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Abstract: Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They
undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder,
released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During
this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria.
Such transformations allow them to acquire the chemical–physical properties needed for fulling
several activities including metabolic regulation, antimicrobial functions and solubilization of lipids
in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-
applications, making them important tools for active molecule delivery, metabolic disease treatments
and emulsification processes in food and drug industries. Moreover, moving over the borders of
the biological field, BAs have been largely investigated as building blocks for the construction of
supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties.
The review starts with a biological analysis of the BAs functions before progressively switching to a
general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the
BAs use in material science.

Keywords: bile acids; physiological functions; bile acid derivatives; pharmacological application;
material science applications; self-assembly; surfactants

1. Introduction

Bile acids (BAs) constitute an important class of biological molecules produced in
the metabolism of all vertebrates. In mammals, they exhibit the so called C24 structure:
24 carbon atoms form a steroid nucleus (three six-member rings indicated as A, B C and a
five-member ring indicated as D) and a five-carbon side chain with a carboxyl group at the
C-24 position.

The A and B rings are linked in cis configuration, inducing an overall bent shape.
Such a structural feature delineates a concave and convex side of the steroidal backbone
where OH groups in α orientation (up to three) and two methyl groups in β orientation,
respectively, point out. Therefore, two opposite faces with hydrophilic and hydrophobic
properties can be distinguished. (Figure 1a,b). Further variations of the molecular structure
can be observed at C-3 carbon due to hydroxyl, sulfate or glucuronate substituents [1,2]. C-6
and C-24 glucoronide conjugates were also found in humans [2]. Other C-24 substituents
are glycine or taurine [3–6]. Recently Dorrestein et al. reported new amino acid C-24 substi-
tuted cholic acid (CA) namely phenylalanocholic, tyrosocholic and leucocholic acid [7]. BA
actions generally occur in conditions where they are deprotonated; for this reason, many
authors refer to them as bile salts instead of acids. In this review the term BA will be used
keeping in mind that we refer mostly to their salt form.
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Figure 1. (a) Planar representation of the general molecular structure of bile acids (Bas). Letters,
numbers and labels Ri indicate the rings of the steroid skeleton, the carbon atoms and the functional
groups, respectively. (b) Chair representation of the general molecular structure of BAs. Brackets
indicate the hydrophobic and hydrophilic faces. (c) Molecular structures of BAs showing different
hydroxyl groups on the steroid backbone. (d) Molecular structures of the aminoacid conjugated BAs.

According to the order in which they are produced in the human body, BAs are differ-
ently named. CA and chenodeoxycholic (CDCA) acids—3 and 2 OH groups, respectively—
are first synthesized by the hepatocyte and thus named primary BAs. Subsequently CA and
CDCA are conjugated to glycine or taurine, giving rise to glycocholic (GCA), taurocholic
(TCA) acids and glycochenodeoxycholic (GCDCA), taurochenodeoxycholic (TCDCA) acids,
respectively. Further metabolization leads to the secondary BAs, deoxycholic (DCA) and
lithocholic (LCA) acids, that present two and one OH groups, respectively (Figure 1c,d).
The increase in the hydrophobic character, moving from primary to secondary BAs, affects
the BA chemical–physical and physiological properties, making them differently active in
the diverse parts of the enterohepatic circuit.

Generally speaking, five major physiological roles can be distinguished in BA activity:
(1) regulation of cholesterol homeostasis; (2) deterrence for the formation of gallstones and
kidney stones; (3) emulsification of dietary lipids and absorption of fat-soluble vitamins;
(4) antimicrobial activity; (5) regulation function.

These functions will be described in the next paragraphs, following the BA physiolog-
ical pathway—from biosynthesis to elimination/recirculation.

BAs are produced in the liver and stored in the gallbladder. Subsequently they are
secreted through the biliary tract in the intestine, absorbed in the intestinal epithelium
to pass into the portal circulation and return to the liver. The overall process is named
enterohepatic circulation [8]. A small part of BAs escapes this cycle being secreted through
the feces. The daily loss of BAs is compensated by new liver production.

2. Synthesis in the Liver and Storage in the Gallbladder: BAs in Cholesterol Metabolism

BAs are produced in their primary forms (CA and CDCA) in the liver, adopting choles-
terol as starting substrate and the activity of 16 enzymes. Such enzymes catalyze 17 different
reactions. In humans, the synthesis takes place in multiple intracellular compartments such
as the cytosol, endoplasmic reticulum, mitochondria and peroxisomes.

A living organism can exploit two different synthetic routes for the BA synthesis [9].
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The route, that is quantitively more important for adult humans, is known as “classic
or neutral path” and provides for more than 90% of the BA needs. Such a synthetic
pathway starts with the hydroxylation of the sterol ring on C7 mediated by the cholesterol
7α-hydroxylase (CYP7A1). Subsequently the intermediate is immediately modified on
the lateral chain by the sterol 27-hydroxylase (CYP27) for the CDCA synthesis or, in the
case of the CA synthesis, is further hydroxylated on C-12 by the 12α-hydroxylase (CY8B1)
before the CYP27 catalyzed step. In this pathway, the CYP7A1 activity is the kinetic key
that determines the overall rate of the metabolic pathway. On the other hand, the CY8B1
activity, modulating the hydrophilicity composition of the steroid nucleus, controls the CA
and CDCA production ratio.

