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Abstract
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-

correlation processes. The spatial autocorrelation theory has been well-developed. It is nec-

essary to advance the method of spatial cross-correlation analysis to supplement the auto-

correlation analysis. This paper presents a set of models and analytical procedures for

spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spa-

tial quadratic form, a theoretical framework is derived for geographical cross-correlation

modeling. First, two sets of spatial cross-correlation coefficients are defined, including a

global spatial cross-correlation coefficient and local spatial cross-correlation coefficients.

Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be

used to visually reveal the causality behind spatial systems. Based on the global cross-cor-

relation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: di-

rect correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an

example, the methodology is applied to the relationships between China’s urbanization

and economic development to illustrate how to model spatial cross-correlation phenomena.

This study is an introduction to developing the theory of spatial cross-correlation, and future

geographical spatial analysis might benefit from these models and indexes.

Introduction
In geographical research, spatial correlation processes falls into two types: autocorrelation and
cross-correlation. The former reflects intra-sample correlation, that is, a relationship between
one measure and itself, while the latter reflects inter-sample correlation, namely, a relationship
between one measure and another measure. Spatial autocorrelation is defined by one size mea-
surement (e.g. city population) and one spatial contiguity measurement (e.g., Euclidean dis-
tance), while spatial cross-correlation can be defined by two size measurements (e.g., city
population and urban area) and one spatial contiguity measurement. Based on the statistical
measurements of Moran’s index and Geary’s coefficient [1, 2], a relatively mature theory has
been developed for spatial autocorrelation analysis [3–25]. Spatial autocorrelation modeling
has been widely applied to various correlational analyses of natural and human phenomena in
many fields [26–41], and in particular it has been integrated into the spatial analytical
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technology of geographical information systems (GIS) [42, 43]. In contrast, the theory and
methodology of spatial cross-correlation has not yet been well constructed for geographical
analysis, despite the concept of “spatial cross-correlation” emerging in literature [44–51].

Mathematical modeling has been baffled for a long time by two factors: one is time lag, and
the other, spatial dimension [52]. Where there is a time lag, there is a nonlinear process. On
the other, where there is a spatial variable, there is a dimensional dilemma. Cross-correlation
functions can be employed to solve the problems caused by time delay effect and thus to reveal
the dynamic causality, but the correlational modeling of time series was obstructed by nonsta-
tionarity and fluctuation. The method of detrended cross-correlation analysis (DCCA) can be
utilized to treat the nonstationary cross-correlation processes [53], and the random matrix the-
ory (RMT) can be adopted to analyze the cross-correlation with fluctuation [54]. Because of
DCCA, RMT, and fractal theory, the studies on temporal cross-correlation analysis develop
rapidly in recent years [45, 55–69]. In a correlation function, if the time lag parameter is re-
placed by a spatial displacement parameter, a temporal correlation model will become a 1-di-
mensional spatial correlation model [70]; if the spatial displacement parameter is further
substituted by a spatial weight function, the 1-dimensional spatial correlation model will
change to a 2-dimensional spatial correlation model [7]. Fractal geometry has been used to de-
velop spatial correlation modeling because a fractal model is always a correlation function [71,
72]. In theory, the temporal cross-correlation can be associated with spatial cross-correlation
by the ideas from allometry, fractals, and hierarchy [73]. Before doing so, it is necessary to de-
velop a methodology of spatial cross-correlation analysis.

The conditions of establishing spatial cross-correlation theory are ripe now, and it is time to
solve many problems of spatial dimension in geographical analysis. For a number of elements
within a regional system, the relationship between two measurements used to be characterized
with Pearson’s correlation coefficient, which indicates the simplest cross-correlation. However,
Pearson’s correlation coefficient shows nothing about interactions based on spatial distances.
In this paper, a new theoretical framework for spatial correlation analysis is proposed for geo-
graphical research. The novelty of this framework rests with three aspects. First, it is founded
on the analogy of a new expression of Moran’s index [7], which is similar in form to the ran-
dom correlation matrix [63]. Therefore, the definition of spatial cross-correlation coefficient is
easy to understand, and the relationship between spatial autocorrelation and spatial cross-cor-
relation is clear. Second, it is formulated in the simplest form of vectors and matrices, so it is
easy to calculate the cross-correlation coefficients and the related parameters. Third, the proce-
dure of calculations and analysis is well developed on the basis of models, algorithms, and sta-
tistic tests. The methodology contains a set of measurements and graphs such as global indices,
local indices, and cross-correlation scatterplots.

The rest of the article is arranged as follows. In Section 2 (Results), the global and local indi-
ces of spatial cross-correlation are defined by means of mathematical derivation and reasoning,
and a pair of spatial cross-correlation scatterplots is presented by analogy with Moran’s scatter-
plots. In Section 3 (Discussion), based on the idea from spatial cross-correlation, Pearson’s cor-
relation coefficient is decomposed into two parts: a direct correlation coefficient and an
indirect correlation coefficient. A comparison is drawn between the spatial cross-correlation
coefficient and Moran’s autocorrelation index. In Section 4 (Materials and Methods), as a case
study, the analytical process of spatial cross-correlation is applied to the system of China’s cities
and regions to research the relationships between urbanization and economic development. Fi-
nally, the paper concludes with a summary of the main points of this work.
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Results

Global and local measurements of spatial cross-correlation
The theoretical framework of spatial cross-correlation analysis consists of a set of models and
measurements. The basic mathematical reasoning is helpful for understanding these models
and indices. Suppose there are n elements (e.g., cities) in a system (e.g., a network of cities and
its hinterland) which can be measured by two variables (e.g., city population and urban area),
X and Y. A pair of vectors can be defined as below:

