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Abstract

Purpose: Personalized treatment planning in Molecular Radiotherapy (MRT) with accurately determining the absorbed
dose is highly desirable. The absorbed dose is calculated based on the Time-Integrated Activity (TIA) and the dose con-
version factor. A crucial unresolved issue in MRT dosimetry is which fit function to use for the TIA calculation. A data-
driven population-based fitting function selection could help solve this problem. Therefore, this project aims to develop
and evaluate a method for accurately determining TIAs in MRT, which performs a Population-Based Model Selection
within the framework of the Non-Linear Mixed-Effects (NLME-PBMS) model.
Methods: Biokinetic data of a radioligand for the Prostate-Specific Membrane Antigen (PSMA) for cancer treatment were
used. Eleven fit functions were derived from various parameterisations of mono-, bi-, and tri-exponential functions. The
functions’ fixed and random effects parameters were fitted (in the NLME framework) to the biokinetic data of all patients.
The goodness of fit was assumed acceptable based on the visual inspection of the fitted curves and the coefficients of
variation of the fitted fixed effects. The Akaike weight, the probability that the model is the best among the whole set
of considered models, was used to select the fit function most supported by the data from the set of functions with accept-
able goodness of fit. NLME-PBMS Model Averaging (MA) was performed with all functions having acceptable goodness
of fit. The Root-Mean-Square Error (RMSE) of the calculated TIAs from individual-based model selection (IBMS), a
shared-parameter population-based model selection (SP-PBMS) reported in the literature, and the functions from
NLME-PBMS method to the TIAs from MA were calculated and analysed. The NLME-PBMS (MA) model was used as
the reference as this model considers all relevant functions with corresponding Akaike weights.
Results: The function f 3a ¼ A1 e

� k1þkphysð Þt þ A2 e
� kphysð Þt was selected as the function most supported by the data with an

Akaike weight of (54 ± 11) %. Visual inspection of the fitted graphs and the RMSE values show that the NLME model
selection method has a relatively better or equivalent performance than the IBMS or SP-PBMS methods. The RMSEs
of the IBMS, SP-PBMS, and NLME-PBMS (f 3a) methods are 7.4%, 8.8%, and 2.4%, respectively.
Conclusion: A procedure including fitting function selection in a population-based method was developed to determine
the best fit function for calculating TIAs in MRT for a given radiopharmaceutical, organ and set of biokinetic data. The
technique combines standard practice approaches in pharmacokinetics, i.e. an Akaike-weight-based model selection and
the NLME model framework.
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1 Introduction

The estimation of individual absorbed doses in molecular
radiotherapy (MRT) is generally helpful for therapy optimi-
sation [1–4]. For example, the EC Directive 2013/59/Eura-
tom states that absorbed doses (requiring time-integrated
activity TIAs as input) in nuclear medicine therapies shall
be planned individually [5]. A critical unresolved issue in
MRT dosimetry is the question of which fit function to
use for the calculation of the TIA, as the obtained TIA value
highly depends on the chosen fit function [6,7]. Therefore,
determining the “optimal” fit function is important for accu-
rately calculating TIAs and, subsequently, the absorbed
dose. The “optimal” fit function can be selected from a set
of suitable models using a model selection procedure [8].
Relevant criteria for the best fit function are that the good-
ness of fit is satisfactory and that this function is most sup-
ported by the data [7]. The latter requires model (or function)
selection that could be done using the Akaike Information
Criterion (AIC) method [9,10].

The measurement of biokinetic data is often done at only
a few time points in the clinic. The selection of a fit function
for an individual patient, i.e. individual-based model selec-
tion (IBMS), based on a low number of data, allows only
the investigation of fit functions having few parameters,
which, therefore, may not correctly reflect the kinetics of
the radiopharmaceutical [6]. In addition, model selection
has a high uncertainty for a low ratio of the number of data
to the number of adjustable parameters. Therefore,
population-based model selection is of interest as it can
increase the ratio between the number of input data and
the number of parameters, which could lead to lower uncer-
tainty in model selection. Recently, we developed a
population-based model selection method with a shared
function parameter (SP-PBMS) that could lead to a better
performance than the IBMS method [6]. The fitting was per-
formed population-wise, including functions with a parame-
ter shared between patients.