The second biosynthetic route, named “acidic path”, leads to the production of CDCA
in humans and it is dominant in human neonates. In this pathway the chemical modifica-
tions of the cholesterol substrate involve first the lateral chain where a hydroxyl group is
introduced on C27 by the CYP27 activity. Subsequently the modification of the sterol part
is performed by the oxysterol 7α-hydroxylase (CYP7B1). A minority fraction of C25- and
C24-hydroxycholesterols generated by the corresponding hydroxylases can also enter the
acidic pathway to form BAs. Although most of the hydroxycholesterols are produced in
the liver, hydroxycholesterols generated in extra hepatic tissues, such as lungs and brain,
may be transported to the liver and be also involved in this BAs biosynthetic route. After
their synthesis, CA and CDCA are conjugated to taurine and glycine by the activity of two
enzymes, bile acid-CoA synthase and bile acid-CoAamino acid N-acyltransferase. The
conjugation makes the produced BA more hydrophilic and more acidic on the side chain:
the pKa decreases from ~5.0 to ~3.9 and <2 for glycine and taurine conjugates, respec-
tively. The amount of synthesized BA is regulated by control mechanisms that operate at
transcriptional level, where the transcription factors are nuclear receptors. An exceeding
amount of BA triggers a negative feedback mechanism, starting with the BAs binding
to the hepatic farnesoid X receptor (FXR) and ending with the inhibition of the genes
expressing the CYP7A1 and CYP8B1 enzymes involved in the biosynthesis of BA [10,11].
The activation of FXR affects not only the synthesis itself but it also regulates the level of the
BA in the intestine and biliary tree. Indeed, in order to assure concurrently an efficient lipid
absorption and a sustainable hepatic level of BA, the FXR increases the expression of the
transporters which mediate the efflux of the BA into the biliary canaliculi. At the same time,
it suppresses the expression of the importer NTCP, thus reducing the BA reabsorption from
the blood into the hepatocytes [12]. Besides the effect in the liver, reabsorbed BAs can bind
also the intestinal FXR in the distal ileum, activating it. The activated FXR stimulates in
turn the expression of the fibroblast growth factor 19 (FGF19) and its release into the portal
blood. Once it reaches the hepatocyte plasma membrane, FGF19 binds the FGF receptor 4
(FGFR4)/β-klotho complex, triggering a signaling cascade that results in the suppression
of the CYP7A1 mRNA and thus the suppression of the CYP7A1 expression [13,14].

BA production utilizes a consistent amount of the cholesterol pool (about 500 mg
per day), thus turning out to be one of the main mechanisms for cholesterol regulation in
the human body. [15] Consistently, hypercholesterolemia is often treated by Bas seques-
trants [16–19]. It has been observed that certain animals when fed with hypercholesterolic
diet manage to keep normal the plasma cholesterol level, thanks to a compensating mecha-
nism that increases the production of BAs [20]. BAs sequestrants [16] are generally formed
by cationic polyelectrolytes, which are able to bind the BAs through both electrostatic and
hydrophobic attractive interactions and as such to remove them from the enterohepatic
circulation. Sequestration stimulation increased conversion of cholesterol into BAs in the
liver, thereby leading to the lowering of the LDL (low-density lipoproteins, “bad”) choles-
terol in the blood, and simultaneously to an increase in the HDL (high-density lipoproteins,
“good”) cholesterol and triglycerides [21,22]. BA sequestrants are also used in the medical
treatment of BA related diseases, such as BA diarrhea caused by BAs in the large intestine
or colon due to the malabsorption of BA in the small intestine (secondary BA diarrhea)
or BA overproduction resulting from defective feedback inhibition of the biosynthesis of
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BAs in the liver (primary BA diarrhea) [23–26]. In the treatment, sequestrants bind BAs,
hinder them from contact with the colonic mucosa, thereby decreasing the BA level in
the colon [27–29]. BA sequestrants can also reduce glucose levels in patients with type 2
diabetes mellitus, although the mechanism of action still remains unclear [30]. Moreover,
BAs malabsorption reduces the amount of BA in the small intestine inducing fat maldiges-
tion and consequent steatorrhea as occurring in patients with short bowel syndrome [31].
Consequently, the maldigested fatty acids in the small intestine complex the luminal Ca,
lowering the fraction of Ca available for the dietary oxalate precipitation. In turn, the
oxalate remains as free ions and is hyperabsorbed by the colon, leading to hyperoxaluria
and increasing the possibility of kidney stone formation. Oral therapies based on natural
and synthetic conjugated bile salts were observed to decrease fecal fat and urinary oxalate
execration in patients with short bowel syndrome [32,33].

A further important role of BAs towards cholesterol concerns the solubilization activity
in the bile. Cholesterol is majorly eliminated through the secretion in bile. Bile is a solution
produced in the liver that is composed by 95% of water. Free cholesterol is insoluble in
aqueous solutions. However, in bile due to the presence of BAs (about 0.7%) and lipids
like lecithin, cholesterol is easily solubilized through the formation of mixed micelles. Such
a process avoids the cholesterol supersaturation and in turn the formation of gallstones.
The interaction between cholesterol and BAs has been analyzed both from a chemical and
medical point of view. In the first case, several studies analyzed the structure, stability and
parameter formation of BAs–cholesterol-based micelles and crystals [34–36]. In the latter
case, CDCA was proved in the 1970s as successful molecule for dissolution of cholesterol
gallstones [37–40]. However, its use was lately abandoned because of the occurrence of
side effects. The more hydrophilic ursodeoxycholic acid (UDCA) and its taurine conjugate
started to be investigated as alternative treatment for cholelithiasis and their use in oral
therapy is still ongoing, albeit restricted to a specific target group of patients (e.g., patients
having gallstones due to temporary and non-genetic causes) [41]. The combined efficiency
of UDCA and polyunsaturated fatty acids in dissolving cholesterol gallstones in mice was
recently reported by Lee et al. [42].

After the synthesis, conjugated BAs are transferred into bile, passing through the
hepatocyte’s membrane to the canaliculi via the bile salt export pump. The bile in the
canaliculi converge in a series of ducts that eventually terminate into the common hepatic
duct. Via the hepatic duct, the bile reaches the gallbladder, where it is stored or is delivered
directly to the intestinal lumen [43].

