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Abstract 

Background:  Magnetic resonance imaging (MRI) does not only ascertain morphological features, but also meas-
ures physiological properties such as fluid velocity or pressure gradient. The purpose of this study was to investigate 
cerebrospinal fluid (CSF) dynamics in patients with morphological abnormalities such as enlarged brain ventricles and 
subarachnoid spaces. We used a time-resolved three dimensional phase contrast (3D-PC) MRI technique to quantita-
tively evaluate CSF dynamics in the Sylvian aqueduct of healthy elderly individuals and patients with either idiopathic 
normal pressure hydrocephalus (iNPH) or Alzheimer’s disease (AD) presenting with ventricular enlargement.

Methods:  Nineteen healthy elderly individuals, ten iNPH patients, and seven AD patients (all subjects ≥ 60 years old) 
were retrospectively evaluated 3D-PC MRI. The CSF velocity, pressure gradient, and rotation in the Sylvian aqueduct 
were quantified and compared between the three groups using Kolmogorov–Smirnov and Mann–Whitney U tests.

Results:  There was no statistically significant difference in velocity among the three groups. The pressure gradient was 
not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and 
the healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Rotation was 
not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and 
healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001).

Conclusions:  Quantitative analysis of CSF dynamics with time resolved 3D-PC MRI revealed differences and similari-
ties in the Sylvian aqueduct between healthy elderly individuals, iNPH patients, and AD patients. The results showed 
that CSF motion is in a hyperdynamic state in both iNPH and AD patient groups compared to healthy elderly individu-
als, and that iNPH patients and AD patients display similar CSF motion profiles.

Keywords:  Idiopathic normal pressure hydrocephalus, Alzheimer’s disease, Cerebrospinal fluid, Magnetic resonance 
imaging, Fluid dynamics
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Background
The Cerebrospinal fluid (CSF) removes unnecessary sub-
stances and heat produced by metabolic activity from 
the brain parenchyma [1]. Therefore, understanding CSF 
dynamics is important for evaluating intracranial changes, 
pathological analysis, and treatment management of idi-
opathic normal pressure hydrocephalus (iNPH) and 
Alzheimer’s disease (AD) patients. Lately, noninvasive 
techniques using magnetic resonance imaging (MRI) have 
become prevalent in the analysis of CSF motion dynam-
ics, and researchers commonly use phase contrast (PC) 
MR images to understand CSF physiology [2–6]. In the 
present study, we analyzed CSF motion using PC. Spe-
cifically, we used a time-resolved three-dimensional PC 
(3D-PC) MRI acquisition where the time dimension is 
added to the anterior–posterior, right–left, and head-foot 
dimensions in order to quantify and analyze CSF motion 
in elderly healthy individuals, idiopathic normal pressure 
hydrocephalus (iNPH) patients, and Alzheimer’s disease 
(AD) patients. In two-dimensional imaging, CSF veloc-
ity can only be calculated in-plane. Using 3D-PC, CSF 
motion can be calculated in three dimensions, and there-
fore the pressure gradient and rotation of the CSF motion 
can be measured in addition to velocity. Understand-
ing fluid dynamics is important to determine the pres-
sure gradient and rotation. CSF motion in elderly groups 
has only been investigated in a small number of studies 
and there is no consensus on the characteristics of CSF 
motion in AD patients [3, 7, 8]. In the iNPH study, CSF 
motion appears to be hyper dynamic [3, 9, 10]. The aim 
of this study was to compare the CSF dynamics of healthy 
elderly volunteers with those of AD and iNPH patients.

Methods
This study was conducted with informed consent from 
volunteers and patients after explaining the purpose of 
the study in accordance with the ethics regulations of the 
authors’ affiliated institution.