Another population-based approach used for TIAs calcu-
lation is the non-linear mixed-effects (NLME) modelling.
Devasia et al. recently used an NLME model to determine
kidney TIAs in PRRT with 177Lu-DOTATATE using a bi-
exponential function and biokinetic data measured with
SPECT/CT. The NLME model provides valuable informa-
tion across patients (inter-individual variability) and within
patients (intra-individual variability) that could be used to
optimise the individual estimation of TIAs [11]. It has been
shown that implementing NLME modelling could lead to an
acceptable accuracy of calculated TIAs [11]. Although the
NLME model has been shown to perform well [11,12], the
bi-exponential function used in the NLME method might
not be applicable to biokinetic data of different radiopharma-
ceuticals, organs, or patient biokinetic data. Therefore, using
the best fit function within the NLME model approach may
improve the NLME method.

In this work, we present a general method based on pop-
ulation information to improve the calculation of TIAs. It is
demonstrated in an example of 177Lu-PSMA therapy using
the NLME model and population-based model selection
(NLME-PBMS) method. In this NLME-PBMS method, a
set of mathematical models (or functions) is defined, an
NLME model fit is performed, and the best fit function is
selected using the Akaike weight method [13,14]. In addi-
tion, the performance of the NLME-PBMS method is com-
pared to the IBMS and the SP-PBMS methods reported in
the literature [6]. In the clinic, the NLME-PBMS method
can be used to define the best fit function for a given radio-
pharmaceutical, organ and population kinetic data set that
can be used to fit a “new” patient with the known inter-
and intra-individual variability.

2 Materials and methods

2.1 Biokinetic data

Biokinetic data (the time-activity data) of [177Lu]Lu-
PSMA-I&T RLT in kidneys were collected from thirteen
patients with metastatic castration-resistant prostate cancer
[6,15]. All patients underwent [177Lu]Lu-PSMA-I&T radi-
oligand therapy (RLT) and had post-therapeutic planar
whole-body scintigraphies at (1.1 ± 0.7) h, (20.7 ± 2.3) h,
and (163.8 ± 2.0) h p.i. One patient had one additional time
point at 66.1 h p.i. Three patients had two extra time points
at (45.9 ± 1.6) h and (68.7 ± 1.7) h p.i. The activity was
quantified from the images by drawing the regions of interest
using the geometric mean of anterior and posterior counts
with background corrections [6,15]. There was no scatter
correction performed. Calibration factors were calculated
based on the whole-body region of interest in the first scan.
The institutional review board approved this retrospective
analysis (115/18S), and the requirement for informed con-
sent was waived.

2.2 Set of sums of exponential functions

As suggested by Burnham et al., only well-suited func-
tions should be included in the investigated function set
[8]. Therefore, sums of exponential functions (one, two
and three terms) [6,7] with increasing complexity were used
and analysed to describe the physical and biological pro-
cesses of the radiopharmaceutical’s pharmacokinetics (Eqs.
(1)–(11)):

f 2a tð Þ ¼ A1e
� k1þkphysð Þt ð1Þ

f 3a tð Þ ¼ A1e
� k1þkphysð Þt þ A2e

� kphysð Þt ð2Þ
f 3b tð Þ ¼ A1ae

� k1þkphysð Þt þ A1 1� að Þe� kphysð Þt ð3Þ
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f 3c tð Þ ¼ A1 1� að Þe� k1þkphysð Þt þ A1ae
� kphysð Þt ð4Þ

f 4a tð Þ ¼ A1e
� k1þkphysð Þt þ A2e

� k2þkphysð Þt ð5Þ
f 4b tð Þ ¼ A1ae

� k1þkphysð Þt þ A1 1� að Þe� k2þkphysð Þt ð6Þ
f 5a tð Þ ¼ A1e

� k1þkphysð Þt þ A2e
� k2þkphysð Þt � A3e

� kphysð Þt ð7Þ
f 5b tð Þ ¼ A1e

� k1þkphysð Þt þ A2e
� k2þkphysð Þt � ðA2

þ A1Þe� k3þkphysð Þt ð8Þ
f 5c tð Þ ¼ A1e

� k1þkphysð Þt þ A2e
� k2þkphysð Þt þ A3e

� kphysð Þt ð9Þ
f 6a tð Þ ¼ A1e

� k1þkphysð Þt þ A2e
� k2þkphysð Þt � A3e

� k3þkphysð Þt ð10Þ
f 6b tð Þ ¼ A1e

� k1þkphysð Þt þ A2e
� k2þkphysð Þt þ A3e

� k3þkphysð Þt ð11Þ
where f i is a fit function with i estimated parameters, the Aj

are pre-factors with values � 0, kphys is the physical decay
constant of 177Lu (kphys ¼ ln 2ð Þ=T 1=2, with the half-life
T 1=2=6.6443 d [16]), kj are the biological decay parameters
of the radiopharmaceutical. All biological decay constants kj
were estimated with a value � 0 as described in the literature
[17,18].

2.3 Non-linear mixed-effects model

The NLME model was used to estimate the parameters of
the SOE functions in Eqs. (1)–(11), i.e. Aj and kj. The esti-
mated parameters in the NLME model were defined as a
combination of the fixed and random effects. Fixed effects
are the mean values of the estimated parameters in the pop-
ulation, while random effects show the variability of the esti-
mated parameters [19]:

P i ¼ TVP i � expðETAiÞ ð12Þ
ETAi ¼ Nð0;ri

2Þ ð13Þ
Here P i is the estimated parameter i, TVP i is the fixed effect
of the estimated parameter i in the population, and ETAi is a
random number following a Gaussian distribution with mean
zero and variance ri

2 (random effect) [11,12,20].

2.4 Study workflow

The parameters of Eqs. (1)–(11) were fitted to the bioki-
netic data of [177Lu]Lu-PSMA-I&T RLT in kidneys using
the NLME method. All fittings were performed in
MATLAB software vR2020a. The exponential error model
was used for the NLME model fittings [12]. The following
computational settings were used for the IBMS and SP-
PBMS methods as suggested in the literature [6]: Rosen-
brock Algorithm, objective function convergence criterion
10�4, and absolute-based variance model with a fractional
standard deviation of 0.15. Starting values of the parameters
were chosen based on a trial-and-error approach. The good-
ness of fit for each SOE function was checked by visual
inspection of the fitted graphs and the coefficient of variation
CV of the fitted fixed-effects parameters (Table 1 in ref. [7],
goodness of fit acceptable for CV < 0.5). The best fit func-
tion selection was performed by calculating the corrected
Akaike Information Criterion AICc, which is the AIC cor-
rected for the case of N/K < 40 (number of data N and num-
ber of parameters K) [8,9]. The corresponding Akaike
weights [7–9] were calculated as follows:

AICc ¼ �2 ln Pð Þ þ 2K þ 2KðK þ 1Þ
N � K � 1

ð14Þ

Di ¼ AICci � AICcmin ð15Þ
wAICci ¼ e�

Di
2 =
XF

i¼i
e�

Di
2 ð16Þ

where P is the objective function minimized for the fitting,
AICcmin is the lowest AICc value of all fitted functions, Di

is the difference of the AICci of function i and the
AICcmin, F is the total number of functions that passed the
goodness-of-fit test and wAICci is the Akaike weight of func-
tion i. The Akaike weights indicate the probability that the
model is the best among the whole set of considered models
[8,9]. To analyse the stability of the NLME-PBMS method
through model selection for different set of data, the Jack-
knife method was used as suggested in the literature
[9,21]. Here, the leave-one-out method was applied thirteen
times with only twelve patients included for the calculation
of the Akaike weights.