3. From the Gallbladder to the Intestine: Lipid Solubilization and Absorption

After a meal, the cholecystokinin hormone is released and its presence is the signal
for the gallbladder to release bile. At this point the aminoacidic conjugation is functional
for the BA activities since it allows for the transits to the small intestine via the biliary tree.
Indeed, being completely ionized at the pH of biliary tract and small intestine, conjugated
BAs cannot diffuse through the cell membranes, thus assuring consistent intraluminal
concentration in the intestine for lipid digestion. Moreover, the conjugated BAs are less
prone than unconjugated BAs to precipitate in presence of high concentration of Ca2+

ions. In the distal small intestine, bacteria break the conjugation with the aminoacidic
of a fraction of conjugated BAs. Deconjugation is completed in the colon where further
modifications as dihydroxylation and epimerization occur to give rise to secondary BAs,
i.e., DCA, LCA and UDCA. Recently, anaerobic in vitro reconstitution experiments showed
that six enzymes are sufficient for the conversion of cholic acid into DCA [44].

At any time, a portion of 85–90% of BAs is present in the small intestine. Here BAs
have several roles in the digestion of lipids, ranging from emulsification to transport
(Figure 2a) [45,46]. Lipid digestion starts in the stomach where the food is initially broken
down by the mechanical action of peristalsis and by the chemical activity of gastric juices.
Subsequently the digestion continues in the duodenum where the partially digested food
mixes with digestive enzymes from the pancreas—pancreatic lipase—and BAs. At this
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stage, the ingested lipids are in the form of oil-in-water emulsion stabilized by different
surface-active substances such as proteins and phospholipids. In order to hydrolyze lipids
into simpler and absorbable molecules, lipase and its co-factor co-lipase have to anchor
on the droplet surface. The first crucial role of BAs is to increase the bioavailability of
the lipid substrates to the enzyme by displacing the different stabilizers at the water–oil
interface. Subsequently BAs indirectly help the positioning of lipase on the lipidic substrate
by favoring the interfacial adsorption of co-lipase. After the lipase activity, lipids are
decomposed in free fatty acids and monoglycerides. These products remain at the oil–
water droplet interface until BAs englobe them in mixed micelles, thereby providing their
removal and transport through the intestinal mucus.

The fundamental understanding of these mechanisms is supported by a large collec-
tion of literature that by means of microscopic, spectroscopic and rheological techniques,
(i) analyzed the displacement mechanism of BAs with respect to a large number of proteins
and lipids (Figure 2b), (ii) demonstrated the improved activity of lipase in presence of BAs,
(iii) elucidated the mechanism of lipid transport through the intestinal mucus [45,47–49].
Besides clarifying the physiological mechanism, such knowledges turn out to be essential
for food and drug industry in order to engineer efficient strategies for drugs, dietary lipids
and sugars uptake in the gastrointestinal tract [50–53].

Figure 2. (a) Schematic representation of the BA functions and self-assembly during the lipid digestion and transport
in the intestine (adapted from Macierzanka, A.; Torcello-Gómez, A.; Jungnickel, C.; Maldonado-Valderrama, J. Bile Salts
in Digestion and Transport of Lipids. Adv. Colloid Interface Sci. 2019, 274, 102045. Ref. [46] with permission from (2019)
Elsevier). (b) Transmission Electron Microscopy images of oil-in-water emulsions stabilized by two surfactants with interest
in food and drug industry, namely Pluronic F68 and Lecithin (left top). Transmission Electron Microscopy images of the
surfactant-emulsion transformation upon BA (left center) and BA + lipase addition (left bottom). Scheme representing the
disposition of surfactant-BA-lipase at the oil/water interface (right). Reproduced from Torcello-Gómez, A.; Maldonado-
Valderrama, J.; Martín-Rodríguez, A.; McClements, D.J. Physicochemical Properties and Digestibility of Emulsified Lipids in
Simulated Intestinal Fluids: Influence of Interfacial Characteristics. Soft Matter 2011, 7, 6167–6177. Ref. [53] with permission
from The Royal Society of Chemistry.

4. Antimicrobial Activity

BAs and gut microbiota have a mutual interaction. As aforementioned, the molecular
structures of primary BAs are modified by the gut bacteria to give rise to secondary BAs or
other BA forms that escape the enterohepatic circulation. Nevertheless, also BAs influence
the microbiota composition [54,55]. Concerning the latter point, it has been for example
observed that low levels of BAs in the gut induce an overgrowth of bacteria and potential
pathogens, increasing the occurrence of inflammations and bacterial translocation. This
is due to the fact that BAs have relevant antimicrobial activities. The BAs antimicrobial
activity can be mainly related to two different action mechanisms. The first one refers
to the detergent properties of BAs and their ability to penetrate and break membranes
(Figure 3a–c). In vitro experiments proved that BAs can provoke hemolysis in erythrocytes
due to BA-induced membrane damages [56]. Similarly, cells were observed to shrivel under
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BAs exposure and release intracellular materials [57–59]. Fast and drastic decomposition
of membrane proteins occurs at high BA concentrations [60]. Sub micellar BA concen-
trations can also alter membrane permeability by interacting with membrane-bounded
enzymes/proteins, by changing the transmembrane flux of divalent cations or by inducing
hydrophobicity and external charge modification of the cells [61]. Antimicrobial activity
due to detergent properties is particularly strong in unconjugated BAs [62]. Indeed, uncon-
jugated BAs can passively penetrate through the lipid bilayer by the “flip-flop” mechanism
and access the cells [63]. The kinetic of the penetration process is strongly affected by the
number of hydroxyl groups, becoming more efficient as the number of hydroxyl group
decreases. Consistently antimicrobial activity of DCA was proved in vitro to be an order of
magnitude higher than that of CA. On the other hand, conjugated BAs are strong acids
and are fully ionized at physiological pHs. In the absence of a specific transport system,
this feature inhibits the BA penetration through the membrane, favoring instead the BA
adhesion on the external part of the bilayers. In vitro studies showed that such adhesion
varies the membrane surface properties that, although destabilizing cell integrity, induce
less membrane damage than the unconjugated analogues. Despite the in vitro results,
in vivo experiments suggested relevant antibacterial properties related to the presence of
conjugated BAs. It was for example observed that events that decrease conjugated BA
secretion in animals, such as liver cirrhosis or bile duct ligation, induce an increase in the
bacterial growth (Figure 3d–f). Similarly, upon feeding of conjugated BAs and bile in BAs-
deficient intestines, overgrowth of bacteria was suppressed. Such contradiction was solved
by Inagaki and coworkers in 2006 who showed an alternative antibacterial mechanism of
BAs [64]. It was proved that conjugated BAs are natural ligands of the nuclear receptor
farnesoid X (FXR) that in turn activate the expression of genes whose products (e.g., nitric
oxide) stop bacterial overgrowth. Such a mechanism occurs in the distal small intestine that
turns out to host a poor fraction of microbes (about 104 to 105 colony-forming units/mL), a
high concentration of conjugated BAs (about 10 mM during digestion time) and an FXR
level three times higher than the epithelium of the proximal small intestine.

