and in the absence of adequate data set for validation,

we neglect these constraints. Some of the patients who receive medical attention do well with

conservative management only and can be discharged home after a few days. But for others,

their health condition may deteriorate and those patients will need to be moved to the IMU

for higher level of care and/or to transfer to the ICU for ongoing monitoring and mechanical

ventilation. The IMU and ICU require extensive supplies and resources. It is often mentioned

that the number of available ventilators is critical to ICU functions. However, it is not the only

limiting factor: patients under mechanical ventilation need sedation and might be connected

to a number of additional systems to deal with organ failures. Once again for simplicity and

because of the lack of input data, our model will not take into account these bottlenecks. There

Table 1. Probability of transition for the patient in reference to the workflow of Fig 1.

Work Flow Transition Probability

α1 = ER! Home 0.3

α2 = Floor! IMU 0.55

α3 = Floor! Recovery 0.33

α4 = Floor! ICU 0.12

α5 = IMU! Palliative 0.10

α6 = IMU! ICU 0.45

α7 = IMU! Recovery 0.45

α8 = ICU Phase 1! Death 0.22

α9 = ICU Phase 1! ICU Phase 2 0.78

α10 = ICU Phase 2! Palliative 0.39

α11 = ICU Phase 2! Recovery 0.61

α12 = Palliative! Home 0.0

α13 = Palliative! Death 1.0

https://doi.org/10.1371/journal.pone.0242183.t001

Fig 1. Workflow used in the model to follow patient progression in the hospital.

https://doi.org/10.1371/journal.pone.0242183.g001
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are no technical difficulties required to add those constraints in the mathematical model with

our bottom up description of the workflow as in [13, 14]. Additional steps can be recovery for

patient being well or unfortunately palliative care when the patient is not responsive to treat-

ment. There are many exceptions and singularities to these standard paths: for example, a

patient may go directly from admission to the ICU when their condition is too unstable. In

some hospitals, the floor might be shared by patients who are recovering from COVID-19 and

palliative care patients. Despite this, we will separate these functional units in our model to

clarify the workflow process according to what each patient stage requires in terms of

resources and time to deliver adequate care. To summarize, a simple workflow graph is created

and the main requirement is to know (i) the probability that a patient goes from one care unit

to another and (ii) a statistical estimate of how long the patient should stay in each care unit

before moving on.

Our model follows a Markov process for (i): there is a probability associated with each

branch of the graph summarized in Table 1. With respect to (ii), we use a lognormal distribu-

tion that can be reconstructed from the parameters listed in Tables 2 and 3. This simple frame-

work allows us to construct a generic model that dynamically computes the number of

patients for each care unit as a function of the number of patients showing up in the ER. In

particular, we get a time series of the number of patients staying in the ICU, which is the most

Fig 2. Disease progression—see references [11, 12].

https://doi.org/10.1371/journal.pone.0242183.g002

Table 2. Time window for the patient stay at each stage in reference to the workflow of Fig 1.

Hospital Unit Floor IMU ICU Phase 1 ICU Phase2

Time Interval [P, Q] 2 to 5 days 3 to 6 days 2 to 3 days 6 to 12 days

Median of the Statistical Distribution 3.3 day 4.3 2.4 8.8

https://doi.org/10.1371/journal.pone.0242183.t002

Table 3. Time window for the patient stay at each stage in reference to the workflow of Fig 1.

Hospital Unit Registration Diagnostic Recovery Palliative Discharge

Time Interval [P, Q] 15 to 50mn 3 to 9h 1.5 to 4 days 0.5 to 2.5 days 30mn to 3h

Median of Statistical Distribution 35mn 5.6h 2.5 day 1.5 day 1.5h

https://doi.org/10.1371/journal.pone.0242183.t003

PLOS ONE A model of workflow in the hospital during a pandemic to assist management

PLOS ONE | https://doi.org/10.1371/journal.pone.0242183 November 30, 2020 4 / 18

https://doi.org/10.1371/journal.pone.0242183.g002
https://doi.org/10.1371/journal.pone.0242183.t002
https://doi.org/10.1371/journal.pone.0242183.t003
https://doi.org/10.1371/journal.pone.0242183


critical care unit in term of resource allocation, as well as the number of patient outputs, such

as the number of patient healed and discharged per day, or the number of death(s). These time

series can be fitted to existing data the hospital obtains during a period of a few weeks prior to

retrieving the performance parameters of Table 1. Once the model is calibrated, it can be used

to extrapolate the load of each care unit in the next few days and anticipate the need of staff

and supplies—see Table 4.