The best function in the IBMS method for the same bioki-
netic data was function f 2a (Eq. (1)) [6]. In the SP-PBMS
method, the best function describing the biokinetic data of

[177Lu]Lu-PSMA-I&T was function f 3b

�
(i.e. f 3b, Eq. (3)

with a= 0.9632) [6]. Therefore, we used functions f 2a and

f 3b

�
to describe the biokinetics of [177Lu]Lu-PSMA-I&T in

kidneys to represent IBMS and SP-PBMS methods, respec-
tively. The TIAs were calculated using the functions from
IBMS, SP-PBMS and NLME-PBMS methods with integra-
tion from t= 0 min to t = 100 000 min. The standard devia-
tions of the TIAs from the IBMS and SP-PBMS method
were calculated based on the bootstrap method using the
frequency-based sampling for the parameters as suggested
by Saltelli et al. [22]:

X i sð Þ ¼ Gi sin xisð Þð Þ ¼ 1
2
þ 1
p
arcsinðsin xisþ uið ÞÞ ð17Þ

where s is a modified scalar variable varying over the range
-p/2 < s< p/2, and xi is the frequency value used for param-
eter X i and uiis a random phase-shift chosen uniformly
between 0 and 2p. Parameters of the SOE function X i were
sampled from the variability obtained from the IBMS and
SP-PBMS methods. The frequencies show a specific number
related to the sinusoidal functions assigned to each parame-
ter [23]. The vector of the input parameters of interest X i was



422 D. Hardiansyah et al. / Z Med Phys 34 (2024) 419–427
sampled from the log-normal distribution (Eqs. (18) and
(19)). The sampling of the IBMS and SP-PBMS fitted
parameters were generated using Eq. (17). The mean and
SD of the parameters in the log-normal distribution were cal-
culated based on the following equations [23]:

meanlog�normal ¼ 2� lnðmeannormalÞ � 0:5� lnðmean2normal
þ SD2

normalÞ ð18Þ

SDlog�normal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðmean2normal þ SD2

normalÞ � 2� lnðmeannormalÞ
q

ð19Þ
where meanlog�normal is the mean of the parameters in log-
normal distribution, SDlog�normal is the SD of the parameters
in log-normal distribution, meannormal is the mean of the
parameters in normal distribution, and SDnormal is the SD
of the parameters in normal distribution. The frequency xi

and the number of model evaluations in Eq. (17) were fixed
to 1028 and 8193 [23], respectively. The standard deviations
of individual TIAs from the NLME-PBMS method was not
calculated as the NLME model fitting method only reports
the intra-individual variability from the populations [12,19].

The TIA was also calculated for the model averaging
(MA) [8,10] from the NLME-PBMS method according to
the following equation:

TIAMA ¼
X
i

wAICci � TIAi ð20Þ

where TIAMA is the TIA of MA, wAICci is the Akaike weight
of the SOE function i calculated using Eq. (16), and TIAi is
the TIA of the SOE function i in the NLME-PBMS method.
Relative deviations (RDs) and root-mean-square errors
(RMSEs) were used to analyse the accuracy of the calculated
Table 1
Goodness of fits and Akaike weights for the NLME model with differe
analysis is 46; the number of parameters of the NLME model for the

Equation
number

Function
name

K Coefficient of
Variation CV (max)Ϯ

A
(

1 f 2a 5 0.07 3
2 f 3a 7 0.20 5
3 f 3b 7 0.16 3
4 f 3c 7 0.21 2
5 f 4a 9 0.27 1
6 f 4b 9 0.78 –

7 f 5a 11 Infinity –

8 f 5b 11 Infinity –

9 f 5c 11 1.26 –

10 f 6a 13 1.62E+12 –

11 f 6b 13 0.91 –

Ϯ The maximum value of the CVs of the fit parameters (CV is calculated as
p

values <0.50 pass the goodness-of-fit check (Table 1 in [7]).
� Models passing the goodness-of-fit test are included in the NLME-PBMS (M
§ The Jackknife analysis was based on functions f 3a, f 3c and f 4a.
TIAs using the IBMS, SP-PBMS, and NLME-PBMS meth-
ods (per single fit function) with the TIAs obtained from the
NLME-PBMS (MA) method as the reference. The total
number of fitted parameters leads to the superiority of the
NLME-PBMS method over the IBMS and SP-PBMS meth-
ods. For the same data, the total number of parameters in the
NLME-PBMS, IBMS and the SP-PBMS method are K = 7
(Table 1), K = 26 (Function f 2bin [6]), and K = 27 (Table 1
in [6]) respectively. Based on Eq. (14), with a conservative
assumption of equal �2 ln (P) values for all fits and