Moreover Kang et al. recently discovered that the bile acid 7a-dehydroxylating gut
bacteria, responsible for the biotransformation of primary BAs into secondary BAs, secrete
tryptophan and proline-based antibiotics. Such antibiotics are able to obstruct bacterial
pathogens causing diarrhea and colitis and their efficiency is enhanced in presence of
DCA and LCA [65]. Commensal gut bacteria were also demonstrated to have a regulating
function towards liver cancer by using BAs as signaling molecules. Indeed, BAs through
the portal vein reach the liver sinusoidal endothelial cells and regulate the accumulation
of natural killer T cells, which in turn inhibits the liver tumor growth. It was found in
particular that the accumulation of the natural killer T cells was favored by primary BAs
and disfavored by secondary ones [66].

To conclude this paragraph, it has to be emphasized that the enteric flora in the human
body can have protecting functions, by for example eliciting immune responses, but can be
also responsible for pathologies such as inflammatory bowel disease and cancers [67,68].
Therefore, the resistance of bacteria to the bile toxicity turns out to be one of the key
mechanisms used by the human body to select probiotic strains that can positively perform
in the gastrointestinal tract. The functions showed in the physiological environment can
be modified/amplified by covalently or not-covalently combining the natural BAs with
other moieties/molecules. The huge possibilities offered by modern organic chemistry
has made the BAs functionalization more and more complex. Novel synthetic procedures
have allowed for precise control on stereospecific substitutions, polymerization processes,
introduction of differently charged groups and derivatization of concurrent and multiple
positions on the original molecular structure.

The BA ability to penetrate membranes has been boosted up in derivatives, enabling
for preparation of active molecule carriers where the BA derivatives (BADs) can work both
as monomer (e.g., by the specific interaction with proteins membrane) or in aggregates
(e.g., by the formation of drugs including transferosomes, vesicles, micelles, gels). BAs
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emulsification properties have been investigated to formulate new drugs for treatment of
obesity and other diseases related to slow fat assimilation and high levels of cholesterol (e.g.,
lithiasis). Starting from the regulatory functions of BAs, BADs have also been developed to
interfere in several physiological pathways (e.g., glucose, lipid and energy metabolism) for
the treatment of metabolic syndromes.

5. Functionalized BAs in Medicine

In the light of their biological origin and the specific interaction with several physio-
logical pathways, BA and BADs have naturally become the protagonist of many biomedical
and pharmaceutical studies [69]. For example, antimicrobial activity of natural BAs has
been used in traditional Chinese Medicine in environments different to the physiological
one, e.g., in treatment of skin laceration or for reduction in swelling, pain and fever [70].

Both natural BAs and a large number of BADs have been proved efficient against
many bacteria, parasites, fungi and to induce apoptosis in different types of cancerogenic
cells. To mention some examples, it has been known for more than a decade that LCA
induces apoptosis in neuroblastoma [71], breast cancer [72], prostate cancer [73] cells,
although recently its selective effects on nephroblastoma and sarcoma cell-lines was ques-
tioned [74]. UDCA turned out to both favor and block apoptotic processes in different
types of cells, according to the dosage and administration time. At low dose, UDCA
efficiency has been proved in blocking lung cancer cell migration and propagation of
colon and liver cancer cells. Better performance and lesser occurrence of side-effects have
been shown when UDCA is used in combination with other anticancer drugs [75]. BA
molecules have also been used as a platform for the synthesis of BA-based anticancer
drugs recently overviewed [76]. Synthetic C24 aminoacid conjugated BA such as CDCA
and UDCA acids have been reported to induce apoptosis in several human cancer cells
like calf pulmonary endothelial cancer cells [77], hepatocellular carcinoma cells [78,79],
breast carcinoma cells [80,81], leukemic T cells [82], prostate [83], colon [84] and gastric
cancer cells. Piperazinil derivatives of CDCA and UDCA has been proved to be active
anticancer drugs [85]. Heparin containing C24 modified DCA was reported to be able to
limit migration and adhesion of cancer cells to extracellular matrix and to inhibit formation
of metastasis [86,87]. Functionalization at C3, C7 and C12 with groups containing positive
trimethyl ammonium heads was observed to show enhanced cytotoxicity compared to the
precursor BA [88]. C24 substituted CA derivatives containing phenyl, benzothiazole, and
four methylphenyl groups via aminoacid linkers showed good activity against breast and
glioblastoma cancer cell lines [89]. Recently dihydroartemisinin–UDCA derivatives were
reported to improve the cytotoxicity of dihydroartemisinin towards leukemia cells [90]
and hepatocellular carcinoma [91]. A deoxycholic acid-Camptothecin conjugate [92] was
recently proved by Xiao et al. to enhance the targeted delivery of anticancer molecules in
liver by exploiting the specific BA-BA receptors interaction. A series of nucleoside [93]
and platinum(II) [94]-BADs were screened to test the cytotoxic activity in different tumor
cell lines. A bioconjugate of 4-nitro-3-(trifluoromethyl)-aniline with UDCA was proposed
by Navacchia et al. as photochemotherapeutic agent thanks to its ability to release the
antimicrobial and antioxidant agent NO upon visible light input [95]. Different moieties
were introduced on the BAs scaffold to inhibit the activity of Tyrosyl-DNA phosphodi-
esterase 1 that is an enzyme involved in removing DNA damage caused by the anticancer
topoisomerase I poison drugs [96,97].