This discrete model is stochastic, so one needs to run many simulations to build a statistical

estimate of such quantities. It is appropriate to retrieve the unknown parameters of the model

using a form of stochastic optimization method, such as genetic algorithm, since the model

workflow process, like the one in the hospital, is discrete, noisy, and nonlinear.

Let us describe the data set we are using to construct our model. The French government

has kindly decided to release the records of most public hospitals around the country during

the COVID19 crisis. From this excel file, we can easily recover the number of patients staying

in hospitals, the number of patients in ICU, the number of patients healed and discharged, and

the number of patients dying in a medical institution. Those numbers are updated daily and

go back to March 18, 2020 [15]. We will extensively use this French Data Set (FDS) to identify

the missing parameters of our model.

The number of parameters of our model is relatively large: about one parameter for each

branch of the graph minus the number of nodes for (i) and two parameters for the log distribu-

tion of (ii) in each care unit. To avoid over-fitting, one should come up with a strategy that

lowers the number of unknown based either on literature or hypothesis that can be validated

otherwise. We are going to describe thereafter the rationale for our choices to the best of our

knowledge and further discuss some of the limitations of our model in Section 4.

First of all, a lognormal distribution of the duration of each step of the process might be jus-

tified as follows. Biological process, such as incubation and recovery, are often described as

such [16, 17]. First, the patient’s condition is indeed dominated by his/her biological time. Sec-

ond, medical procedures with their associated time lag and delay are also often best described

as lognormal processes [13, 18] with a long tail. This is not in contradiction with the fact that

patient LOS in the hospital may not ideally be described by a simple exponential distribution

or similar. Overall, LOS adds up the time distribution of each step in a Markov process and

might be described at the convolution of the probability distribution of each step [19].

Now let’s review the parameters of Table 1 that gives the probability transition from one

unit to another, in order to rationalize the construction of our generic model. One can first list

the following constraints assuming that all possible paths are exhaustively listed in the work-

flow of Fig 1, so we have:

a2 þ a3 þ a4 ¼ 1; a5 þ a6 þ a7 ¼ 1; a8 þ a9 ¼ 1; a10 þ a11 ¼ 1; a12 þ a13 ¼ 1: ð1Þ

Overall, the death rate and recovery rate of patients who are staying in the hospital should

be within an acceptable limit. Technically, the death rate of hospitalized patients is:

bd ¼ a2a6a8 þ a2a6a9a10 þ a2a5 þ a4a8 þ a4a9a10:

Table 4. Number of staff required at each care unit per beds in reference to the workflow of Fig 1.

Floor IMU ICU Recovery Palliative

Nurse 5 beds 2 beds 2 beds 4 beds 3 beds

MD 10 beds 10 beds 6 beds 10 beds 10 beds

https://doi.org/10.1371/journal.pone.0242183.t004
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Similarly, the recovery rate of hospitalized patients βh = 1 − βd is:

bh ¼ a3 þ a2a6a9a11 þ a2a7 þ a4a9a11

βd is difficult to asses with a pandemic that just started. As a matter of fact, most infected

patients are still in the hospital and their outcome may not be clear. We look thereafter for

some lower and upper bounds of βd that limits our search.

According to the Intensive Care National Audit &amp; Research Center (ICNARC) report

of March 27, 2020 [20], we may conclude that a lower bound to overall death of patients admit-

ted into ICU units is about 10%—as a matter of fact most patients were still in the hospital at

this early stage. On the other hand, and based on a very small case series in the Seattle region

[21], the death rate was up to 50%, but in this study most patients had chronic medical condi-

tions. These two publications illustrate the difficulty of recovering the true rate of death for

today’s large population whom have been hospitalized, mostly due to the heterogeneity of the

population they encompass.

In France, as of April 17, 2020, the number of deaths in hospitals was 11,842 patients and

recovered was 35,983 patients [15]. Assuming that the proportion of death versus recovery will

be about the same for the patients who are still ill, the death rate of hospitalized patients should

be around 25%. Finally, according to [6], an early estimate of the death rate for hospitalized

patients in Wuhan, China based on a case series of 191 patients was 54/191 = 28%.