Patients
The patient’s characteristics are shown in Table  1. 
The subjects included seven AD patients (age range 
66–89 years), ten iNPH patients (age range 67–87 years), 
and nineteen healthy elderly volunteers (age range 

67–80  years). The iNPH group was selected in accord-
ance with the guidelines outlined by the Japanese Society 
of Normal Pressure Hydrocephalus [11] and consisted 
of patients who displayed at least one symptom of the 
classical medical triad (gait disturbance, cognitive dys-
function, or urinary incontinence) and presented an 
enlargement of the anterior lateral ventricle horn with an 
Evans ratio ≥ 0.3, narrowing of high convexity subarach-
noid space, and enlargement of the Sylvian fissure [12]. 
Eight out of ten iNPH patients received a shunting pro-
cedure: six received a ventriculo-peritoneal shunt and 
two patients a lumbo-peritoneal shunt. Gait disturbance 
improved in all patients, cognitive function improved 
in four patients, and urinary dysfunction improved 
in six patients after the shunting procedure. The AD 
group included individuals with probable AD accord-
ing to the criteria delineated by the National Institute of 
Neurological and Communicative Diseases and Stroke/
Alzheimer’s Disease and Related Disorders Association 
[13]. The healthy elderly control group was selected from 
volunteers recruited at our institution that did not have 
a history of central nervous system disorders, did not 
exhibit neurological abnormalities upon examination 
by neurologists or neurosurgeons, and did not present 
abnormalities on neurological and standard MRI.

MRI acquisition
A 1.5 Tesla MRI scanner with an eight-channel phased 
array head and neck surface coil (Gyroscan; Philips, 
Best, Netherlands) was used. A time resolved 3D-PC 
MRI sequence was used, providing a 4D velocity field. 
Flow-encoding directions were head–foot, right–left, 
and anterior–posterior. A dynamic cine image of one 
cardiac cycle was created by imaging 32 phases per 
heartbeat (without interpolation), synchronized with 
the heartbeat. The imaging parameters were: repeti-
tion time, 9.8–16.4 ms; echo time, 6.6–6.7 ms; flip angle, 
20°; field of view, 22 × 22 for females and 32 × 32 cm2 
for males; velocity encoding, 5  cm/s for volunteers, 
30  cm/s for AD and iNPH patients; acquisition matrix, 
1.96 × 1.96 × 1.96 mm3 (isotropic); sensitivity encoding 
factor of 2. Ten slices per volume were acquired, using 
4–8 pixels to calculate the velocity and pressure gradi-
ent, and 12–20 pixels for the rotation. The acquisition 
time for this sequence was on average 32 min, depending 
on heart rate. The trigger for timing the 3D-PC was the 
peripheral pulse, measured from a finger.

Image processing
Pressure gradients were calculated from the velocity 
data using Navier–Stokes equations. Color-coded CSF 
velocity vectors, pressure gradients, and rotations were 
overlaid on T2-weighted images. All processing was 

Table 1  Characteristics of the group

iNPH AD Control

Number of subjects 10 7 19

Mean age 73 77 74

Age range 67–87 66–89 67–80

Female 5 5 12
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performed on a workstation (Power Mac Pro, Quad-
Core Intel Xeon; Apple Inc., Cupertino, CA, USA) with 
our in-house software, written in Matlab (R2012b; Math-
works, Natick, MA, USA). Regions of interest (ROIs) at 
both the entry point and outlet point of the Sylvian aque-
duct were drawn on sagittal images by the researchers, 
including a neurosurgery specialist, using an in-house 
mouse-operated graphical user interface. Partial volume 
effects caused by the relatively large voxel size (approxi-
mately 2  mm) used can lead to segmentation errors on 
T2-weighted images. Therefore, a “spatial-based fuzzy 
clustering” segmentation method [14] was used to reduce 
partial volume effects.

The principle of this study was based on obtaining 
velocity and rotation in three-dimensional space (ante-
rior–posterior, right–left, and head–foot directions) 
using the PC technique. The pressure gradient was then 
calculated from these velocity data using Navier–Stokes 
equations. