
Published online 25 July 2007 Nucleic Acids Research, 2007, Vol. 35, No. 15 e95
doi:10.1093/nar/gkm540

Improved identification of enriched peptide–RNA
cross-links from ribonucleoprotein particles
(RNPs) by mass spectrometry
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ABSTRACT

Direct UV cross-linking combined with mass spec-
trometry (MS) is a powerful tool to identify hitherto
non-characterized protein–RNA contact sites in
native ribonucleoprotein particles (RNPs) such
as the spliceosome. Identification of contact sites
after cross-linking is restricted by: (i) the relatively
low cross-linking yield and (ii) the amount of start-
ing material available for cross-linking studies.
Therefore, the most critical step in such analyses
is the extensive purification of the cross-linked
peptide–RNA heteroconjugates from the excess
of non-crosslinked material before MS analysis.
Here, we describe a strategy that combines
small-scale reversed-phase liquid chromatography
(RP-HPLC) of UV-irradiated and hydrolyzed RNPs,
immobilized metal-ion affinity chromatography
(IMAC) to enrich cross-linked species and their
analysis by matrix-assisted laser desorption/
ionisation (MALDI) MS(/MS). In cases where no
MS/MS analysis can be performed, treatment of
the enriched fractions with alkaline phosphatase
leads to unambiguous identification of the cross-
linked species.
We demonstrate the feasibility of this strategy
by MS analysis of enriched peptide–RNA cross-
links from UV-irradiated reconstituted [15.5K-61K-
U4atac snRNA] snRNPs and native U1 snRNPs.
Applying our approach to a partial complex of
U2snRNP allowed us to identify the contact site
between the U2snRNP-specific protein p14/
SF3b14a and the branch-site interacting region
(BSiR) of U2 snRNA.

INTRODUCTION

Protein–RNA complexes (ribonucleoprotein particles,
RNPs) play a fundamental role in the control and
regulation of gene expression in the eukaryotic cell. They
participate in essential cellular processes such as pre-
mRNA splicing, rRNA maturation, post-transcriptional
control (mRNA stability), RNA export, translation and
translational control. In the field of alternative splicing and
of translational control by microRNAs, it was recently
demonstrated that protein–RNA interactions and their
dynamic changes provide a basis for the diverse and
complex driving forces behind such processes (1–5).
There are various approaches to identifying the proteins

involved in these processes. One is the overall analysis of
the proteins associated with the complexes by mass
spectrometry [MALDI-MS (6), Electrospray Ionisation
(ESI)-MS (7)], as was recently demonstrated by several
proteomic studies of RNP complexes that play funda-
mental roles in (alternative) splicing (8–10) and siRNA-
and miRNA-mediated translational repression (11–14).
However, in proteomic-driven studies, no information is
gained regarding the question of which of the identified
components interacts directly with RNA. A straightfor-
ward approach to identify proteins in direct contact to
their cognate RNAs is protein–RNA cross-linking com-
bined with MS (15). An alternative/additional method
for mapping protein–RNA interactions using MS is the
dissociation of intact protein–RNA complexes in the mass
spectrometer and the analysis of components that are
still associated with RNA (16,17).
One possibility for protein–RNA cross-linking is the

direct UV-irradiation of RNPs at 254 nm (18), based on
the natural UV-reactivity of the RNA nucleobases. Upon
excitation, a covalent bond between a nucleobase
and an amino-acid side chain of a protein is formed.
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This approach has several advantages over site-specific
labelling (19,20) or over using heterobifunctional reagents
[e.g. (21,22)]: (i) It can be applied directly to any native
protein–RNA complex isolated from cells without recon-
stituting particles carrying site-specific cross-linkers
(which can lead to a heterogeneous population and/or
can reduce the yield of complexes for interaction studies).
(ii) Zero-length cross-links have been proven to have a
very high specificity, as demonstrated recently by the 3D
structures of co-crystallized RNA–protein complexes
(23,24). The site of contact identified in this way always
reflects a structural (and functional) RNA interaction
domain within or very close to the RNA-binding domain
of the protein (25). (iii) It obviates extensive probing
experiments, in contrast to comparable protein–RNA
cross-linking studies using heterobifunctional reagents, in
which the optimal probing conditions have to be carefully
adjusted (21). (iv) No inter- or intramolecular protein–
protein cross-links are generated (at least as reported so
far), which reduces the number of putatively cross-linked
species within the mass spectra and simplifies their
interpretation.
However, combining protein–RNA cross-linking with

mass spectrometry encounters several challenges:
(i) because the yield in UV cross-linking is low(er), a
purification strategy must be established that separates the
cross-linked species from the excess of non-crosslinked
species. (ii) MS per se must be adapted, since the peptide
and RNA moieties of the cross-linked conjugates show
divergent physico-chemical properties in the analysis.
(iii) Enrichment and/or down-scaling strategies are
required, both to reduce the amount of starting material
(and thus to allow the study of material directly isolated
from cells) and to increase the intensity of the peaks from
(low-abundance) protein–RNA cross-links in MS.
In recent years, we have established a strategy for

the purification and subsequent MALDI-Time-of-Flight
(MALDI-ToF) MS analysis of cross-linked peptide–
oligoribonucleotides derived from UV-irradiated native
and reconstituted ribonucleoprotein particles (15,26 and
below). It comprises: digestion of the protein moiety of
cross-linked RNPs with endoproteinases, removal of the
excess of non-crosslinked peptides by size-exclusion
chromatography, hydrolysis of RNA-containing fractions
with RNases and subsequent fractionation of the resulting
mixtures on a microbore liquid-chromatography (LC)
system. Fractions that showed an absorbance at 220 nm
(peptide moiety) and 254 nm (RNA moiety) were
considered to contain cross-linked species and were
subsequently analysed by MALDI-MS and -MS/MS
using 2,5-dihydroxybenzoic acid (DHB) and/or
2,4,6-trihydroxyacetophenone (THAP) as matrices (15).
On the basis of this work, we report here a down-

scaling/enrichment strategy of cross-linked peptide–RNA
oligonucleotide species from low amounts of starting
material (�50 pmol) obtained from UV-irradiated RNPs.
The novel approach comprises enrichment of peptide–
RNA cross-links by immobilized metal-ion affinity chro-
matography (IMAC) from capillary RP-HPLC fractions
combined with treatment of the enriched species with calf
intestinal alkaline phosphatase (CIP) to exclude false

positives and the subsequent MS analysis by MALDI-
ToF mass spectrometry.

In feasibility studies, we successfully applied this
strategy to the detection of several peptide–
RNA oligonucleotide heteroconjugates derived from
(i) UV-irradiated partial complexes of the human minor
spliceosome (26), i.e. [15.5K-61K-U4atac snRNA] com-
plexes (24,25), and (ii) from UV-irradiated native U1 small
nuclear ribonucleoprotein (snRNP) particles (27) of the
human major spliceosome (28) that had been studied
before (15,29,30). Moreover, we were able to enrich
cross-links derived from a UV-irradiated [p14/SF3b14a-
SF3b155282–424] protein complex bound to a U2 snRNA
oligomer that mimics the branch-site interacting region
(BSiR) of the U2 snRNA (31).

EXPERIMENTAL

Sample preparation

Reconstituted [15.5K-61K-U4atac snRNA] complexes
(25) and native U1 snRNPs (27) were obtained and UV
cross-linked as described previously (15). [p14/SF3b14a-
SF3b155282–424-U2 snRNA BSiR] particles were reconsti-
tuted and UV-irradiated according to (31). The protein
moiety of the particles was digested with endoproteinase
trypsin (Promega) or chymotrypsin (Roche) (ratio 1:20 for
both) and the RNA with RNase T1 (Ambion; ratio 1:15)
or RNases T1 and A (Ambion; ratio 1:20 for both).
The applied purification scheme for the cross-links
was according to (15) with the exception for the
[p14/SF3b14a-SF3b155282–424-U2 snRNA BSiR] particles.
In this case, the non-crosslinked peptide moiety was
separated from the non-crosslinked and cross-linked
U2 snRNA BSiR oligomers by size exclusion chromato-
graphy on a Superdex Peptide column (300mm� 3.2mm)
mounted on a SMART system (all GE Healthcare,
Uppsala, Sweden). Peptide–RNA heteroconjugates were
subsequently purified from the mixture by reversed-phase
liquid chromatography (RP-LC) with an RP C18 column
(150mm� 0.3mm; MicroTech Scientific, Vista, USA)
coupled to a 140C microgradient system (Applied
Biosystems, Foster City, USA) running at a flow rate of
2 ml/min. A gradient of water/0.1% trifluoroacetic acid
(TFA) (solventA) and 80% acetonitrile/0.085%TFA was
used. Fractions of 8 ml volume were collected, evaporated
to dryness and subjected to further analysis.