We restrict ourselves to the model matching the FDS to a [10%, 40%] death rate interval,

that is:

0:1 � bd ¼ a2a6a8 þ a2a6a9a10 þ a2a5 þ a4a8 þ a4a9a10 � 0:4: ð2Þ

According to several reports including the ICNARC one mentioned above, it is expected

that the number of patients dying in ICU is about 50%. [22] provides much further details on

the probability of survival of patients with ARDS under mechanical ventilator as a function of

the day of the start. It shows that about 25% of the patients in ICU die during the first few days

from severe complications. We will introduce an artificial two phases ICU decomposition of

the patient stay in the ICU to bypass the limitation of a single lognormal distribution that may

not represent an adequate model of LOS in this unit according to [22] clinical studies: a short

phase one with mortality driven by α8 and a longer phase 2 with mortality driven by α10.

Consequently, we will assume that:

a8 2 ð0:1; 0:3Þ; and a10 2 ð0:4; 0:6Þ: ð3Þ

There are also few parameters in Table 1 that should have near to no limited effect on statis-

tics when matching our model to FDS. FDS is based on hospitalized patients, so α1 cannot be

recovered from this data set. According to FDS, about 30% of patients who show up at the

emergency room (ER) are returning home [15]. We will choose α1 = 0.3.

According to Dr. M. Mueller [23], 25% of the patients who are not responsive to treatment

may leave palliative care alive and are discharged home. This may vary depending on each

country or hospital policy. Because patients with COVID-19 in palliative care are still very con-

tagious, we will assume they stay in the hospital until the end. We will choose α12 = 0., for all

our calculations.

To sum up, our model essentially needs the calibration of 6 parameters, namely

~A ¼ ða2; a3; a5; a6; a8; a10Þ

under the set of constraints (1), (2), (3).
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Let us denote Fadmission(jd) the number of patients admitted per day jd 2 1..N in the hospital

who have a positive diagnosis and must stay in the hospital. We will use this time series as an

input to our model simulation in order to calibrate the model against the FDS.

Let us denote ðFICU
s ðjdÞ; F

healing
s ðjdÞ; Fdeath

s ðjdÞÞ the time series of patients in the ICU, patients

healed and discharged home, and patients who died per day jd 2 1..N obtained from the simu-

lation output. We will denote respectively ðFICU
fds ðjdÞ; F

healing
fds ðjdÞ; Fdeath

fds ðjdÞÞ the times series

extracted from the FDS.

We find ~A as the solution of the minimization problem of the weighted norm:

min~Aðg1jjF
ICU
s � FICU

fds jj þ g2jjF
healing
s � Fhealing

fds jj þ g3jjF
death
s � Fdeath

fds jjÞ ð4Þ

where F s is the mean of a large number of runs of the model. This number of runs is set large

enough to let the solution of the optimization problem be independent of it. As mentioned

above, we will use a genetic algorithm to solve that minimization problem. The weight factor

(γ1, γ2, γ3) in (4) can be set equal or unequal to favor the quality of the fitting for one of the var-

iables, such as the number of patients in the ICU that is critical to management.

Tables 2 and 3 give the time window we used for each transient stage. We construct a log-

normal distribution of duration for the patient stay in such a way that about 90% of the

patients’ stay will be within a coarse approximation [P, Q] listed in these tables. The choice of

the parameters in Tables 2 and 3 might be easier to come up with.

One of the most remarkable features is that patients with COVID-19 who stay in the ICU

can be longer than usual [21]. The LOS in palliative care was set according to Dr. M. Mueller’s

data [23]. We have used extensively [4, 6], as well as the feedback from clinicians in the field to

estimate the interval of variation for the parameters [P, Q] the best we could. We used a fairly

large interval since it can be observed that the standard deviation for LOS in each care unit is

large as described in this report from the Imperial College London COVID-19 Response Team

[24]. One may fine tune the interval value [P, Q] if needed in the fitting process of the model to

the data set of time series available.

To distinguish those unknown parameters that are important from those who are less sig-

nificant, we run linear sensitivity analysis for each of our results. This method is used to con-

firm that the time window parameters of Tables 2 and 3 have a secondary effect on the quality

of the model fitting.