X ¼ ½ x1 x2 � � � xn �T; Y ¼ ½ y1 y2 � � � yn �T ; ð1Þ

where xi and yi are two size measurements of the ith element (i = 1, 2, . . ., n), and the symbol
“T” denotes transpose. The centralized variables can be calculated by

Xc ¼ X � mx ; Yc ¼ Y � my ; ð2Þ

where μx and μy represent the average values of the variables xi and yi, which are expressed as

mx ¼
1

n

Xn

i¼1

xi ; my ¼
1

n

Xn

i¼1

yi : ð3Þ

The population variances of the two variables are as follows

s2
x ¼

1

n

Xn

i¼1

ðxi � mxÞ2 ¼
1

n
XT

c Xc ; s
2
y ¼

1

n

Xn

i¼1

ðyi � myÞ2 ¼
1

n
YT

c Yc ; ð4Þ

where σx and σy denote the population standard deviations of xi and yi, respectively. The results
of a scaling transform of the centralized variables form a pair of standardized vectors such as

x ¼ X � mx

sx

¼ Xc

sx

; y ¼ Y � my

sy

¼ Yc

sy

; ð5Þ

which are termed standard scores in statistics. It can be shown that the norm of x and y, i.e., the
lengths of the two vectors, ║x║ and ║y║, exactly equals the dimensions of the vectors, i.e., the
number of elements in the system, n. Thus we have

kxk ¼ xTx ¼ n ; kyk ¼ yTy ¼ n : ð6Þ

The models of spatial correlation, including autocorrelation and cross-correlation, are based
on spatial distance or spatial contiguity. Define an n-by-n unitary spatial weights matrix such as

W ¼ ½wij�n�n; ð7Þ

which is actually a unitized spatial weights matrix (USWM). The matrix can be produced by a
spatial contiguity matrix (SCM), and it has three properties as below: (1) Symmetry, i.e., wij = wji;
(2) Zero diagonal elements, namely, |wii| = 0, which implies that the entries in the diagonal are all
0; (3) Unitization condition, that is

Xn

i¼1

Xn

j¼1

wij ¼ 1: ð8Þ

Then, by analogy with the improved formula of Moran’s index for spatial autocorrelation (Chen,
2013a), a newmeasurement for spatial cross-correlation analysis can be defined as

Rc ¼ xTWy; ð9Þ
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where Rc denotes the coefficient of spatial cross-correlation, which can be termed spatial cross-
correlation index (SCI). It is easy to prove that the SCI is a correlation coefficient, and its value
falls between -1 and 1. Because of symmetry of the spatial weights matrix, transposing Rc yields
another expression

Rc ¼ ðxTWyÞT ¼ yTWTx ¼ yTWx; ð10Þ

which is numerically equivalent to Eq (9). However, as indicated in the following section, from
Eqs (9) and (10), we can derive different models for different uses of spatial analysis.

A set of matrix equations can be constructed on the basis of the SCI formulae. Eqs (9) and
(10) multiplied left by x or y on both sides of the equal signs yields

MðxyÞx ¼ xyTWx ¼ Rcx; ð11Þ

MðyxÞy ¼ yxTWy ¼ Rcy; ð12Þ

MðxxÞy ¼ xxTWy ¼ Rcx; ð13Þ

MðyyÞx ¼ yyTWx ¼ Rcy: ð14Þ

It is easy to demonstrate that xyTWx = xxTWy, yxTWy = yyTWx. In these equations, there are
two ideal spatial correlation matrixes (ISCM) for spatial autocorrelation as below:

MðxxÞ ¼ xxTW ; MðyyÞ ¼ yyTW: ð15Þ

There are two ISCMs for spatial cross-correlation such as

MðxyÞ ¼ xyTW; MðyxÞ ¼ yxTW: ð16Þ

Eqs (11) and (12) show that SCI is just the eigenvalues of the ISCMs of spatial cross-correla-
tion. This differs fromMoran’s index, which is the characteristic value of the ISCM of spatial
autocorrelation [7].

An important measurement of spatial autocorrelation is called local indicators of spatial as-
sociation (LISA). LISA is also termed local Moran’s index [3]. Similarly, two sets of local spatial
cross-correlation coefficients can be defined by

RðxyÞ
i ¼ xi

Xn

j¼1

wijyj ; ð17Þ

RðyxÞ
j ¼ yi

Xn

j¼1

wijxj ; ð18Þ

where Ri and Rj refer to the local spatial cross-correlation index (LSCI) of the ith element and
the jth element. Accordingly, Rc denotes the global spatial cross-correlation index (GSCI),
which can be termed SCI for short. The GSCI is used to reflect the summation of cross-correla-
tion between any two elements, while the LSCI is utilized to measure the cross-correlation be-
tween a given element and all other elements in a geographical system. As wij = wji, for
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arbitrary n, LSCI can be expressed with matrix equations as follows
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which provide a simple approach to calculate LSCIs. Comparing Eqs (19) and (20) with Eqs
(17) and (18) shows that the elements in the diagonals ofM(xy) andM(yx) give the LSCI values.
The traces ofM(xy) orM(yx) are equal to the GSCI value. It is convenient for us to compute the
LSCIs by means of matrix operations based on Eqs (19) and (20).

Practical equations for spatial cross-correlation
In practice, the spatial cross-correlation coefficient can be defined in another form. The pre-
condition for Eq (9) is as follows

nWy ¼ Rcx; ð21Þ
which represents a practical relation for SCI. According to Eq (6), Eq (21) multiplied left by xT

yields nxTWy = xTRcx = nRc, which results in Eq (9). Similarly, the precondition Eq (10) is as
below

nWx ¼ Rcy; ð22Þ
which multiplied left by yT yields nyTWx = yTRcy = nRc, and thus yields Eq (10). A real spatial
correlation matrix (RSCM) for cross-correlation can be defined as

M ¼ nW ¼ kxkW ¼ kykW ¼ xTxW ¼ yTyW: ð23Þ
It can be proved that Rc is just the eigenvalue ofM, and the corresponding eigenvector is (x+y).
Actually, Eq (21) plus Eq (22) yields

Mðx þ yÞ ¼ nW ðx þ yÞ ¼ Rcðx þ yÞ: ð24Þ
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This suggests thatM corresponds toM(xy) andM(yx). The relationship between Eq (13) and Eq
(21) gives an error equation

ðMðxxÞ �MÞy ¼ ðxxTW � nWÞy ¼ U ; ð25Þ
in which U represents an error vector. The relationship between Eq (14) and Eq (22) gives an-
other error equation

ðMðyyÞ �MÞx ¼ ðyyTW � nWÞx ¼ V ; ð26Þ
in which V represents another error vector. There are errors betweenMy = xTxWy andM(xx)y
= xxTWy, also there are errors betweenMx = yTyWx andM(yy)x = yyTWx. This suggests an ap-
proach to testing the “goodness of fit” of a spatial cross-correlation model relative to observa-
tional data. If the spatial cross-correlation is strong,Mx will be a close toM(yy)x, andMy will be
a close toM(xx)y.

Spatial cross-correlation scatterplots
Spatial cross-correlation can be visually displayed with two scatterplots, which are similar to
Moran’s scatterplot of spatial autocorrelation. However, the cross-correlation scatterplots
come in pairs. In order to create the scatterplots, six variables based on the spatial correlation
matrix are defined as below:

f ðxyÞ ¼ MðxyÞx ¼ xyTWx; ð27Þ

f ðyxÞ ¼ MðyxÞy ¼ yxTWy; ð28Þ

f ðxxÞ ¼ MðxxÞy ¼ xxTWy; ð29Þ

f ðyyÞ ¼ MðyyÞx ¼ yyTWx: ð30Þ

f ðxÞ ¼ Mx ¼ nWx: ð31Þ

f ðyÞ ¼ My ¼ nWy: ð32Þ
Using these equations, we can generate a set of scatterplots comprising four graphs with obser-
vational data and the corresponding calculations.

The newly defined variables can be matched to make cross-correlation scatterplots as fol-
lows. The relationship between x and f(xy) give the first scatterplot, the relationship between x
and f(xx) give the second scatterplot, the relationship between y and f(yx) give the third scatter-
plot, and the relationship between y and f(yy) give the fourth scatterplot (Table 1). In fact, the
first plot is the same as the second one, while the third plot is identical in form to the fourth
one. In this instance, we actually need two scatterplots to illustrate spatial cross-correlation in
empirical studies.

The approach to making cross-correlation scatterplots is as follows. Taking x or y as an ab-
scissa (x-axis) and f(y) or f(x) as an ordinate (y-axis), we can create a scatterplot. Then using the
relationships between x or y and f(xx) or f(xy) or f(yx) or f(yy), we can produce a trendline. In
short, each scatterplot includes two parts: n scattered points and a straight line. The relation-
ship between x or y and f(y) or f(x) take on scattered points, but the relationship between x or y
and f(xx) or f(xy) or f(yx) or f(yy) exhibit a trendline, which is in fact a regression line. In other
words, the plot of f(y) or f(x) vs. x or y presents a set of randomly scattered data points, while the
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plot of f(xx) or f(xy) or f(yx) or f(yy) vs. x or y shows a set of ordered data points, which make a
straight line. Superimposing the trendline onto the scattered data points yields a scatter dia-
gram for spatial cross-correlation analysis.

Discussion

Geographical meanings of spatial cross-correlation measurements
The geographical meaning of the spatial cross-correlation can be illuminated by clarifying the
mathematical relationship between Pearson’s correlation coefficient and the SCI. Leaving spa-
tial distance out of account, we can re-express Eqs (9) and (10) as follows

R0 ¼ xTW0y ¼ yTW0x; ð33Þ

where R0 is the simple correlation coefficient (SCC), which can be treated as a special case of
SCI, and

W0 ¼
1

n
E ð34Þ

represents a unitary identity matrix, which takes the place of the USWM, and E denotes an
identity matrix. It can be proved that R0 is just a Pearson’s correlation coefficient:

R0 ¼ xTð1
n
EÞy ¼ yTð1

n
EÞx ¼ 1

n
xTy ¼ 1

n
yTx; ð35Þ

which indicates a simple cross-correlation between x and y. Based on Eq (35), a partial correla-
tion coefficient can be defined as

Rp ¼ R0 � Rc ¼ xTW0y � xTWy ¼ yTW0x � yTWx; ð36Þ

where Rp refers to the partial spatial cross-correlation coefficient (PSCC).
Now, the meanings of the spatial correlation coefficients can be explained as follows. The

SCI, Rc, denotes the indirect correlation between x and y through the spatial distances and
other elements in a geographical system; the PSCC, Rp, represents the direct cross-correlation
between x and y, which is free of the spatial distance and other elements; Pearson’s correlation
coefficient, R0, is a simple cross-correlation coefficient reflecting the summation of spatial cor-
relation, including both the direct cross-correlation and the indirect cross-correlation. The SCI
has two functions. First, it presents the indirect correlation between x and y, which is based on
spatial distance. Second, using the indirect spatial cross-correlation coefficient, we can estimate
the direct cross-correlation coefficient. Thus, the simple spatial correlation, Pearson’s correla-
tion, can be separated into two parts: a direct correlation without distance effect and an indirect
correlation based on the distance decay effect.