IMAC and CIP treatment of peptide–RNA heteroconjugates

Peptide–RNA oligonucleotide cross-links were enriched
from one-half of the cap-LC fractions by IMAC using
POROS 20 MC beads (Applied Biosystems) loaded with
Fe(III) ions (32). For this, capillary LC fractions were
redissolved in 50% acetonitrile (ACN) with 0.5% acetic
acid (HOAc); one-half was incubated with the IMAC bead
slurry for 30min and the other half retained for hydrolysis
(see below). The beads were subsequently washed with 25,
50 and 75% ACN in 100mM HOAc. Bound cross-links
were eluted from the beads with 1% phosphoric acid and
subjected to MALDI-MS analysis. Peptide–RNA cross-
links of the remaining half of the cap-LC fractions were
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IMAC-enriched as before and additionally incubated with
1U of CIP (New England Biolabs) on Fe(III)-loaded
POROS 20 MC beads. The beads were washed once with
50% ACN in 100mM HOAc. Enriched and phosphatase-
treated cross-linked species were subsequently eluted
from the beads with 1% phosphoric acid as before and
subjected to MALDI-MS analysis.

Mass spectrometry

Cross-linked samples were analysed on a Reflex IV
mass spectrometer (Bruker Daltonik GmbH, Bremen,
Germany) with 2,5-dihydroxybenzoic acid (DHB) as
MALDI matrix in the positive reflectron mode for the
U1 snRNP and the [15.5K-61K-U4atac snRNA] particles
and in the negative reflectron mode for the [p14/SF3b14a-
SF3b155282–424-U2 snRNABSiR] complex, both under
standard conditions, by summing up to 1000 laser shots.

0.5ml of sample were mixed with the same volume of
DHB (10mg/ml in 50% ACN or water, respectively) on
an AnchorChipTM MALDI target plate (Bruker Daltonik
GmbH, Bremen, Germany) with spot sizes of 600 or
400 mm. The preparation was allowed to dry at room
temperature and subjected to MS. Close external calibra-
tion with peptide standards was performed.

RESULTS AND DISCUSSION

Capillary LC

There are two critical steps in the entire analysis of
isolated peptide–RNA cross-links from non-labelled
UV-irradiated protein–RNA particles: (i) the yield
achieved in cross-linking is usually very low, and (ii) the
amount of starting material available is only small when
native RNP particles are being investigated. As a
consequence, the successful MS analysis of protein–
RNA cross-links requires either an increase in the cross-
linking yield or an improvement of the chromatographic
separation and the enrichment of the heteroconjugates
over the excess of non-crosslinked species.

We therefore introduced a capillary liquid chromato-
graphy (cap-LC) system for the final purification step
of the peptide–RNA heteroconjugates [instead of the
microbore HPLC used in previous experiments (15)]. This
allowed us to reduce drastically the amount of starting
material of RNPs for cross-linking and for subsequent
purification of the cross-linked heteroconjugates by LC
to �50 pmol as compared to 1.5–3.0 nmol of starting
material needed beforehand. An example of a cap-LC
chromatogram derived from the purification of 50 pmol of
native U1 snRNP particles after hydrolysis with trypsin
and RNase T1 is given in Figure 1. In contrast to our
previous experiments (15,29), defined collection of isolated
peptide–RNA cross-links is not longer possible. Fractions
contain a mixture of residual non-crosslinked peptides and
cross-linked heteroconjugates and unambiguous identifi-
cation of the putative cross-links (for subsequent MS/MS
analysis) is hampered.

IMAC enrichment of cross-links and CIP treatment

One possibility to overcome this problem is the introduc-
tion of an enrichment strategy for putative peptide–RNA
heteroconjugates, employing a technique such as IMAC
(33,34). In this context, we make use of a feature shared by
protein–RNA cross-links and phosphopeptides, namely
the phosphate groups that both carry. As phosphopep-
tides, cross-links and free RNA oligonucleotides can
interact with the IMAC material through their negatively
charged phosphate groups [as also demonstrated for
cross-linked protein–DNA complexes (35–37)]. Since
IMAC favours not only the enrichment of phosphate-
containing species, but also a certain degree of unspecific
binding of (acidic) peptides to the affinity matrix, the
identity of enriched precursors must usually be verified
by MS/MS experiments. Alternatively, additional treat-
ment of the IMAC-enriched fractions with CIP can be
used for the validation of the enriched species (32),
as it allows the exclusion of false positives, i.e. acidic
peptides, by a characteristic mass shift of 80Da (=HPO3)
in the corresponding MS spectra. CIP treatment together
with highly accurate MALDI-ToF MS analysis in
the reflectron mode and a computational database
search (15) can reveal the cross-linked species in the
spectrum without precursor selection and subsequent
MS/MS analysis.
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Figure 1. Chromatogram of a capillary LC-run for the purification of
peptide–RNA heteroconjugates derived from UV-irradiated U1 snRNP
particles after hydrolysis with trypsin and RNase T1. The injection
peak containing the moiety of non-crosslinked RNA oligonucleotides is
indicated. A representative example of a MALDI-MS spectrum from a
cap-LC fraction is shown.
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Figure 2A–C shows the MALDI-MS spectra of
capillary-LC fractions of UV-irradiated [15.5K-61K-
U4atac snRNA] complexes treated with chymotrypsin
and RNaseT1 (Figure 2A) or RNase T1/A (Figure 2B)
and of UV-irradiated native U1 snRNPs hydrolyzed with
trypsin and RNase T1 (Figure 2C) without IMAC
treatment. Figure 2D–F shows the MALDI-MS spectra
of the same fractions treated with IMAC. In all three
cases, MALDI-MS revealed enriched species with m/z