Finally, we derive from our model some predictions on staffing and supplies for the next

week or so, as well as the load foreseen for each care unit. The nature of the stochastic simula-

tion automatically gives an uncertainty estimate on these predictions that increases as time

grows. To compute supplies such as personal protection kits, we can use some adaptation of

the reference of the CDC web site [25] that was constructed for Ebola. Our software can then

be used to feed the stock management scheme implemented by CDC for COVID-19 [26]. In

this paper, we use a growth estimate of two personal protective equipment (PPE) per shift and

per staff member for simplicity.

Similarly, we have listed in Table 4 a gross approximation of the number of nurses and staff

per bed site in each unit. Those figures are depending on the crisis situation and might differ

depending on the country [8].

In order to take into account the fact that staff and supplies are limited and require hard

management choices during a pandemic crisis, we tested the model further against the sce-

nario of a shortage on nurses who are essential in intensive care units. To introduce a risk fac-

tor due to the shortage of nurses, we have extrapolated from [27] and [11], a scenario where a

40% shortage of nurses results in:
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• Time spent on floor increases by 15%

• Chances of transition from floor to Recovery or floor to IMU decreases by 15%

• Chance of dying in ICU increases by 15%

To get a continuous approximation, we assume that the shortage of nurses has a linear

effect, and use linear interpolation for shortages from 0% to 40% maximum. This is certainly a

gross approximation, but we felt that it was important to bring awareness to those effects with

a simulation tool. We will present in the next section our results.

Results

Let us first report on the model fitting with the FDS. We sum up the number of admissions,

patients in ICU, number of recoveries and deaths for the whole country of France in order to

get a robust data set that averages the noise of the data. We calibrated the model to this largest

data set that covers the period 3/18/20 to 4/11/20 and found a death rate of about 25%. This

result is in agreement with the estimate we did in Section 2, as of April 17, 2020 [15].

The sensitivity analysis on the alpha unknown vector ~A is reported in Fig 3. Figs 4 and 5

show the results with the parameters as listed in Tables 1 to 3. All numbers have been scaled by

a factor to represent an average hospital size.

We observed that the number of patient admissions is not a smooth curve. Typically, Sun-

day’s have less activity with less patients discharged than weekdays. However, the model fitting

seems adequate and robust to a small variation of parameters. The logic on the influence of

parameters is simple, α2 being the one who is most important for all output. Each of the six

parameters seems to have some significant influence for at least one of the three outputs.

This is not completely surprising because the construction of the model was subject to a

number of experimentations and trial errors by way of simulations before getting what we

found: a model with low complexity that makes the fitting feasible.

The curve of the number of patients under mechanical ventilation is smooth as expected

because this care unit has by far the longest LOS. Consequently, the system has a lot of delays

and the relatively small number of patients per day who have been healed or died is still

Fig 3. Linear sensitivity with respect to parameters [α2, α3, α5, α6, α8, α10].

https://doi.org/10.1371/journal.pone.0242183.g003
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relatively small. Similarly, the number of patients who are mechanically ventilated does not

directly reflect the number of admissions at the early stages of the pandemic in the FDS.

For some unknown reasons to us, the model overestimates the number of patient deaths in

the last few days. Those numbers might be small however and more sensitive to singular events

or simply involve delay in reporting. It might also be the accumulation effect of the small lag

differences of the prediction of patients under mechanical ventilation and the reality.

Fig 4. Model compared with data from France hospitals. Day 32 corresponds to March 18, 2020: the first date of our

data set. We assume an exponential model for the period anterior to this date. Day 52 corresponds to April 11, 2020.

Top: Input of patient hospital admission. Bottom: model of patient under mechanical ventilation in ICU versus the

data set.

https://doi.org/10.1371/journal.pone.0242183.g004

Fig 5. Model compared with data from France hospitals on different metrics. Top: Number of recovered patient

leaving the hospital each Day. Bottom: number of death per day.

https://doi.org/10.1371/journal.pone.0242183.g005
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In order to compare the results obtained with designated subset of the FDS that corre-

sponds to the hospital in Paris and the hospitals in Alsace, we used the simulation with the

exact same set of parameters found for the data set with the whole country. Alsace has been the

busiest cluster at the beginning of the pandemic, followed later on by Paris and Ile de France.

The results for Alsace are reported in Figs 6 and 7. We observed a fairly large difference of the

model’s prediction on the number of patients under mechanical ventilation. It seems that at

the peak of the pandemic in Alsace, the number of patients under mechanical ventilation

Fig 6. Top: Input of Patient Hospital Admission in Alsace, France. Bottom: Model of Patient Under Mechanical

Ventilatin in ICU Versus Data Set.

https://doi.org/10.1371/journal.pone.0242183.g006

Fig 7. Top: Number of Patient Healed Leaving Hospital in Alsace, France per Day. Bottom: Number of Death per

Day.

https://doi.org/10.1371/journal.pone.0242183.g007
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was less in reality than in the model. One possible factor would be the shortage of available

beds in the ICU. On the other hand, the number of deaths did not go higher than significantly

expected. A better explanation might be the fact that a fairly large number of patients in critical

condition were transferred to hospitals in different parts of the country or neighboring coun-

tries: according to local newspaper more than 110 patients from Alsace have been transferred

[28]. This seems coherent with our results: the scaling factor for the Alsace data set to get a

maximum hospitalization rate of about 50 patients per day is 6; the overshoot on the ICU pre-

diction is about 20 in Fig 6; The total maximum overshoot is therefore about 120; considering

that the average LOS in ICU (see Table 1) is roughly 12 days, our model still seems to give an

adequate approximation. But unfortunately, we do not have enough information to add this

new patient path in the workflow of Fig 1.

This phenomena is less present in the results for the data set with Paris but are still there—

see Figs 8 and 9. One can indeed refine the parameter fitting to be specific for Alsace and Paris

in order to reflect that the clinical decision process in the workflow, i.e parameters of Tables 1

to 3, might be sensitive to how much the local system is under stress, but we should then take

into account those number of transferred patients that are not negligible.

Next, let us describe the use of our model to assist daily management in the hospital during

the pandemic. One key factor is to anticipate the load of each care unit and required resources,

either to match the increase in number of patients or to reallocate resources to other patients

who have seen their surgery postponed.

We choose a hypothetical scenario that might occur if confinement conditions to contain

the pandemic are lifted too early. We assume that the hospital has a nominal low flux of

patients from week 1 to 7, and a recurrence with a daily 20% increase of new patients coming

in occurs in week 8. Fig 10 shows the dynamic of the load of each care unit, in particular the

large delay in the number of patients in the ICU that becomes saturated the latest. The black

curves are a simulation of the previous week’s load (week 7), while red curves are the predic-

tion for the following week (week 8). The upper thin red curve shows the deviation up one

standard deviation to give a sense of the uncertainty of the estimate. This uncertainty grows as

Fig 8. Top: Input of Patient Hospital Admission in Paris, France. Bottom: Model of Patient Under Mechanical

Ventilation in ICU Versus Data Set.

https://doi.org/10.1371/journal.pone.0242183.g008
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the time of the prediction gets further away. The cyan curve shows an hypothetical capacity of

each care unit: the floor gets saturated first and needs new beds after a few days.

As an illustration of the capability of the model, Figs 10 and 11 provide an estimate of the

growth of resources needed to face the new patient wave. A number of decisions should be

made in regards to patient care. Fig 12 compares the patient output with or without shortage

of nurses. Those results are speculative since it is difficult to quantify the risk for patients

beyond the nice publication results of [27] and [11]. It is our hope that data accumulated dur-

ing crises such as the present episode of COVID-19 will give the mathematical modeling the

base to do this estimate rigorously in future work.

Fig 9. Top: Number of Patient Healed Leaving Hospital in Paris per Day. Bottom: Number of Death per Day.

https://doi.org/10.1371/journal.pone.0242183.g009

Fig 10. Prediction of unit load in Scenario 1.

https://doi.org/10.1371/journal.pone.0242183.g010
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Finally taking a step further, we have looked at the prediction of the model to check either

the effect of confinement policy on pandemics or new pandemics with an arbitrary rate of

transmission of the disease. There are many epidemiological mathematical models available,

even for the present crisis, see [2] and [6]. It might be difficult to assess the basic reproduction

number R0 factor, which is under active debate. It is probably even more difficult to assess the

exact impact of global confinement or targeted confinement on those parameters that charac-

terized the pandemic model.

We should however be able to use our model to test if the effect on the most critical

resource, such as ICU beds and delay in care, are linearly or nonlinearly related to those

parameters.

Let us use the most simplistic ordinary differential equation epidemiology model:

_S ¼ � r1S I;

_I ¼ r1S I � r2 I:

Fig 11. Prediction of infrastructure need in Scenario 1. (a) Number of staff needed for each 8 hours shift. (b)

Number of supplies needed for each day.

https://doi.org/10.1371/journal.pone.0242183.g011

Fig 12. Prediction of performance in Scenario 1. (a) Patient output for previous week (b) Patient output predicted for next

week.

https://doi.org/10.1371/journal.pone.0242183.g012
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where S is the population of susceptible individuals, and I is the population of infected individ-

uals. ρ1 is the transmission rate of the disease, and ρ2 represents the addition of the rate of

recovery over infection and the disease induced death.

The function I(t) is used as the input of our workflow model, and represents the number of

patients admitted to the hospital. We test the influence of the transmission rate on the number

of ICU beds over a 16-week period. Fig 13 shows that the maximum number of ICU beds

required during the epidemic is significantly higher when the transmission rate increases from

0.0015 to 0.0025, while the average number of ICU beds stays about the same. This clearly

shows the nonlinear nature of the ICU load management problem and the benefit of a confine-

ment method that lowers the transmission rate during a pandemic.

Gathering more recent data coming from the french registry for 4 weeks after April 17,

2020 [29], additional simulation were run to validate the model and its capability to predict.

The simulation were done with the same parameter setting to predict ICU stays, output on

patient healed, and patient death on these additional 4 weeks using the French database of

patient inflow. Figs 14 and 15 show the predicted value on the right of the vertical blue line.

The ICU occupation gets underestimate by 6% after one week, 15% after two weeks, and 40%

after a month. Combined with the fact that the inflow of patients is also model dependent and

that the data in this period was presenting some errors or missing values, it seems that our

model might be useful for a one-week prediction interval.

Discussion and conclusion

In this work, we have developed a simple computational model to mimic the workflow of an

average hospital during a pandemic crisis, such as COVID-19 where patient admission goes

up to 50 patients per day. This is a significant load for any hospital system because all patients

suffer from the same disease and cannot be triaged using the existing departmental structure.

The hospital system needs to recruit resources quickly enough to deliver quality patient care

while keeping the staff safe from infection.

There are many ways of developing such a mathematical model. We chose a Markov pro-

cess that can augment a workflow graph provided by the clinicians and used a simple statistical

model for the LOS of the patient at each stage corresponding to a graph node. A number of

variations in the model construction are available: for example, changing the probability

Fig 13. Influence of the disease transmission rate on the number of ICU beds. (a) Rate of disease transmission

ρ1 = 0.0015: (b) Rate of disease transmission ρ1 = 0.0025.

https://doi.org/10.1371/journal.pone.0242183.g013
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distribution of LOS for specific stages with a more sophisticated model than lognormal or

decomposing the graph nodes into subgraphs of the workflow with more details. In particular,

the ICU supports different paths of medical care depending on patient conditions. Because of

the sparsity of data on hand, we kept the model as simple as possible and we were able to fit the

French Data Set with good accuracy. Using this approach, we could:

Fig 14. Top: Input of Patient Hospital Admission in France with 4 more weeks of data to validate our parameters.

Bottom: Model of Patient Under Mechanical Ventilation in ICU Versus Data Set and predicted number of patient

under mechanical ventilation in ICU on the right of the vertical blue line.

https://doi.org/10.1371/journal.pone.0242183.g014

Fig 15. Top: Predicted Number of Patient Healed Leaving Hospital in France per Day on the right of the blue line.

Bottom: Predicted Number of Death per Day in France per day on the right of the vertical blue line.

https://doi.org/10.1371/journal.pone.0242183.g015
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• recover important parameters that are characteristics of the workflow such as the probability

for a patient to transition from one unit to another, and important patient outcomes such as

healing rate or death rate.

• on a pragmatic side, we use the model to assist the senior manager in answering his/her

questions as listed in our introduction: how many beds do I need on the floor, how is this

affecting patient outcomes, do we need to transfer patients to a different facility, etc.?

Interestingly enough the protocol to handle COVID-19 patients has changed a lot since the

beginning of the pandemic: by using a different set of drugs, patients might recover quickly

and only need oxygen assistance instead of a full intubation. From the validation of our system

on 4 more weeks of data, we believe that our model is agile enough and can be calibrated again

on a second wave of COVID-19 data set to automatically handle that evolution.