N = 46 data points, the values of the term ð2K þ 2K Kþ1ð Þ
N�K�1 Þ

for the NLME-PBMS, IBMS and SP-PBMS methods are
17, 126, and 138, respectively. These large differences in
the AICc leads to Akaike weights (Eqs. (15) and (16)) of
the best function from the NLME-PBMS, IBMS and SP-
PBMS models of about 100%, 2.2 � 10�24% and
5.2 � 10�25%, respectively. This result supports the use of
the NLME-PBMS method as the only reference in our study,
as including the IBMS and SP-PBMS method in the model
averaging will not lead to a relevant change.

The NLME-PBMS (MA) considers all functions that
passed the goodness of fit test with their corresponding
Akaike weights. The relative deviation RDs and the RMSEs
were calculated as follows:

RDj ¼ TIAj � TIAMA

TIACMA
ð21Þ

RMSEj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDRDj

� �2 þ MeanRDj

� �2q
ð22Þ

where RD is the relative deviation, TIAj is the TIA value cal-
culated using method j, and TIAMA is the TIA calculated
using the MA method. RMSEj is the root-mean-square error
nt SOE functions. The total number of biokinetic data N used in this
corresponding SOE function is given in column K.

kaike weight
%)�

Jackknife Akaike weights(% mean
(SD); % median [min, max])§

.11 –

1.72 54 (11); 50 [38, 74]
.84 –

2.37 33 (10); 33 [19, 59]
8.96 13 (7); 14 [2,22]

–

–

–

–

–

–
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp x2ð Þ � 1 [19], with x2 being the variance of the fixed effect). Only CV

A) model.
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over all patients of RDj, SDRDj is the standard deviation of
RDj, MeanRDj is the mean of RDj and j corresponds to the
IBMS or SP-PBMS or NLME-PBMS methods.

3 Results

The fittings using the NLME method for functions f 4b,
f 5a, f 5b, f 5c, f 6a and f 6b did not pass the goodness-of-fit
test, i.e. the fitting failed based on the visual inspection of
the fitted curves and/or the CV > 0.50 of the fitted fixed
effects (Table 1). Function f 3a was selected as the function
most supported by the data in the NLME-PBMS approach
based on the Akaike weight of 51.72 % (Table 1). The Jack-
knife method was applied to the subset functions f 3a, f 3c

and f 4a as these functions had the highest Akaike weights
(Table 1). Based on the Jackknife method, the selection of
f 3a was relatively stable with a median Akaike weight of
50% and range of 38%–74% (Table 1). Function f 3a had
the highest Akaike weight in 12/13 Jackknife simulations.
Therefore, in one case f 3c had a higher Akaike weight than
f 3a (Table 1).
Figure 1. Time-activity data and fit curves were obtained from the
methods.
The five SOE functions, i.e. f 3a, f 3c, f 4a, f 3b, and f 2a,
were used for the calculation of the TIAs of the NLME-
PBMS (MA) method using Eq. (20). Fig. 1 compares the

curves obtained from the IBMS (f 2a), SP-PBMS (f 3b

�
),

NLME-PBMS (f 3a), and NLME-PBMS (MA) methods.
The reference model NLME-PBMS (MA) shows a good per-
formance in determining the biokinetic data in all patients
(Fig. 1). Visual inspection of the fitted graphs in Fig. 1
shows that the NLME-PBMS (f 3a) method has a better or
equivalent performance as the SP-PBMS and IBMS methods
and is similar to the NLME-PBMS (MA) method. Fig. 2
shows the comparison of the TIAs calculated using the
IBMS, SP-PBMS, NLME-PBMS (f 3a) and NLME-PBMS
(MA) methods. The SDs of the TIAs per-injected activity
or time-integrated activity coefficient (TIACs) in Fig. 2 were
calculated based on the bootstrap method with sampling
according to Eqs. (17)–(19). In general, the TIACs from
all methods were similar except for P6. Fig. 3 and Table 2