Antimicrobial activity is mainly based on the ability of BAs to damage membranes
resulting from their amphiphilic steroidal structure [98]. In addition, BAs can hinder
bioenergetics processes by intracellular acidification, reducing proton motive forces, DNA
damaging and protein denaturation [99]. Based on the antimicrobial activity of natural
BAs, BADs have been synthesized to be used as antifouling agents [100]. Moreover, a class
of BA-based antibiotics termed Ceragenins have been prepared by covalently attaching
amines to BAs, inspired by the molecular structure of squalamine, a naturally occurring
aminosterol with potent antimicrobial activity, isolated from shark liver [101–103]. Similar
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molecules have been linked as pendants to polymers able to locally cluster the facial
amphiphilicity of these cationic steroid antibiotics, thereby enhancing interactions with
bacterial membranes [104–106] (Figure 3g–i). To date, BAs are actually used both as
precursor and co-agent in drug formulation. BA-drug conjugates have been synthesized to
make the drug target liver and to enhance its intestinal absorption, by exploiting the ability
of the conjugate to enter the enterohepatic circulation exploiting the BA transport system.
Based on these principles, BA-based nanocarriers and BADs have been synthesized to
target the apical sodium-dependent BA transporter with inhibitors [107], antiviral [108] and
anticancer [109] drugs. Moreover, drugs against hepatitis C virus and anticancer cytostatic
drugs have been specifically targeted to the liver upon conjugation with BAs [110,111].
With the emergence of the COVID-19 pandemic, natural and synthetic BAs derivatives
have also been investigated as anti-SARS-CoV2–2 agents [112,113].

Figure 3. (a) Direct antimicrobial mechanism of natural BA: detergent effect of BA on the bacterial
membrane. Transmission Electron Microscopy images of S. aureus before (b) and after (c) the
interaction with glycocholic acid (GCA) (Sannasiddappa, T.H.; Lund P.A.; Clarke S.R. In Vitro
Antibacterial Activity of Unconjugated and Conjugated Bile Salts on Staphylococcus aureus. Front.
Microbiol. 2017, 8, 1581 [99] copyright © 2017 Sannasiddappa, Lund, Clarke (CCBY)) (d) Indirect
antimicrobial mechanism of natural BA: BAs activate the farnesoid X receptor (FXR) that in turn
induces the expression of genes producing toxic molecules for bacteria (Inagaki, T.; Moschetta, A.;
Lee, Y.K.; Peng, L.; Zhao, G.; Downes, M.; Yu, R.T.; Shelton, J.M.; Richardson, J.A.; Repa, J.J.; et al.
Regulation of Antibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proc.
Natl. Acad. Sci. USA 2006, 103, 3920–3925. Ref. [64], Copyright (2006) National Academy of Sciences,
U.S.A.). (e) Transverse sections of terminal ileum of mice immunostained with anti-occludin antisera
(top) and hematoxylin and eosin (H&E, bottom), scale bar 50 µm. Micrographs of control mice (left)
are contraposed to micrographs of FXR knockout mice (right). (f) Lymphatic vessel section of FXR
knockout mice, scale bar 2 µm. Arrows point to traces of edema and dilated lymphatic vessels that
are induced by bacteria. (g) Copolymers of cholic acid (CA) and polyethylene glycol self-assemble
into rods that are able to penetrate the bacterial membrane Scanning Electron Microscopy images
of E.coli without (h) and with (i) BA polymer treatment (adapted with permission from Rahman,
M.A.; Jui, M.S.; Bam, M.; Cha, Y.; Luat, E.; Alabresm, A.; Nagarkatti, M.; Decho, A.W.; Tang, C. Facial
Amphiphilicity-Induced Polymer Nanostructures for Antimicrobial Applications ACS Appl. Mater.
Interfaces 2020, 12, 21221–21230 [105]. Copyright (2020) American Chemical Society).
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6. BA-Based Polymers

BAs can be used in the preparation of polymers with a main interest in drug de-
livery [114]. The presence of the carboxylic and hydroxyl groups on their molecule al-
lows them to anchor polymer chains or to join into BA-based chains. BA containing
polymers have been extensively investigated and recently overviewed by Zhu and co-
workers [115]. According to the former approach, BAs can be used as templates onto
which polymers are grown, by exploiting the hydroxyl and the carboxylic groups as
junctions for polymer chains, thereby providing star polymers [116]. The star polymers self-
assemble into micelles with a hollow-core [117] able to encapsulate large drug loads, which
depends on the number of BA hydroxyl groups (i.e., the number of polymer branches)
(Figure 4a,b). The doxorubicin-loading ability of star polymers formed by poly(allyl gly-
cidyl ether) and poly(ethylene glycol) grafted from the CA was recently analyzed, showing
that a particularly high loading is achieved by exploiting electrostatic interactions. In
addition, a remarkable cellular internalization was observed for the loaded carrier [118].
BAs can be also introduced as pendant groups in block copolymers and thereby used
to tune their properties and functionalities such as pH- and thermo-responsiveness and
self-healing properties (Figure 4c,d) [119,120]. The investigation of the aggregates formed
by these macromolecules has been promoted for their potential in drug and gene delivery
applications [119,121–123].

Polymers formed by BAs as repeating units in the main chain, have also been synthe-
sized with branched or linear architectures [124], mainly studied for their elastomeric and
shape memory properties [125]. CA has also been introduced as pendants in the hydropho-
bic diblock copolymers containing a glucosamine-based hydrophilic block, for bio-related
applications. It was demonstrated that the self-assembly of the block copolymer could be
tuned by changing the length of the blocks to provide micelle with optimal drug loading
ability [126]. Recently a block copolymer containing a dextran block linked to semi-rigid
deoxycholic acid-oligo ethylene glycol polyester, was investigated, which showed a rich
self-assembly involving star-shaped and wormlike micelles and vesicles depending on the
dextran block length [127].

7. BA Lipid Mixtures

BAs and lipids can form mixed micelles exploited to solubilize hydrophobic drugs
and to improve their bioavailability [50,128] BA containing liposomes, sometimes named
bilosomes, can be also prepared by intercalating BAs in the liposome lecithin bilayer.
Bilosomes are preferentially used to deliver oral administrated drugs and vaccines due
to their ability to stand acid conditions, enzyme attack and bile salt degradation in the
gastrointestinal track compared to pure liposomes. They have also been observed to
increase the absorption of oral administrated insulin [129] and to facilitate transdermal
drug delivery [130].

8. BA Polymer Mixtures

Biocompatible polymers are versatile systems widely exploited in applications. Based
on their composition and sample conditions they can be available as solids, free chains,
covalently crosslinked nano- and micro-gels or self-assembled nanoparticles, thus pro-
viding a platform adaptable for performances in several fields including drug delivery,
tissue engineering, sensors, and catalysis. Interactions of BAs with cationic polymers are
crucial for sequestration in the treatment of BA malabsorption or hypercholesterolemia.
However, there is room for improvement of the currently used sequestrants of water-
insoluble cationic hydrogels that have poor patient compliance [28,29] and recently some
reports on new polymeric BA sequestrants have appeared in the literature [131,132]. Block
copolymers able to strongly interact both electrostatically and hydrophobically with BAs
have been proposed as compelling alternative sequestrants [133,134]. Investigations on
the interaction between BAs and poloxamers have recently demonstrated that BAs can be
adsorbed on the corona of block copolymer micelles, thereby promoting block copolymers
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as alternative BA sequestrants [135–137]. Similar Pluronic/BA mixed micelles were proven
to be appealing drug-delivery vehicles and to efficiently load drugs like Clozapine [138]
and Doxorubicin [139,140]. Because the BAs are anionic surfactants, it is expected that
cationic block copolymers provide better BA binding and sequestration. Therefore, in
a recent paper the co-assembly in dilute aqueous solution was reported in mixtures of
diblock copolymer constituted of one poly(N-isopropyl acryl amide) (PNIPAM) block
and a cationic polymer block of poly(3-acrylamidopropyl)-trimethylammonium chloride
(PAMPTMA(+)) and the oppositely charged BA surfactant sodium deoxycholate. Two
kinds of mixed aggregates were observed to form at room temperature having a globu-
lar morphology or a longitudinally striped tape-like architecture, which have a roughly
neutral zeta potential at all compositions of the mixtures (Figure 4e–g) [141]. It was also
found that the loss of water-solubility of PNIPAM with increasing temperature induces
pronounced aggregation at a transition temperature, to provide aggregates with an interior
containing dehydrated PNIPAM and a remarkably positive or negative charge depend-
ing on the mixture composition, thereby promoting the block copolymer–BA complex
as versatile smart material for nanotechnological application. It was also demonstrated
that precipitation of the complexes occurs at large fraction of BA as those encountered by
sequestrants in the gastrointestinal track [142]. A thermoresponsive BAD was observed
to interact with the same catanionic block copolymer to form a complex, for which an
intriguing thermoresponse was revealed by scattering techniques and circular dichroism
measurements [143].

Figure 4. (a) Star-shaped block copolymers are able to load the drug Doxorubicin (Dox) through
hydrophobic interaction (yellow box) or electrostatic interaction with (blue frame) or without (red
frame) oleic acid (OA) as cosurfactant. (b) TEM micrographs of the star-polymer micelles before
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(upper panel) and after (lower panel) Dox loading. Adapted with permission from Cunningham, A.J.;
Robinson, M.; Banquy, X.; Leblond, J.; Zhu, X.X. Bile Acid-Based Drug Delivery Systems for Enhanced
Doxorubicin Encapsulation: Comparing Hydrophobic and Ionic Interactions in Drug Loading and
Release Mol. Pharm. 2018, 15, 1266–1276. Ref. [118] Copyright 2018 American Chemical Society(c)
Block-copolymer formed by cholic acid and b-cyclodextrin residues assembling into a self-healing
gel; schematic representation showing the interplay among the residues in the gel matrix (top).
(d) Optical (left) and rheological (right) evidence of the gel break and self-healing process (adapted
with permission from Jia, Y.G.; Zhu, X.X. Self-Healing Supramolecular Hydrogel Made of Polymers
Bearing Cholic Acid and β-Cyclodextrin Pendants. Chem Mater 2015, 27, 1, 387–393. [120] Copyright
(2015) American Chemical Society). (e) The block copolymer PNIPAM120-b-PAMPTMA(+)30 when
mixed with CA self-assembles into tape-like complexes where single stripes present recurring spacing.
(f,g) Cryo TEM images of the tape-like aggregates (adapted from Schillén, K.; Galantini, L.; Du, G.; Del
Giudice, A.; Alfredsson, V.; Carnerup, A.M.; Pavel, N.V.; Masci, G.; Nyström, B. Block Copolymers
as Bile Salt Sequestrants: Intriguing Structures Formed in a Mixture of an Oppositely Charged
Amphiphilic Block Copolymer and Bile Salt. Phys. Chem. Chem. Phys. 2019, 21, 12518–12529.
Ref. [141] Published by the PCCP Owner Societies).

Polymeric carriers for the oral administration of drugs are expected to interact with
BAs, which may affect the drug solubilization and absorption. With this motivation, the in-
teraction in mixtures of sodium taurocholate and widely used hydrophilic model polymers
such as hydroxypropyl methylcellulose and polyvinylpyrrolidone, was investigated, re-
vealing that the formation of mixed BA/polymer aggregates occurs in the mixtures, which
could significantly affect the drug solubilization in the gut when hydrophilic polymers are
used as dispersant [144].

9. Self-Assembly of Natural and Chemically Modified BAs

BA salts, here simply referred to as BAs, are soluble in water and provide self-assembly.
Unlike conventional surfactants with the typical head–tail amphiphilic structure these
salts have a rigid molecular structure with, in the majority of the cases, a well-defined
facial amphiphilicity, resulting in a more complex self-assembly. As a matter of fact, it
is well established that aggregation of BAs is driven by the interplay of hydrophobic
interactions and hydrogen bonds involving hydroxyl, amide and carboxylic groups and
provide aggregates with merged hydrophobic and the hydrophilic domains. The issue is
still debated among several self-assembly models including the stepwise mechanism from
globular primary micelles to secondary elongated ones [145,146], micellar disks [147] or
helical aggregates [148,149].