Comparison between spatial autocorrelation and cross-correlation
For spatial analysis, autocorrelation and cross-correlation represent two different sides of the
same coin. In fact, the concept of autocorrelation comes from the simplest cross-correlation,
i.e. the one independent of a time lag or a spatial displacement. The autocorrelation coefficient
defined in the 2-dimensional space proceeds from the autocorrelation function defined in the
1-dimensional time or space (Fig 1). The 2-dimensional cross-correlation coefficient is con-
structed by analogy with the 2-dimensional autocorrelation coefficient, i.e., Moran’s index,
which was re-expressed in a new mathematical form [7]. A comparison can be drawn between
spatial autocorrelation and spatial cross-correlation as shown in Table 2. In short, the spatial
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autocorrelation is the intra-sample spatial correlation, while the spatial cross-correlation is the
inter-sample spatial correlation. The former is based on one size measurement, while the latter
is based on two size measurements.

The 2-dimensional spatial correlation analyses, including spatial autocorrelation and spatial
cross-correlation, are based on spatial weight matrices. A spatial weight matrix comes from a
SCM, which can be generated by at least four ways [6]. For a geographical system with n spatial
elements, a SCM can be expressed as V = [vij], where V denotes the SCM, and vij is a measure
used to compare and judge the degree of contiguity between place i and place j (i, j = 1,2,. . .,n).
The elements on the diagonal are zeros, otherwise they must be converted into zero (i.e., for i =
j, vii�0). A USWM can be defined as wij = vij/T, where T denotes the sum of SCM entries.
Thus, based on the population standard deviation (PSD), the SCI formulae, Eqs (9) and (10),
can be developed in a sophisticated form as follows

Rc ¼
XTðnWÞY

XTY
¼

n
Xn

i¼1

Xn

j¼1

vijðXi � mxÞðYj � myÞ

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðXi � mxÞ2
Xn

i¼1

ðYi � myÞ2
s ; ð37Þ

Rc ¼
YTðnWÞX

YTX
¼

n
Xn

i¼1

Xn

j¼1

vijðYi � myÞðXj � mxÞ

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðYi � myÞ2
Xn

i¼1

ðXj � mxÞ2
s ; ð38Þ

which bear an analogy with the traditional expression of Moran’s index. If our spatial analysis
is based on a sample rather than a population (universe), the PSD should be replaced by the
sample standard deviation (SSD). In this case, the sample size n in Eqs (37) and (38) should be
substituted by the total degree of freedom (n-1). For the comparability between the spatial
cross-correlation index and Moran’s index, PSD rather than SSD will be employed to make em-
pirical analyses in the next section.

Materials and Methods

Study area, measurements, and analytical process
The new framework of spatial cross-correlation can be employed to study the relationship be-
tween urbanization and economic development of a country. It has been confirmed that there
is correlation between population urbanization and regional economic development [74].
However, the relationship between the cause and effect is not yet clear. The spatial cross-corre-
lation analysis can be used to reveal the causality between urbanization and economic

Table 1. The functional relationships of two pairs of scatterplots defined for spatial cross-correlation analysis.

Scatterplot Abscissa (x-axis) Ordinate (y-axis) Effect

Scattered points Trend line

The first plot x f(y) = nWy f(xy) = xyTWx x acts on y

The second plot x f(y) = nWy f(xx) = xxTWy x acts on y

The third plot y f(x) = nWx f(yx) = yxTWy y reacts on x

The fourth plot y f(x) = nWx f(yy) = yyTWx y reacts on x

doi:10.1371/journal.pone.0126158.t001
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development. As an example, the spatial cross-correlation models and methods will be applied
to Mainland China’s regions and cities. The spatial objects are the 31 provinces, autonomous
regions, and municipalities directly under the Central Government of China and the capital cit-
ies of these regions. The level of urbanization is measured by the proportion of urban popula-
tion to total population in a region, while the level of economic development is measured by
the per capita gross regional product (GRP). The distances by train between any two capital cit-
ies can be used to quantify the spatial contiguity and to make a spatial weight matrix. The sta-
tistical data of urbanization levels and per capita GRP (2000–2013) are available from the
website of National Bureau of Statistics (NBS) of the People's Republic of China (http://www.
stats.gov.cn/tjsj/ndsj/), and the railroad distance matrix can be found in many Chinese road at-
lases (datasets in S1 File). Because the cities of Haikou and Lhasa were not connected to the
network of Chinese cities by railway from 2000 to 2006(Lhasa)/2013(Haikou), only 29 regions
and their capital cities are taken into account, and thus the size of each spatial sample is n = 29
(Table 3).

Fig 1. The paths from simple cross-correlation to the 2-dimensional spatial cross-correlation by way
of autocorrelation (Note: In the block diagram, the solid line represents direct relations or paths, while the
dashed line denotes the indirect relations or paths. “1-D” refers to “1-dimensional”, and “2-D” to
“2-dimensional”).

doi:10.1371/journal.pone.0126158.g001

Table 2. The similarities and differences between spatial autocorrelation and spatial cross-
correlation.

Item Spatial autocorrelation Spatial cross-correlation

Correlation property Intra-sample correlation Inter-sample correlation

Correlation coefficient Ix = xTWx, Iy = yTWy Rxy = xTWy, Ryx = yTWx

ISWM M(xx) = xxTW, M(yy) = yyTW M(xy) = xyTW, M(yx) = yxTW

RSWM M = nW = xTxW = yTyW M = nW = xTxW = yTyW

Scatterplot One plot Two plots

doi:10.1371/journal.pone.0126158.t002
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According to the theoretical model (Results), the analytical process of spatial cross-correla-
tion comprises three principal steps.

Step1: global analysis of spatial cross-correlation. The basic measurement is the GSCI,
which can be given by Eqs (9) and (10). This step is to examine the sum of spatial cross-correla-
tion between any two regions.