values of 3071.92, 1801.68 and 2272.75, respectively.
MS/MS experiments of these putatively cross-linked
precursors cause difficulties, as the amount of precursor
is not sufficient (and precursor selection even in the non-
enriched samples is restricted by the technical specifica-
tions of the MALDI instrument). To prove without
MS/MS experiments that enriched precursors carry a
phosphate moiety (32)—i.e. must contain a cross-linked
RNA oligonucleotide with a 30-phosphate (as derived

Figure 2. Identification and validation of cross-linked peptide–RNA heteroconjugates by MALDI-ToF MS using IMAC and combined IMAC/CIP
treatment. All spectra were recorded in positive ion-mode with DHB as matrix. (A–C) MALDI-ToF MS spectra of cap-LC fractions derived from
UV-irradiated [15.5K-61K-U4atac snRNA] complexes after hydrolysis with chymotrypsin and RNase T1 (A), chymotrypsin and RNases A/T1 (B)
and from UV-irradiated native U1 snRNP particles after hydrolysis with trypsin and RNase T1 (C). (D–F) MALDI-ToF MS spectra of the same
fractions after treatment with IMAC. (G–I) MALDI-ToF MS spectra of the same fractions after combined IMAC/CIP treatment. The masses of the
enriched precursor ions at m/z 3071.918 and 1801.675 correspond to a chymotryptic fragment of the 61K (hPrp31) protein encompassing positions
263–273 (SSTSVLPHTGY) cross-linked to a CAUAG pentanucleotide of the U4atac snRNA (positions 42–46) (A,D,G) and to an AU dinucleotide
of the U4atac snRNA (positions 43–44) (B,E,H), respectively, with and without the 30-phosphate. The enriched precursor ion at m/z 2272.749
corresponds to a tryptic fragment of the U1 snRNP-specific 70K protein comprising positions 173–180 (RVLVDVER) cross-linked to an AUCA
tetranucleotide of the U1 snRNA with and without the 30-phosphate.
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from ribonuclease cleavage)—we treated the enriched
precursors with CIP on the IMAC beads. Figure 2G–I
shows the MALDI-MS spectra of the IMAC-enriched
capillary-LC fractions additionally treated with CIP.
Enriched precursors with m/z=3071.918, 1801.675 and
2272.749 (Figure 2G–I) clearly show a shift of 80 amu,
demonstrating that HPO3 was cleaved from the enriched
species which thus must be a cross-linked peptide–
RNA heteroconjugate. Comparison of the measured
monoisotopic masses with calculated monoisotopic
masses of all possible combinations of RNA oligonucleo-
tides (http://library.med.utah.edu/masspec/compo.htm)
revealed that the enriched species are no (modified)
RNA oligonucleotides.

An ambiguity of our strategy is the fact that enriched
phosphopeptides (derived from native protein–RNA
complexes) would also show the loss of HPO3 and thus
a mass shift of 80 amu in MALDI-MS. However,
enrichment of residual phosphopeptides in our experi-
ments is not very likely since the vast majority of the non-
crosslinked peptides is separated during size-exclusion
chromatography. The probability that residual non-
crosslinked peptides is still—to a certain degree—phos-
phopeptides is very low, because of the low abundance of
phosphopeptides in protein–RNA complexes per se.
Nonetheless, to exclude any ambiguity between cross-
links and phosphopeptides we envisage the possibility
of incubating the enriched species with nucleases
(e.g. nuclease P1) on the beads instead of CIP. Nuclease
P1 hydrolyzes both 30-50-phosphodiester bonds in single-
stranded nucleic acids and 3’-phosphomonoester bonds in
mono- and oligonucleotides terminated by a 30-phosphate
without base specificity. The corresponding mass shift
could be observed in the MALDI-MS as for the CIP-
treated samples.

Moreover, by applying this strategy additional sequence
information about the cross-linked RNA moiety could be
obtained. Alternatively, cross-linked and enriched species
could be hydrolyzed with HF (37). Recent studies on
protein–DNA cross-links demonstrated that HF treat-
ment leaves only the nucleobase of the cross-linked
nucleotides attached to the peptide (37).