There are a number of limitations to our approach. The smaller the hospital, the less pre-

dictable the outcome will be. With time, the characteristics of the population of patients who

show up to the ER may change and the pandemic management by the governing organizations

would evolve. One can think, for example, that systematic testing would provide early diagnos-

tics and impact the performance of the health system as shown by the statistics of countries

who were early adopters of that strategy. Due to the heterogeneity of the patient population

and disease patterns that depend heavily on patient characteristics, our next step in improving

this model would be to include patients’ medical history listed in the electronic medical

record.

Above all, any model of workflow especially during a pandemic should be aware of the

Human Factor. Staff can get sick or burnout during a pandemic and there should be a number

of strategies to compute that risk and enter this into the constraints imposed on the health care

system [30–33]. Further, human behavior and decision process changes under stress: it can be

for economical or psychological reasons. The future of computational models in digital health

during a pandemic crisis should extensively include sociological and economical modeling

components in the matter.
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29. Santé publique France, April, 17th 2020: https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-

relatives-a-lepidemie-de-covid-19/ [accessed 1st Ocotber 2020].

30. Clements A., Halton K., Graves N., Pettitt A., Morton A., Looke D., et al, Overcrowding and understaff-

ing in modern health-care systems: key determinants in meticillin-resistant Staphylococcus aureus

transmission. Lancet Infect.Dis. 8 (7), 427. 2008. https://doi.org/10.1016/S1473-3099(08)70151-8

PMID: 18582835

31. Hotchkiss J.R., Strike D.G., Simonson D.A., Broccard A.F., Crooke P.S., An agent-based and spatially

explicit model of pathogen dissemination in the intensive care unit. Crit. Care Med. 33 (1), 168. 2005.

https://doi.org/10.1097/01.CCM.0000150658.05831.D2 PMID: 15644665

32. Hugonnet S., Chevrolet J.-C., Pittet D., The effect of workload on infection riskin critically ill patients.

Crit. Care Med. 35 (1), 76. 2007. https://doi.org/10.1097/01.CCM.0000251125.08629.3F PMID:

17095946

33. Schwab F., Meyer E., Geffers C., Gastmeier P., Understaffing, overcrowding,inappropriate nurse:venti-

lated patient ratio and nosocomial infections: which parameter is the best reflection of deficits? J. Hosp.

Infect. 80 (2), 133, 2012. https://doi.org/10.1016/j.jhin.2011.11.014 PMID: 22188631

PLOS ONE A model of workflow in the hospital during a pandemic to assist management

PLOS ONE | https://doi.org/10.1371/journal.pone.0242183 November 30, 2020 18 / 18

https://doi.org/10.1056/NEJMoa2004500
http://www.ncbi.nlm.nih.gov/pubmed/32227758
https://doi.org/10.1001/jama.287.3.345
http://www.ncbi.nlm.nih.gov/pubmed/11790214
http://action.lung.org/site/DocServer/Dr_Meuller_Palliative_and_End_of_Life_Care_for_Patients.pdf?docID=42040
http://action.lung.org/site/DocServer/Dr_Meuller_Palliative_and_End_of_Life_Care_for_Patients.pdf?docID=42040
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-symptom-progression-11-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-symptom-progression-11-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-symptom-progression-11-03-2020.pdf
https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/calculator.html
https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/calculator.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/burn-calculator.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/burn-calculator.html
https://www.dna.fr/sante/2020/03/30/carte-ou-les-patients-alsaciens-atteints-du-covid-19-ont-ils-ete-transferes
https://www.dna.fr/sante/2020/03/30/carte-ou-les-patients-alsaciens-atteints-du-covid-19-ont-ils-ete-transferes
https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
https://doi.org/10.1016/S1473-3099(08)70151-8
http://www.ncbi.nlm.nih.gov/pubmed/18582835
https://doi.org/10.1097/01.CCM.0000150658.05831.D2
http://www.ncbi.nlm.nih.gov/pubmed/15644665
https://doi.org/10.1097/01.CCM.0000251125.08629.3F
http://www.ncbi.nlm.nih.gov/pubmed/17095946
https://doi.org/10.1016/j.jhin.2011.11.014
http://www.ncbi.nlm.nih.gov/pubmed/22188631
https://doi.org/10.1371/journal.pone.0242183