Step2: local analysis of spatial cross-correlation. The basic measurements are the LSCIs,
which can be calculated one by one using Eqs (17) and (18), or processed as batches using Eqs
(19) and (20). The two vectors of LSCIs can be visually displayed with a scatterplot. This step is
to investigate the spatial cross-correlation between each region and all other regions.

Step3: explanation of spatial cross-correlation scatterplots. Two pairs of scatterplots can be
drawn using Eqs (27) to (32). Among them we need only one pair of scatterplots. Table 1 has
shown the corresponding relationships between different equations. This step is to illustrate
the spatial cross-correlation patterns. The local cross-correlation can be reflected by the scat-
tered points, while the global cross-correlation can be mirrored by the trend lines.

Calculations and analyses
The new calculation method for Moran’s index presented by Chen [7] can be adapted to the
spatial cross-correlation coefficients. Based on the standardized vector x, y and the unitized
weights matrixW, the SCI can be computed easily (an example in S2 File). The method com-
prises three steps as follows (an instruction in S3 File).

Step 1: standardize the size variables. In other words, convert the initial vectors X, Y in
Eq (1) into the standardized vectors in Eq (5). As indicated above, the PSD instead of the SSD
will be employed to standardize the data so that the results are comparable with Moran’s index
and Pearson’s correlation coefficient. The results of 2012 are shown in Table 3.

Step 2: unitize the spatial weight matrix. Using the matrix of railway distances, we can
compute the SCM with the distance decay function v(x) = 1/x, where x denotes the railway dis-
tance between any two capital cities. Note that the diagonal elements of the matrix should be
turned into zeros. Then unitize the contiguity matrix by using the sum of the whole entries to
divide each entry. The final weights matrix can be characterized with Eqs (7) and (8).

Step 3: compute SCI. According to Eq (9), the USWM is first left multiplied by the trans-
pose of x, and then the product of xT andW is right multiplied by y; According to Eq (10), the
unitized weights matrix is first left multiplied by the transpose of y, and then the product of yT

andW is right multiplied by x. The final product of the continued multiplication yields the
value of the SCI, and the two results are numerically equivalent to one another. For example, in
2012, the index of spatial cross-correlation between the level of urbanization and per capita
GRP is Rc = xTWy�0.1566, Rc = yTWx�0.1566. The SCI can be separated into LSCIs, which re-
flect the spatial correlation between a region or city and all other regions or cities. Using Eq
(19), we can calculate the first vector of the local spatial correlation coefficient, which reflects
the action of x (economic development) on y (urbanization); using Eq (20), we can compute
the second vector of LSCI, which reflects the reaction of y (urbanization) on x (economic devel-
opment). All the results are displayed in Table 3, which shows that the sum of the LSCI equals
the GSCI. The process of calculations can be fulfilled by MatLab-based computer programs
(two programs in S4 File).

A pair of scatterplots of spatial cross-correlation can be drawn by two approaches. The first
approach is to make use of the variables x, y, nWx, nWy, xxTWy, and yyTWx. One scatterplot is
based on the relationship between x (x-axis) and nWy as well as xxTWy (y-axis), which reflect
the action of x (per capita GRP) on y (level of urbanization). The relationship between x and
nWy gives the scatterpoints indicative of the first set of LSCIs, while the relationship between x
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and xxTWy yields the trendline indicative of the GSCI (Fig 2A). The other scatterplot is based
on the relationship between y (horizontal axis) and nWx as well as yyTWx (vertical axis), which
reflect the reaction of y (level of urbanization) on x (per capita GRP). The relationship between
y and nWx yields the scatterpoints indicating the second set of LSCIs, while the relationship be-
tween y and yyTWx gives the trendline indicating the same GSCI (Fig 2B). The second ap-
proach is to utilize the variables x, y, nWx, nWy, xyTWx, and yxTWy. Compared with the first
approach, xxTWy is replaced by xyTWx, and yyTWx is substituted with yxTWy. The results and
effects are same as those from the first approach, and the plots are the same as those displayed
in Fig 2 (for 2012).

The dual scatterplots can be used to categorize Chinese cities or regions in terms of spatial
cross-correlation. Each spatial cross-correlation plot includes four quadrants that indicate four
basic types of geographical elements. Accordingly, Chinese regions can be grouped under four

Table 3. The GRP, level of urbanization, and the LSCI values of 29 Chinese regions (2012).

Region City Original variables Standard variables LSCI

pc GRP (X) Urbanization level (Y) x y xyTW (diagonal) yxTW (diagonal)

Beijing Beijing 87475 86.20 2.1965 2.3931 0.0384 0.0593

Tianjin Tianjin 93173 81.55 2.4875 2.0415 0.0589 0.0485

Hebei Shijiazhuang 36584 46.80 -0.4029 -0.5860 -0.0061 -0.0099

Shanxi Taiyuan 33628 51.26 -0.5539 -0.2487 -0.0021 -0.0020

Inner Mongolia Hohehot 63886 57.74 0.9916 0.2412 0.0041 0.0009

Liaoning Shenyang 56649 65.65 0.6220 0.8393 0.0040 0.0053

Jilin Changchun 43415 53.70 -0.0540 -0.0642 -0.0005 -0.0003

Heilongjiang Harbin 35711 56.90 -0.4475 0.1777 -0.0022 0.0010

Shanghai Shanghai 85373 89.30 2.0891 2.6275 0.0099 0.0264

Jiangsu Nanjing 68347 63.00 1.2195 0.6389 0.0134 0.0059

Zhejiang Hangzhou 63374 63.20 0.9655 0.6541 0.0176 0.0101

Anhui Hefei 28792 46.50 -0.8009 -0.6086 -0.0078 -0.0080

Fujian Fuzhou 52763 59.60 0.4235 0.3819 0.0003 0.0001

Jiangxi Nanchang 28800 47.51 -0.8005 -0.5323 -0.0018 -0.0012

Shandong Jinan 51768 52.43 0.3727 -0.1603 0.0045 -0.0022

Henan Zhengzhou 31499 42.43 -0.6626 -0.9164 -0.0027 -0.0042

Hubei Wuhan 38572 53.50 -0.3013 -0.0794 0.0009 0.0002

Hunan Changsha 33480 46.65 -0.5614 -0.5973 0.0001 0.0011

Guangdong Guangzhou 54095 67.40 0.4915 0.9716 -0.0011 -0.0020

Guangxi Nanning 27952 43.53 -0.8438 -0.8332 0.0013 0.0017

Chongqing Chongqing 38914 56.98 -0.2839 0.1838 0.0025 -0.0014

Sichuan Chengdu 29608 43.53 -0.7592 -0.8332 0.0027 0.0037

Guizhou Guiyang 19710 36.41 -1.2648 -1.3716 0.0040 0.0066

Yunnan Kunming 22195 39.31 -1.1378 -1.1523 0.0043 0.0047

Shaanxi Xian 38564 50.02 -0.3017 -0.3424 0.0011 0.0010

Gansu Lanzhou 21978 38.75 -1.1489 -1.1946 0.0058 0.0057

Qinghai Xining 33181 47.44 -0.5767 -0.5376 0.0054 0.0046

Ningxia Yinchuan 36394 50.67 -0.4126 -0.2933 0.0014 0.0005

Xinjiang Urumchi 33796 43.98 -0.5453 -0.7992 0.0004 0.0006

Note: The original data come from National Bureau of Statistics of China (http://www.stats.gov.cn/tjsj/ndsj/). The unit of the level of urbanization is %, and

the unit of GRP is yuan of Renminbi (RMB).

doi:10.1371/journal.pone.0126158.t003
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heads. The first quadrant represents the high-high (H-H) type: an element is at a higher level,
and its neighbors are also at the higher level; the second quadrant represents the low-high
(L-H) type: an element is at a lower level, but its neighbors are at a higher level; the third quad-
rant represents the low-low (L-L) type: an element is at a lower level, and its neighbors are also
at the lower level; the fourth quadrant represents the high-low (H-L) type: an element is at a
high level, but its neighbors are at a lower level. Where 2012 year is concerned, the classifica-
tion result based on the first scatterplot is generally consistent with that based on the second
scatterplot (Table 4). Only three regions are uncertain, that is, Chongqing (municipality), Hei-
longjiang (province), and Shandong (province). This suggests that the three regions are at the
edges of different types of economic and urban zones.

The relationship between the two sets of LSCIs can also be shown by a scatterplot. The plot
is a visual aid for categorizing Chinese regions (Fig 3). As far as 2012 year is concerned, the 29
Chinese regions can be distributed into 4 groups according to the quadrants of a Cartesian co-
ordinate system. This classification process rearranges the results given by the dual cross-corre-
lation scatterplots. The H-H type and L-L type such as Beijing, Tianjin, and Shanghai are in the
first quadrant, the L-H type such as Anhui, Hebei and the H-L type such as Guangdong are in
the third quadrant, and the uncertain type including Chongqing, Heilongjiang, and Shandong
are in the second and fourth quadrants (Table 5). Apparently, the LSCI scatterplot lends fur-
ther support to the clustering result from the spatial cross-correlation scatterplots.

A difficult problem about the relationship between urbanization and economic develop-
ment is to reveal the causality. This problem can be solved by spatial cross-correlation analysis.
In the cross-correlation scatterplots, the slopes of the trend lines equal the SCI value. This sug-
gests that we can employ the regression analysis based on the least squares method to estimate
the SCI using Eqs (21) and (22). A discovery is that Eq (21) and Eq (22) give the same SCI
value (Rc), but the values of goodness of fit (R

2) are different. If the independent variable is x,
the dependent variable will be nWy. For 2012, the SCI value is about Rc = 0.1566, and the coef-
ficient of determination is approximately R2 = 0.3710. The standard error of is about δ =
0.0385. This suggests that the per capita GRP can explain about 37.10% of the spatial change of
the level of urbanization. If the independent variable is y, the dependent variable will be nWx.
For 2012, the SCI value is still about Rc = 0.1566, but the determination coefficient is approxi-
mately R2 = 0.3139. The standard error of is around δ = 0.0438. This suggests that the level of
urbanization can explain about 31.39% of the spatial change of the per capita GRP. Note that
the intercept should be set to 0 as there is no constant term in the regression
equations abovementioned.

Different coefficients of determination result in different values of F statistic, t statistics, and
standard errors. The F statistics can be used to judge the cause and effect, the t statistics can be
utilized to judge the level of confidence of a model’s parameter, and the standard errors can be
employed to estimate the margin of error of a coefficient. For the regression analysis with a sin-
gle explanatory variable, the F statistic, t statistics, and parameter standard errors (δ) are all
equivalent to the R square, and can be computed by the following formulae\

F ¼ t2 ¼ vR2

1� R2
; ð39Þ

d ¼ Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v
ð 1
R2

� 1Þ
r

; ð40Þ

where v refers to the residual degree of freedom. For our example, because the intercept (con-
stant item) is zero, the degree of freedom is actually v = n-1 = 28. Given R2 = 0.3710, it follows
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that F = 16.5136, t = 4.0637, δ = 0.0385; If R2 = 0.3139 as given, then F = 12.8075, t = 3.5788,
δ = 0.0438. Accordingly, the significance for δ = 0.0385 is about p = 0.0004, and that for δ =
0.0438 is about p = 0.0013 (Table 6) (see the example in S2 File).The rest may be deduced by
analogy with these. In a linear regression analysis, the F statistic indicates the extent to which
an independent variable can explain the corresponding dependent variable. For 2012 year, the
action of x on y (R2 = 0.3710, F = 16.5136) is stronger than the reaction of y on x (R2 = 0.3139,
F = 12.8075). This seems to suggest that the influence of economic development on urbaniza-
tion is greater than the impact of urbanization on economic development.

The coefficient of simple correlation between the level of urbanization and that of economic
development of Mainland China can be decomposed by using the SCI value, and thus we ob-
tain direct correlation coefficients. For example, for 2012, the Pearson correlation coefficient
can be calculated with Eq (35), and the result is about R0 = 0.9457. Then, according to Eq (36),
the PSCC is about Rp = 0.9457–0.1566 = 0.7891. A conclusion can be drawn from these values
of correlation coefficients that the direct correlation index of the 29 regions is 0.7891 or so, and
the indirect correlation index is round about 0.1566. The former has little relation to the dis-
tances between different provincial capital cities and can be regarded as intra-group correla-
tion, but the latter is related to spatial interaction of different regions based on distances and
can be treated as intergroup correlation.

Fig 2. The dual scatterplots of spatial cross-correlation between the per capita GDP and the level of urbanization in cities of China (2012).

doi:10.1371/journal.pone.0126158.g002

Table 4. The classification results of China’s regions based on the dual spatial cross-correlation scatterplots of urbanization and economic devel-
opment (2012).

Quadrant Type Economic development acts on urbanization (x vs. nWy,) Urbanization reacts on economic development (y vs. nWx)

Regions Number Regions Number

First one H-H Beijing, Fujian, Inner Mongolia, Jiangsu, Liaoning,
Shandong, Shanghai, Tianjin, Zhejiang

9 Beijing, Fujian, Heilongjiang, Inner Mongolia,
Jiangsu, Liaoning, Shanghai, Tianjin, Zhejiang

9

Second
one

L-H Anhui, Hebei, Heilongjiang, Henan, Jilin, Jiangxi, Shanxi 7 Anhui, Hebei, Henan, Jilin, Jiangxi, Shandong,
Shanxi

7

Third one L-L Chongqing, Gansu, Guangxi, Guizhou, Hubei, Hunan,
Ningxia, Qinghai, Shaanxi, Sichuan, Xinjiang, Yunnan

12 Gansu, Guangxi, Guizhou, Hubei, Hunan, Ningxia,
Qinghai, Shaanxi, Sichuan, Xinjiang, Yunnan

11

Fourth one H-L Guangdong 1 Chongqing, Guangdong 2

Note: The regions that are expressed in italic type represent the uncertain elements.

doi:10.1371/journal.pone.0126158.t004
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Similarly, the analytical process of spatial cross-correlation can be further applied one by
one to the other datasets of the years from 2000 to 2013. The parameters include SCC (R0), SCI
(Rc), and PSCC (Rp), and the goodness of fit for the regression analyses of spatial cross-correla-
tion have been computed (Table 6). The related statistics can be evaluated with Eqs (39) and
(40). From these calculations, we can get useful spatio-temporal information for China’s ur-
banization and economic development.

First, there is weak positive spatial cross-correlation between Chinese per capita GRP
and the level of urbanization. The SCI values come between 0.0995 and 0.1575. The Pearson
correlation coefficients (SCC) range from 0.9142 to 0.9577. Thus the partial correlation coeffi-
cients (PSCC) vary from 0.7872 to 0.8147. This suggests that the correlation between urbaniza-
tion and economic development includes an influence factor from spatial interaction.

Second, the spatial cross-correlation between urbanization and economic development
of China became stronger and stronger. The simple correlation is relatively stable, and the
SCC values fluctuate around 0.95. However, the SCI values went up and up, while the PSCC
values went down gradually (Fig 4). This suggests that the spatial interaction between different
regions and cities became more and more significant in the process of spatio-temporal evolu-
tion of China’s regional systems.

Third, the action of economic development on urbanization is relatively stronger than
the reaction of urbanization on economic development. The goodness of fit for the regression
of nWy depending on x, R2(y-x), is all greater than that for the regression of nWx depending on y,

Fig 3. The scatterplot of local spatial cross-correlation between the per capita GRP and the level of
urbanization in regions of China (2012).

doi:10.1371/journal.pone.0126158.g003

Table 5. The classification results of China’s regions based on local cross-correlation indexes of ur-
banization and economic development (2012).

Quadrant Region Type

First Beijing, Fujian, Gansu, Guangxi, Hubei, Hunan, Jiangsu, Ningxia, Qinghai,
Shaaxi, Shanghai, Tianjin, Xinjiang, Zhejiang

H-H, L-L

Second Heilongjiang Uncertain

Third Anhui, Guangdong, Hebei, Henan, Jiangxi, Jilin, Shanxi L-H, H-L

Fourth Chongqing, Shandong Uncertain

doi:10.1371/journal.pone.0126158.t005
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R2(x-y). This suggests that economic development is a cause of urbanization, and urbanization is
an effect of economic development. On the whole, both the values of R2(x-y) and R

2
(y-x) go up and

up from 2000 to 2013. This lends support to the inference that the spatial interaction of the 29 re-
gions became more and more significant over time. The absolute and relative growth rates of
R2(y-x) are less than those of R2(x-y). The relationship between the relative growth rate of R

2
(y-x)

and that of R2(x-y) can be shown by the allometric scaling pattern (Fig 5). The allometric exponent
of R2(y-x) depending on R2(x-y) is about 0.9133, which is less than 1. The R

2 values can be con-
verted into F statistics using the hyperbolic function, Eq (39), and we have F(x-y)>F(y-x). The F
statistics imply that the explanation of economic development for urbanization is more than that
of urbanization for economic development. This lends further support to the proposition that
the level of urbanization in a geographical region is determined by the level of economic develop-
ment and in turn reacts to it.