In water, BAs form micelles with low aggregation number (2–20) in an associated
process that is often observed to be gradual and without a sharp critical micellar concentra-
tion. Reported critical micellar concentrations decrease relative to a decrease in the number
of hydroxyl groups (increasing hydrophobicity) according with the order cholate < de-
oxycholate [150–152], but also strongly depend on their positions and orientations with
ursocholate and ursodeoxycholate that have hydroxyl groups in β-orientation presenting a
lower cmc than the cholate and deoxycholate.

A decrease in the repulsions among the charged heads of deprotonated BAs can be
induced by increasing the ionic strength or by decreasing the pH (for carboxylate BAs),
thus promoting unidirectional growth of the micelles. Fibrils form because of the growth
that can lead to gelation. For example, it is well known that DCA forms gels in water
upon lowering pH around neutrality [4,153], with specific features induced by the used
acid [154] or the presence of additives [155,156]. Gelation is also promoted by increasing
the electrolyte concentration in DC, glycodeoxycholic (GDCA), LCA, and taurodeoxycholic
(TDCA) acid salt solutions [149,157]. In such gels, the chirality of the building blocks
is extended also at supramolecular level [158] where the helical structures of the fibrils,
analogous to those observed in some BA crystal, [148,149,159], are observed.
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Multivalent cations like Ca2+ can crosslink BA charge heads promoting micellar
growth and gelation for cholate and GDCA. Crosslinking and formation of nanohelices
can be induced on CA solution also by other multivalent cations, like those of transition
metals [160,161] and lanthanides [162–164]. Similarly, gels can be formed by LCA upon
addition of alkaline earth, lanthanide, and transition-metal ions, [165] and by DCA in the
presence of europium nitrate [166].

Electrolyte-induced wormlike micelle growth and gelation is also observed in lecithin/
BA aqueous mixtures [167,168]. A similar growth, but with a different mechanism is
observed in lecithin/BA mixtures in oil, where reverse micelles of lecithin turn wormlike
upon inclusion of the BAs in their interior [169,170].

The various self-assembly behavior of natural BA includes the formation of tubular
aggregates, provided by LCA at strong alkaline conditions (pH = 12) [171,172]. It was
shown by Fang and coworkers that pH variation can induce a switch of the tubules from
spiral to a straight shape by changing pH [173]. The same authors demonstrated that
LCA can form ribbon-like J or tubular H aggregates when mixed with cyanine dyes [174],
and mixed tubules with TLC that can reversibly open/close by controlling the hydration
(Figure 5a) [175].

It is important to remark that BAs are chiral molecules, and can selectively interact
with enantiomers of additives both in monomeric and micellar form. This ability was
reported for the interaction of monomers and micelles of DCA [176], GCA, and TCA [177]
with the enantiomeric conformers of bilirubin-IXa, and recently for CA and DCA with
binaphthyl enantiomers [178]. BA micellar self-assembly was extensively investigated in
the past and exhaustively described in a recent review [4]. In addition, it is worthy to stress
that, in the light of the use of BAs in the formulation of drugs, the effect of active molecules
on the self-assembly of BAs, as recently reported for CA and DCA in the presence of the
antibiotic drug ceftriaxone, is a particularly relevant topic [179].

Beside the drug-conjugated derivatives employed in medicine and the polymeric
molecules, a broad family of molecules can be synthesized starting from BAs, to provide an
expanded set of self-assembling biomaterials [6]. Derivatives can be prepared with dispersing
ability of diverse materials like proteins [180] or carbon nanotubes (Figure 5b) [181]. In ad-
dition, BAs can be used as substrates to prepare an ensemble of steroidal building blocks
for the fabrication of unconventional supramolecular nanostructures. Typically, fibers
or ribbons are formed together with more complex tubular nano- and micro-aggregates
with diameters ranging from a few nanometers to half a micron. Tubules are reported
to form in aqueous systems of C-3 substituted BA with various residues such as aro-
matic organic groups [6,182–188] or amino acids [189–192], and sugars [193,194], often
via stimuli-responsive self-assembly, triggered by pH [182,183] or temperature [184,195].
Interesting systems of tubules with tunable charge or diameter have been implemented by
mixtures of cationic and anionic derivatives [196,197] or precursor and derivative [198]. In
addition, it was recently demonstrated that BA derivative tubules are suitable elements for
higher order self-assembly, providing supracolloidal non-obvious aggregates when mixed
with microgels, with relevant potential in the preparation of new functional materials
(Figure 5c) [199].

Keeping the same substituent, the ability to form tubules was reported to be lost for
aminoacid substituted derivatives obtained from more hydrophilic BA precursors [191,192],
whereas for organic aromatic substituent, tubules with remarkably different sizes were
observed to form by BA differing for number, positions and orientations of the hydroxyl
groups [184–186,195]. Spectroscopies, such as circular dichroism, show that the substituents
are strongly involved in intermolecular interactions in the aggregates thereby demonstrat-
ing their relevance in the self-assembly of the derivatives. The ability to form tubules in
sugar substituted derivatives is lost when glucose instead of mannose [200] is used as
substituent, thereby remarking the key role of the substituent and its specific interactions
in the aggregation. Recently, selectively C-3 and C-12 substituted CA derivatives were
investigated, highlighting crucial effects of position and orientation of the substituent on
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the self-assembly: both systems showed thermoresponsive assembly at similar critical
temperature, probably due to the nature of the substituent, but involving morphologi-
cally different structures according to the position and stereochemistry of the substituting
residue [201] (Figure 5d). Exploiting the cross-linking action of cations [202], stable gels of
helical ribbons closed into hollow cylinders have been reported to form by calcium ions
and phenylalanine substituted deoxycholate at high pH [203].