Computer-aided cross-link search

As no structural information about the cross-linked
peptide moiety could be obtained by MS/MS experiments,
we set out to calculate the sequence of the cross-linked
peptide moiety. We compared the experimental masses
of the enriched precursors (i.e. putative cross-links) with
the monoisotopic masses of proteolytic peptides of all the
proteins within the RNP plus the monoisotopic masses of
RNA oligonucleotides derived from in silico hydrolysis of
the RNA molecules of the RNP (15). Assuming that the
cross-linked precursor mass is additively composed of the
molecular masses of the cross-linked peptide and RNA
moieties, the following constraints were made for the
calculation: (i) mass deviation for searching �0.1 Da;
(ii) specificity of the endoproteinase (e.g. trypsin: R/K, not
after P; chymotrypsin: Y/F/W/M/L), allowing two missed
cleavages; (iii) highest priority for specificity of the

endonuclease(s) (RNaseT1, RNases T1 and A), but also
consideration of 30 and 50 non-specific cleavage/hydrolysis
products (15) and (iv) for each experiment/search, the
scope of the database was restricted to the sequences of
proteins and RNA(s) specific for the investigated RNP
particle. A peptide hit was considered to be genuinely
positive when the computational database search from
both the experiments with RNase T1 and RNases A and
T1 gave the same peptide sequence.
The results of the computational database searches for

the enriched cross-linked species derived from reconsti-
tuted [15.5K-61K-U4atac snRNA] complexes and native
U1 snRNPs are summarized in Table 1. Strikingly,
enriched precursor masses derived after digestion of the
RNA moiety of the two cross-linked complexes with
RNase T1 and RNases T1/A showed only one specific
peptide sequence for each RNP particle (Table 1, bold
peptide sequences). The first of these is SSTSVLPHTGY,
encompassing positions 263–273 of protein 61K (hPrp31),
with the 61K protein cross-linked to an AU dinucleotide
within the U4atac snRNA (in the stretch 42CAUAG46);
and the second is RVLVDVER, positions 173–180 in the
U1 70K protein cross-linked to an AU dinucleotide within
the U1 snRNA (in A2C1U1).
In general, unambiguous assignment of the cross-

linking position on the RNA is more difficult.
U4atac snRNA only contains a single specific RNase T1
fragment with the calculated composition of A2C1G1U1

(42AUCAG46). The U1 snRNP cross-link with m/z
2272.279 (corresponding to a cross-linked RNA with the
composition A2C1U1) cannot be a specific RNase T1
fragment, as it does not contain a G (RNase T1 cleaves
after G and RNase A after U and C). This fragment might
result from the hydrolysis of a larger T1 fragment either
during LC purification or from in-source gas-phase
fragmentation during MS. However, the calculated
nucleotide composition A2C1U1 is present in four
RNaseT1 fragments of the native U1 snRNA, namely
nucleotide positions 21–28 (AUACCAUG), 29–33
(AUCACG), 111–117 (AAACUCG) and 122–130
(CAUAAUUUG). Without any further MS/MS experi-
ments it is impossible to identify unambiguously the
sequence of the cross-linked RNA.
Nonetheless, our enrichment/MS/computational data-

base approach has proven—in this feasibility study—to be
useful for the assignment of cross-linked proteins in RNPs
and their cross-linked peptide region. Our calculations
perfectly match the results obtained by MS/MS analysis
of peptide–RNA heteroconjugates derived from the
same UV-irradiated RNP particles in large-scale experi-
ments (15).

Cross-linking sites in a partial complex of the U2 snRNP

We extended our approach to a partial complex of the
U2 snRNP, i.e. the ternary [p14/SF3b14a-SF3b155282–424-
U2 snRNA BSiR] complex, in order to identify the contact
sites of the U2 snRNP-specific protein p14/SF3b14a and
the so-called ‘branch-site interacting region’ (BSiR) on the
U2 snRNA (31,38,39).
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During pre-mRNA splicing—that is excision of intronic
sequences and ligation of exons of a pre-mRNA in order
to yield mature mRNA—sub-spliceosomal U1, U2 and
[U4/U6.U5] tri-snRNP particles assemble on the pre-
mRNA in a stepwise manner to generate the catalytically
active spliceosome (28). A critical step in the assembly of
the spliceosome is the recognition of conserved splicing
motives of the pre-mRNA. Base-pairing of U2 snRNA
(via its BSiR, nucleotide positions 33–38) with the branch-
site sequence (BS) of the pre-mRNA forces an adenosine
base (the so-called branch-point adenosine) to bulge
out, defining a nucleophile for the first catalytic step of
splicing. Both the p14/SF3b14a and the SF3b155 proteins
are subunits of the U2 snRNP-associated splicing factor
3b (SF3b) that contacts pre-mRNA in the region of the
branch-site, thus contributing to the recruitment of
the U2 snRNP to the branch site (40). Cross-linking
studies demonstrated that p14/SF3b14a is in direct
contact with the branch-point adenosine (41,42) and
with the U2 snRNA at nucleotide G31 next to the BSiR
(nucleotides G33–A38) (43). In addition, p14/SF3b14a
binds tightly to the SF3b155 protein between amino acids
255 and 424 (42) and its interaction facilitates binding to
the BSiR on the U2 snRNA (31). Recent structural studies
without RNA further demonstrated that p14/SF3b14a
contains an RNA recognition motif (RRM) that is
partly involved in the interaction with SF3b155 (31,39).
Interestingly, Schellenberg and co-workers showed

by cross-linking experiments with a site-specifically
32P-labelled RNA mimicking the pre-mRNA branch-
point region that a conserved tyrosine residue in the
RNP2 motif of the RRM is in direct contact with the
bulged-out adenosine or its adjacent nucleotides (39).

A missing link in the overall picture in the absence
of high-resolution structures is the identification of the
contact sites between the p14/SF3b14a and its cognate
U2 snRNA region, i.e. the branch-site interacting region.
We therefore set out to identify the site(s) of such
interaction(s) by applying our approach on reconstituted
[p14/SF3b14a-SF3b155282–424-U2 snRNA BSiR] com-
plexes (31).

Figure 3 shows spectra of a cap-LC fraction before
(Figure 3A) and after (Figure 3B) IMAC, revealing
enrichment of a putative cross-link with m/z 2832.061
(labelled ‘C’). Peak C disappeared after treatment of
the sample with alkaline phosphatase, and a new signal at
m/z 2752.036 arose (‘D’ in Figure 3C). The characteristic
mass difference of 80 amu between signals C and D was
observed as before, consistent with an accessible phos-
phate residue.

We observed that MALDI-MS experiments performed
in negative mode led to greater signal intensities, in
particular when the cross-linked RNA moiety is
larger and the cross-linking yield is low, which was the
case in the latter experiment. A similar phenomenon
has been described for the MALDI-MS analysis of

Table 1. Results of the computational database searches for IMAC-enriched cross-linked species derived from UV-irradiated [15.5K-

61K-U4atac snRNA] complexes after hydrolysis with chymotrypsin and RNase T1 (m/z 3071.918) or RNases T1/A (m/z 1801.675) and from

UV-irradiated native U1 snRNPs after hydrolysis with trypsin and RNase T1 (m/z 2272.749) or RNases T1/A (m/z 1638.671). Peptide sequences

found after digestion of the RNA moiety with both RNase T1 and RNases T1/A are shown in bold. The abbreviations used are: Mexp—experimental

monoisotopic molecular weight (MW); Mcal—calculated monoisotopic MW; EP—endoproteinase and chymo—chymotrypsin.

m/z Mexp Mcal Protein EP RNase Composition/sequence Stringency

3071.918 3070.910 3070.899 61K chymo T1 A2C1G1U1+SGFSSTSVLPHTGY 30/50 spec.
A1C3U1+IYHSDIVQSL 30/50 unspec.
C3G1U1+PELESLVPNAL
A2C3+TEIRKQANRMSF
A2C5+RRKAARL

3071.918 3070.910 3070.899 15.5K chymo T1 A2C4G1+TKKLLDL 50 unspec.
A2G1U2+DLVQQSCNYKQL 30/50 unspec.
A2C4G1+TKKLLDL

1801.675 1800.667 1800.667 61K chymo T1/A A1U1+SSTSVLPTGY 30/50 spec.
G1U1+QQILTNATIM
G1A1+DEACDMALEL 30 unspec.
A1U2+ESLVPNAL 50 unspec.

2272.749 2271.741 2271.751 70K trypsin T1 C1G2+RQQEVETELK 30/50 spec.
A2C1U1+RVLVDVER 30 unspec.
C1G2+RQQEVETELK 50 unspec.
C1G3+RIHMVYSK 30/50 unspec.
C1G3+IHMVYSKR
C1G3+ERSKDKDR

2272.749 2271.741 2271.751 U1C trypsin T1 U1G1+SMQGFPFYDKPMR 30/50 spec.
2272.749 2271.741 2271.751 Sm D1 trypsin T1 A2G2+LVRFLMK 30/50 spec.

A2G1U1+VKSKKREA 30 unspec.
A2G1U1+SKKREAVAG

2272.749 2271.741 2271.751 Sm D2 trypsin T1 A1C1G2+MSLLNKPK 30/50 spec.
A2C1+EMWTEVPKSGK 30/50 unspec.

2272.749 2271.741 2271.751 Sm F trypsin T1 C3G+CNNVLYIR 50 unspec.
A2C1G1+PFLNGLTGK 30/50 unspec.

1638.671 1637.663 1637.660 70K trypsin T1/A A1U1+RVLVDVER 30/50 spec.
1638.671 1637.663 1637.660 Sm D2 trypsin T1/A A1C1+IRFLILPD 30/50 spec.

(Continued)
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phosphopeptides, where dramatically greater signal inten-
sities are achieved in the negative mode (44). It is therefore
feasible during MALDI-MS of enriched cross-links to
switch between positive and negative mode to increase the
signal intensities of the cross-linked precursors.
Importantly, this can be executed within one experiment
without consumption of noticeably greater quantities of
sample material, so that the use of both modes does not
incur any need for additional preparative experiments or a
larger-scale preparation.
A computer database search revealed that the masses

associated with peaks C and D did not match any
combination of nucleotides derived from the RNA
alone (http://library.med.utah.edu/masspec/compo.htm).
However, it corresponded exactly to a p14/SF3b14a
tryptic fragment encompassing positions 97–106
(AFQKMDTKKK) cross-linked to an RNA oligonucleo-
tide with the composition A1C1G1U2. This composition
matches two sequences within the oligonucleotide, namely

8GUAUC12 or 9UAUCG13; of these, the former

8GUAUC12 is not a specific RNase T1 fragment. Owing
to the low abundance of the precursor ions C and D (after
IMAC enrichment, 400 a.i. with 1000 laser shots; after CIP
validation, 100 a.i. with 1000 laser shots), MS/MS was not
possible. Nevertheless, a cross-link of the p14/SF3b14a
fragment 97AFQKMDTKKK106 to the RNA oligonucleo-
tide 8GUAUC12 most probably explains signals C and D
(Figure 3) for the following reasons: (i) the alternative
RNase T1 fragment (9UAUCG13) carries a 30-hydroxyl
group and could thus not have been dephosphorylated by
alkaline phosphatase. Note that the ions marked with ‘A’
(m/z 1222.260) and ‘B’ (m/z 1528.275) in Figure 3B also
show no loss of phosphate (although they are enriched
by IMAC). Computational analysis of these mass peaks
resulted in the oligonucleotides 10AUCG13 and

9UAUCG13 carrying a 30-hydroxyl group, as G13
represents the extreme 30 end of the oligonucleotide.
Both these RNA sequences could be confirmed by MS/MS
analysis of the pre-IMAC sample (Figure 3A and data not
shown). (ii) Notably, mass peak A is a hydrolysis product
of B (the actual RNase T1 fragment). Hydrolysis is
presumably a consequence of cap-LC separation at pH2,
as RNA becomes labile below pH3. Thus, the putatively
cross-linked RNA oligonucleotide 8GUAUC12 can simi-
larly be explained as a hydrolysis product of a larger T1
fragment.
In a similar manner, we identified a second peptide–

RNA cross-link (data not shown). The m/z value of this
second cross-link (2680.094) was again shifted by 80 amu
after CIP treatment (to m/z 2600.056), thus again
representing a putative peptide–RNA heteroconjugate.

Figure 3. Identification and validation of a cross-linked peptide–RNA
heteroconjugate derived from UV-irradiated [p14/SF3b14a-
SF3b155282–424-U2 snRNA BSiR] complexes by MALDI-ToF MS
using IMAC and combined IMAC/CIP treatment. All spectra were
recorded in negative ion-mode with DHB as matrix. (A) MALDI-ToF
spectrum of a cap-LC fraction derived from UV-irradiated
[p14/SF3b14a-SF3b155282–424-U2 snRNA BSiR] complexes after hydro-
lysis with trypsin and RNase T1. The arrow indicates the signal of the
cross-linked species (see panel B). (B) MALDI-ToF MS spectrum of
the same fraction after treatment with IMAC. (C) MALDI-ToF MS
spectrum of the same fraction after combined IMAC/CIP treatment.
The masses of the enriched precursor ions (marked ‘C’ and ‘D’,
respectively) correspond to a tryptic fragment of the p14/SF3b14a

protein encompassing positions 97–106 (AFQKMDTKKK) cross-
linked to a GUAUC pentanucleotide of the BSiR of U2 snRNA
(positions 8–12) with and without the 30-phosphate group. Ions marked
‘A’ and ‘B’ in panels B and C correspond to U2 snRNA BSiR
oligonucleotides comprising positions 10–13 (AUCG) and 9–13
(UAUCG). Note that these oligonucleotides are located at the very
30-end of the synthetic RNA oligomer and thus do not have a 30-
phosphate group accessible to CIP. (D) Assignment of the enriched
precursor masses to peptide and RNA sequences. Asterisks indicate
confirmation of RNA sequences by post-source decay (PSD) analysis.
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These masses exactly matched a p14/SF3b14a fragment
encompassing positions 101–111 (MDTKKKEEQLK)
cross-linked to an RNA oligonucleotide with the compo-
sition G1A1U2 that can be found at the RNA positions
4–7 (UGUA), 6–9 (UAGU) or 8–11 (GUAU). Strikingly,
the deduced peptide fragment partially overlaps with that
of the first cross-link, 97AFQKMDTKKK106. Taken
together, these results argue that RNA can be cross-
linked to p14/SF3b14a between positions 97 and 111
(AFQKMDTKKKEEQLK).
Importantly, the cross-linked peptide sequence encom-

passes parts of helix a3, helix a4 and the connecting loop
between these helices (Figure 4A and B). It harbours the
basic residue Lys100 that is postulated to be involved
in interactions with RNA due to its close neighbourhood
to Tyr22 (39). Furthermore, this particular residue is
affected upon incubation with U2BS-BSiR RNA
duplex in NMR chemical shift experiments (31). On
the basis of our former work, in which we found that
methionine residues within loop regions of (ribosomal)
proteins are highly susceptible to UV cross-linking (45),
we postulate that Met101 in p14/SF3b14a is cross-
linked to GUAUC (presumably to one of the uridine
residues) within the BSiR (CGGUGUAGUAUCG).
Our cross-linking data together with the data available

from the 3D structures of p14/SF3b14a suggest a U2BS/
BSiR RNA binding interface on one site of the p14/
SF3b14a encompassing b30, b300 and their connecting loop,
b-sheet(s) of the RNP2 (and RNP1) and parts of the
C-terminal helices a3 and a4 with their connecting loop
(Figure 4B).

SUMMARY

We have developed an overall approach for the enrich-
ment, validation and subsequent MALDI-ToF-MS-based
identification of peptide–oligoribonucleotide heteroconju-
gates as obtained by UV cross-linking of RNP particles,
both native and reconstituted in vitro—in particular when
these are not available in large quantity.

Our approach can be applied to any protein–RNA
complex for the identification of proteins in direct contact
with RNA and for visualization of the site of interaction.
Since it introduces capillary liquid chromatography for
the final purification step of the cross-linked peptide–
RNA heteroconjugates, it requires a relatively low amount
of starting material for the protein–RNA cross-linking
experiments (10–50 pmol of complex).

The strategy was first successfully applied to the
purification of peptide–RNA oligonucleotide cross-links
from two test systems that have been extensively studied
before ([15.5K-61K-U4atac snRNA] complexes and
U1 snRNP particles (15,30)). It further proved successful
in the analysis of a contact site between the p14/SF3b14a
protein and the U2 snRNA BSiR in partial U2 snRNP
particles, i.e. [p14/SF3b14a-SF3b155282–424-U2 snRNA
BSiR] complexes (31).

We assume that upon introduction of increasingly
smaller chromatography systems, e.g. nano-LC, combined
with enrichment strategies and MS(/MS)-based validation
of peptide–RNA cross-links as presented here or elsewhere
(30), a comprehensive analysis of protein–RNA contact
sites in larger RNP particles [e.g. spliceosomal B (46)
and C (47) complexes] is possible.

SUPPLEMENTARY DATA

Supplementary Data is available at NAR Online.
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Figure 4. Cross-linking sites in the 3D structure of p14/SF3b14a in
complex with SF3b155373–415 according to ref. (39). (A) Secondary
structure elements of p14/SF3b14a. Arrows indicate the amino acids
cross-linked to the branch site [BS, (39)] and to the U2 branch-site
interacting region (BSiR, this work). (B) Ribbon diagram of p14/
SF3b14a in complex with SF3b155373–415. p14/SF3b14a is shown in
beige, with Y22 in RNP2 (b1) that was cross-linked to the BS
according to ref. (39) highlighted in balls-and-sticks, SF3b155373–415 is
coloured grey. The peptide sequence (97AFQKMDTKKKEEQLK111)
found to be cross-linked to the BSiR of U2 snRNA (this work) is
marked in red with the putatively cross-linked amino acid M101
highlighted in balls-and-sticks. Regions marked in blue (b30, b300 and
a3) were affected upon incubation with U2BS/BSiR RNA duplex in
NMR chemical shift experiments (31).
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