Table 6. The values of SCC, SCI, PSCC and determination coefficients of the 29 Chinese regions (2000–2013).

Year 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013

SCC R0 0.9142 0.9451 0.9447 0.9470 0.9523 0.9512 0.9577 0.9520 0.9457 0.9428

SCI Rc 0.0995 0.1382 0.1409 0.1415 0.1521 0.1550 0.1566 0.1575 0.1566 0.1556

PSCC Rp 0.8147 0.8068 0.8038 0.8056 0.8001 0.7962 0.8011 0.7945 0.7891 0.7872

R2
(x-y) 0.1704 0.2940 0.3031 0.3015 0.3431 0.3499 0.3750 0.3756 0.3710 0.3623

R2
(y-x) 0.1540 0.2450 0.2544 0.2576 0.2846 0.2975 0.3056 0.3133 0.3139 0.3189

R2
(x-y)+ R2

(y-x) 0.3244 0.5391 0.5575 0.5591 0.6277 0.6474 0.6807 0.6889 0.6848 0.6813

F(x-y) 5.7531 11.6628 12.1773 12.0834 14.6235 15.0728 16.8033 16.8437 16.5136 15.9081

δ(x-y) 0.0415 0.0405 0.0404 0.0407 0.0398 0.0399 0.0382 0.0384 0.0385 0.0390

P(x-y) 0.0234 0.0020 0.0016 0.0017 0.0007 0.0006 0.0003 0.0003 0.0004 0.0004

F(y-x) 5.0965 9.0879 9.5518 9.7173 11.1373 11.8579 12.3233 12.7729 12.8075 13.1127

δ(y-x) 0.0441 0.0459 0.0456 0.0454 0.0456 0.0450 0.0446 0.0441 0.0438 0.0430

P(y-x) 0.0320 0.0054 0.0045 0.0042 0.0024 0.0018 0.0015 0.0013 0.0013 0.0011

Note: The statistical data of the level of urbanization from 2001 to 2004 are absent in the website of China’s NBS. The statistic R2
(x-y) denotes the

goodness of fit for the regression of nWy depending on x, and R2
(y-x) refers to the goodness of fit for the regression of nWx depending on y. Based on the

R2 values, the F statistics, t statistics, and parameter standard errors δ can be calculated with the formulae such as F = t2 = (n-1)R2/(1-R2) and δ = Rc[(1/

R2-1)/(n-1)]1/2. Further, the significance, P, can be reckoned using the F distribution function of MS Excel.

doi:10.1371/journal.pone.0126158.t006

Fig 4. Histograms of SCI and PSCC of the spatial cross-correlation of 29 Chinese regions (2000–2013).

doi:10.1371/journal.pone.0126158.g004

Spatial Cross-Correlation Analysis

PLOS ONE | DOI:10.1371/journal.pone.0126158 May 19, 2015 15 / 20



Conclusions
This paper is devoted to laying the foundation for development of spatial cross-correlation the-
ory. The basic measurements and analytical methods are put forward and applied to an urban
study of China. In terms of technology, two computer programs based on MatLab have been
written and provided for readers. On the basis of the theoretical results and empirical analyses,
three basic conclusions can be drawn as follows.

First, spatial autocorrelation and spatial cross-correlation can
complement one another
Both autocorrelation and cross-correlation analyses can be employed to study the correlation
effect of different spatial elements in a regional system or different subsystems within a geo-
graphical system. The two methods are different, but they can combine to make an integrated
framework. The spatial autocorrelation analysis shows the simultaneous change in value of one
random variable, while the spatial cross-correlation analysis displays the simultaneous change
in values of two random variables. If we use one variable to measure a number of spatial enti-
ties, we can make a spatial autocorrelation analysis; on the other hand, if we use two or more
variables to measure a number of spatial entities, we can make both spatial autocorrelation
analysis and spatial cross-correlation analysis.

Second, the spatial cross-correlation coefficient represents the indirect
relationships between spatial variables
Using SCI, we can analyze the well-known simple correlation coefficient in spatial statistics.
Pearson’s correlation between two spatial variables includes two components: direct correla-
tion and indirect correlation. The spatial correlation coefficient reflects the indirect correlation
based on the spatial contiguity between any two geographical entities. Pearson’s correlation co-
efficient minus the spatial cross-correlation coefficient leaves the direct correlation coefficient.
The direct correlation is actually a kind of partial correlation, which is independent of spatial
patterns. In this sense, spatial cross-correlation analysis can reveal the importance of the part
played by geographical distances or spatial relationships.

Fig 5. The allometric relationship between two kinds of determination coefficients for spatial cross-
correlation analysis (2000–2013).

doi:10.1371/journal.pone.0126158.g005
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Third, the dual scatterplots of spatial cross-correlation can be used to
reveal the causality between two variables visually
Pearson’s correlation coefficient and spatial cross-correlation coefficient can reflect the correla-
tion between two variables, but they cannot distinguish between cause and effect. The scatter-
plots of spatial cross-correlation can be used to differentiate between the cause and the effect.
The spatial cross-correlation plots appear by twos, and the two plots are of asymmetry. There-
fore, they can show us which variable is in the leading position and which is in the subordinate
position. In scientific research, determining causality may be more important than describing
correlation in a system. Moreover, the scatterplots can serve for an assistant approach to mak-
ing a spatial classification of geographical elements.

Supporting Information
S1 File. Datasets of per capita GRP, level of urbanization, and railway distances. This file
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