Figure 5. (a) Co-assembled lithocholate/taurolithocholate tubes (optical microscopy image, top
left) are longitudinally unzipped into flat structures (Atomic Force Microscopy image, top right)
by capillary force upon dehydration on substrates. The process of unzipping is proved by optical
microscopy images (center) and schematized (bottom) (adapted with permission from Zhang, X.;
Bera, T.; Liang, W.; Fang, J. Longitudinal Zipping/Unzipping of Self-Assembled Organic Tubes J.
Phys. Chem. B, 2011, 115, 14445–14449. [175] Copyright (2011) American Chemical Society). (b) BA
or BA derivatives facially interact with carbon nanotubes’ surface, enabling their dispersion in
water solution (scheme, top). Atomic Force Microscopy images of BA derivative dispersed carbon
nanotubes in water (bottom right). Graph reporting the carbon nanotubes dispersion efficiency
upon addition of BA derivatives, natural BA and conventional head–tail surfactant SDS (dark grey,
light grey, black bars, respectively, bottom right) (adapted with permission from Gubitosi, M.;
Trillo, J.V.; Alfaro Vargas, A.; Pavel, N.V.; Gazzoli, D.; Sennato, S.; Jover, A.; Meijide, F.; Galantini,
L. Characterization of Carbon Nanotube Dispersions in Solutions of Bile Salts and Derivatives
Containing Aromatic Substituents J. Phys. Chem. B 2014, 118, 1012–1021. [181] Copyright (2014)
American Chemical Society). (c) BA derivative-based scrolls having negative (top left, red frame) and
positive charge (bottom left, blue frame) interact with positive and negatively charged microgels,
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respectively, giving rise to electrostatically stabilized supracolloidal aggregates (right) (from Cautela,
J.; Lattanzi, V.; Månsson, L.; Galantini, L.; Crassous, J.J. Sphere–Tubule Superstructures through
Supramolecular and Supracolloidal Assembly Pathways Small 2018, 14, 1803215. [199] Copyright
(2018) Wiley). (d) Thermoresponsive cholic acid derivatives functionalized with a tert-butyl phenyl
amide residue on C-3 (top left) and C-12 (top right). Microscopy images of the structures forming at
lower and higher temperatures than the critical transition temperatures for the C-3 (bottom left) and
C-12 (bottom right) derivatives (from Galantini, L.; Leggio, C.; Jover, A.; Meijide, F.; Pavel, N.V.; Soto
Tellini, V.H.; Vázquez Tato, J.; Di Leonardo, R.; Ruocco, G. Kinetics of Formation of Supramolecular
Tubules of a Sodium Cholate Derivative. Soft Matter 2009, 5, 3018–3025. [184] permission conveyed
through Copyright Clearance Center, Inc. Cautela, J.; Severoni, E.; Redondo-Gómez, C.; di Gregorio,
M.C.; Del Giudice, A.; Sennato, S.; Angelini, R.; D’Abramo, M.; Schillén, K.; Galantini, L. C-12 vs.
C-3 Substituted Bile Salts: An Example of the Effects of Substituent Position and Orientation on
the Self-Assembly of Steroid Surfactant Isomers. Colloids Surf. B. 2020, 185, 110556. [201] Copyright
(2019), with permission from Elsevier.

Several BAs functionalized at the carboxylic groups to form different species like
hydrazide [204] and aminoacid [205] esters [206] and conjugate [207,208] have also been
widely investigated for their organo- or hydro-gelation properties. The importance of the
hydrophobic/hydrophilic balance of the derivatives on their gelation ability was clearly
illustrated. Very interestingly, the gelling ability enhancement in the mixture of cationic
and anionic derivatives has also been disclosed highlighting the relevant contribution to
the gelation of electrostatic attraction between the derivatives charge heads [209].

10. Conclusions

BAs are natural molecules ubiquitously found in vertebrates. In humans, they are pro-
duced in the hepatocytes from cholesterol modification and, through a cyclic path named
enterohepatic circulation, are transported from liver to intestine, lately being transferred to
the blood stream by which they are re-absorbed from the liver. The unusual amphiphilic
structures allow BAs to exhibit detergent functions towards different compounds, e.g.,
solubilization of cholesterol, fat dietary lipids and penetration/breaking of membranes.
The latter feature, expressed towards bacteria, makes BAs important antibacterial elements
that are able to regulate the strength of the gut microbiota. Furthermore, BAs work in the
body as hormones, being signaling molecules for the expression of genes and regulators
of different metabolic paths. The physiological roles of BAs briefly summarized here and
comprehensively overviewed by other specialist reports [210–214], opened the field for
an extensive investigation of BAs and BADs use in biomedical applications including
antimicrobics, anti-cholesterol drugs, regulator of dietary lipid uptake and drug carri-
ers in co-formulations with other molecules (e.g., lipids and polymers). The application
possibilities broaden even more when adopting BADs. BADs have been shown to be
suitable building blocks for self-assembly structures showing a wide range of properties
(e.g., gelling ability, stimuli responsiveness, self-healing). Such aggregates have been re-
ported to be useful both in biological fields and material science. These aspects are going
continuously growing, opening up unexpected scenarios in the preparation of different
kinds of organic and inorganic nanomaterials [4].
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Abbreviations

BA Bile acid
CA Cholic acid
CDCA Chenodeoxycholic acid
GCA Glycocholic acid
TCA Taurocholic acid
TCDCA Taurochenodeoxycholic acid
GCDCA Glycochenodeoxycholic acid
DCA Deoxycholic acid
LCA Lithocholic acid
CYP7A1 Cholesterol 7α-hydroxylase
CYP27 Sterol 27-hydroxylase
CY8B1 12α-hydroxylase
CYP7B1 Oxoysterol 7α-hydroxylase
BAD Bile acid derivative
PNIPAM Poly(N-isopropyl acryl amide)
PAMPTMA Poly((3-acrylamido-propyl)-trimethylammonium chloride
GDCA Glycodeoxycholic acid
TDCA Taurodeoxycholic acid
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