show the RD of the TIAs of the IBMS, SP-PBMS (f 3b

�
),

NLME-PBMS (f 3a), NLME-PBMS (f 4a), NLME-PBMS
IBMS, SP-PBMS, NLME-PBMS (f 3aÞ and NLME-PBMS (MA)



Figure 2. Time-integrated activity coefficients (TIACs) calculated
using the NLME-PBMS (f 3a), NLME-PBMS (MA), IBMS (f 2aÞ
and SP-PBMS (f 3b

�
) methods. The standard deviations of the

TIACs in the IBMS and PBMS methods were calculated based on
the sampling according to Eq. (24).

Figure 3. RDs of TIAs obtained from the IBMS, SP-PBMS (f 3b

�
),

NLME-PBMS (f 3a), NLME-PBMS (f 4a), NLME-PBMS (f 2a),
NLME-PBMS (f 3b), and NLME-PBMS (f 3c) methods.

Table 2
The RDs and RMSEs of different methods in comparison to the NLM

Methods RD (%)

Mean (SD)

IBMS 1 (7)
SP-PBMS 3 (8)
NLME-PBMS (f 2a) �2 (16)
NLME-PBMS (f 3a) �2 (2)
NLME-PBMS (f 3b) 14(19)
NLME-PBMS (f 3c) �1 (1)
NLME-PBMS (f 4a) 4 (3)
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(f 2a), NLME-PBMS (f 3b), and NLME-PBMS (f 3c) methods
to the TIAs calculated using NLME-PBMS (MA) method.
The NLME-PBMS (f 3a) has a better performance than the

IBMS and SP-PBMS (f 3b

�
) by a factor of four based on

the RMSEs values (Table 2).

4 Discussion

Accurate determination of individual TIAs is highly
desirable in MRT. Recently, it has been shown that the
NLME method could be used for dosimetry in MRT with
a relatively accurate determination of TIAs [11,12]. The
advantages of the NLME model are the ability of the method
to describe the kinetics of radiopharmaceutical drugs in
terms of intra- and inter-individual variability [12,19]. The
information on intra- and inter-individual variability may
benefit specific applications such as a single-time-point
dosimetry approach [11,12] in MRT. However, model selec-
tion is needed to determine the best fit function with the
NLME model approach. Model selection has been shown
as an essential and critical aspect of scientific data analysis
[8]. Using a model selection procedure for NLME model fit-
ting could increase the reproducibility of the fitting results in
contrast to applying the rule of thumbs [24] or simply guess-
ing by the user. The selection of a suitable mathematical
model (i.e. function) for calculating TIAs is essential, as
using an improper function might invalidate or deteriorate
the result [6]. The strong influence of the chosen function
on the calculation of RDs can be seen in our analysis results
(Fig. 3 and Table 2). Therefore, in this study, we applied the
NLME model with model selection to calculate the TIAs.
The output of the NLME-PBMS method was then compared
with the IBMS and SP-PBMS methods to check if the
NLME-PBMS method could be used to determine accurate
TIAs in MRT.

Although the functions f 3a and f 3c are equivalent func-
tions differing only by their parameterisation, function f 3a

was selected as the best model based on the Akaike weight.
This result demonstrates the relevance of model selection as
even equivalent functions may lead to a different perfor-
E-PBMS (MA) reference.

RMSE of the RD (%)

Median [min, max]

2 [�11, 13] 7.4
1 [�4, 29] 8.8
6 [�36, 17] 16.5
�2 [�4, 3] 2.4
21 [�30, 34] 23.5
�2 [�3, 2] 2.0
3 [0, 8] 4.5
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mance in determining the biokinetic data of radiopharmaceu-
ticals (Fig. 3 and Table 2) due to the assumed difference in
the distribution of parameters.

P6 in Fig. 1 demonstrates how the chosen fit function
may lead to a considerable difference in TIAs: The fitted
curves from the NLME-PBMS (f 3aÞ method seem to be
more adequate than the IBMS and SP-PBMS methods in
describing the biokinetic data in P6. Accordingly, the
NLME-PBMS (f 3aÞ RMSE value is around four times lower
than that of IBMS and SP-PBMS (Table 2). However, one
disadvantage of the NLME model approach is that the stan-
dard deviation of individual TIAs from the NLME-PBMS
method is not analysed as the output of the NLME model
only reports the intra-individual variability in the population.

The best model selected from the NLME-PBMS method,
i.e. f 3a, has a similar structure to the best model selected

from the SP-PBMS method, i.e. f 3b

�
(i.e. f 3b, Eq. (3) with

a = 0.9632) [6]. Calculating the TIAs using f 3b

�
(SP-

PBMS, which has 2 adjustable parameters) [6] needs at least
three data to obey the constraint of Kmax (maximum number
of fitted parameters) = N (number of data) + 1 of the individ-
ual fitting of a new patient. In contrast, the fitting of the
NLME model uses a population-based fit, where the ratio
between the number of data and the number of fitted param-
eters is higher than in the individual fits [12]. This allows its
use in single-time-point dosimetry.

A general problem in MRT is that it is unknown which
function fits the available data best. This applies to the case
with many data and with few data per organ. Therefore, a
different modeller might use other functions for the same
dataset, leading to reproducibility issues [6]. Here the pro-
posed method will provide a more reproducible approach
as the model selection includes many suitable SOE func-
tions. Available population data in nuclear medicine are usu-
ally heterogeneous and sparse. The presented method can be
used for this common situation, as pharmacokinetic informa-
tion of heterogeneous data can be derived from a population
and introduced for the individual fit. Selecting the function
most supported by the data [9,10] and using it in the NLME
model fitting is very useful also for other applications in
molecular radiotherapies, such as in single-time-point imag-
ing dosimetry [11,12]. Presumably, when a better fit func-
tion is used, the accuracy of single-time-point dosimetry
also becomes higher.

In the clinical setting, the presented model selection
method would be essential in the sequence of steps as fol-
lows: (1) collect biokinetic data of a patient population, (2)
derive the fit function most supported by the data as pre-
sented here using the NLME-PBMS method, and (3) per-
form dosimetry for new patients using the derived best
function and the NLME model fitting with the known
inter- and intra-individual variabilities. The fitted parameters
from the previously measured population can be used as the
starting values for the fitting of the new patients. Another
possibility to decrease the total number of the adjustable
parameters is by fixing the parameters of the population to
the values from the previous population.

In this study, a maximum of five data per patient were
available. More data per patient could yield a different best
function (with more parameters) for the NLME-PBMS
method, even in the same patient population for the same
organ and radiopharmaceutical. Therefore, the NLME-
PBMS approach needs to have enough data per patient for
the patient population used to determine the best fit function.
If the aim is the accurate determination of the TIAs,
“enough” data can be determined based on the change in
the determined TIAs when increasing the number of data
per patient (and possibly also the number of parameters of
the best fit function).

Compartmental models, including additional physiologi-
cal information in the investigated function set, could further
improve the NLME-PBMS method results. Compartmental
models might perform better than the investigated fit func-
tions based on sum of exponential functions, which are most
frequently used for curve fitting in dosimetry in molecular
radiotherapy.

In this study, function f 3c seems to be better than f 3a

based on the RMSE values (Table 2). This is in contrast to
the Akaike weight results which show f 3a as the best func-
tion obtained from the NLME-PBMS method (Table 1). This
reflects that Akaike weight and RMSE values are different
measures. The AICc is used to find the model most sup-
ported by the data; however, this tells nothing about the dif-
ference in the TIAs for the different functions. Therefore, the
differences in TIAs were quantified using the RMSE. In
addition, both have an associated uncertainty. The differ-
ences between the two measures noted here may disappear
if more data and patients are used. Another model selection
procedure, the Bayesian Information Criterion (BIC) [25],
was also used for our data. As a result, the BIC favours
the same best function as the Akaike weight.

The method presented in this study is not constrained to
the function set used in this manuscript. Thus, “arbitrary”
functions, which should be suited to the kinetics [8], can
be added to the here investigated function set, and the best
fit function can be determined according to the presented
algorithm. Therefore, another function could be the best
for a different biokinetic data set (e.g. more patient data at
different time points, or for different organs and
radiopharmaceuticals).

The advantages of the proposed method are achieved by
improving both inputs, i.e. (1) the data and (2) the set of
models from which the best one is selected. This, in turn,
also improves the results for the TIAs:



426 D. Hardiansyah et al. / Z Med Phys 34 (2024) 419–427
1. Data of a population used in the NLME-PBMS model
instead of just a single patient in the IBMS method for
estimating TIAs is advantageous. Fitting three biokinetic
data using IBMS only allows a mono-exponential func-
tion with a maximum of two parameters as the degree
of freedom cannot be zero (degree of freedom = N–K
[6]). We show that the mono-exponential function could
lead to inaccurate determination of TIAs in P6 (e.g. Figs. 1
and 3). By using the NLME-PBMS model, we could fit
an SOE function with a higher number of parameters to
patients with a low number biokinetic data.

2. The set of models from which the best one is selected using
the Akaike weights is also constrained by Kmax = (N � 2)
(Eq. (21)) [7–9,26] in both the IBMS and the PBMS meth-
ods. Therefore, in our example, the NLME model, in prin-
ciple, would allow including a much higher number of
parameters in the model set functions. However, as seen
in Table 1, SOE functions with more than four parameters
are unnecessary (based on this biokinetic data set).

The limitations of this study are:

1. Quantification of the activities was based on planar
images. It has been shown that activity quantification
using imaging with three-dimensional approaches such
as SPECT and PET is superior to planar imaging [27].
Planar imaging suffers from biases, and the background
correction is known to be sensitive to region-of-interest
definition [27,28]. It is recommended that biokinetic data
from three-dimensional approaches be used for future
studies. As the main aim of this study was to introduce
and present an NLME-PBMS method, which can be
implemented for any quantitative imaging data, the results
obtained with planar imaging from this study should be
translatable to the case of SPECT and PET imaging.
Improved quantification should, however, improve the
population approach. Reducing systematic and random
quantification errors will probably result in changed fixed
effects, reduced random effects (inter-individual variabil-
ity), and reduced intra-individual variability.

2. Quantification without scatter correction is a limitation in
our study. The presented population method is con-
structed to use similarities in the biokinetics of the popu-
lation under investigation. Thus, patients must be
measured similarly for the method to be applicable.
Therefore, removing scatter from the data by implement-
ing quantitative imaging is expected to improve the
results obtained using this population-based method, as
discussed in item 1 above.

3. The starting values of the adjustable parameters were cho-
sen based on a trial-and-error approach. This could lead
the minimisation algorithm to local minima of the objec-
tive function. Therefore, different starting values were
investigated. Of these, only fit results showing a good
fit based on the goodness of fit criteria having the highest
likelihood were used for further evaluation.

5 Conclusions

A critical unresolved issue in MRT dosimetry is the ques-
tion of which fit function to use for calculating the time-
integrated activity. We developed a method to include fitting
function selection in a population-based method to deter-
mine the best fit function for calculating TIAs in MRT for
a given radiopharmaceutical, organ and patient data set.
The best fit function can then be used to fit a “new” patient
with the known inter- and intra-individual variabilities from
the corresponding patient population. The technique combi-
nes standard practice approaches in pharmacokinetics, i.e. an
Akaike-weight-based model selection and the NLME model
framework. The fit function selection accuracy and precision
in the NLME-PBMS method are less dependent on noise in
the data than in the IBMS method, which relies on only very
few data of a single patient. Thus, using the proposed fit
function selection and the NLME model will increase the
reproducibility of the found best fit function for determining
TIAs.
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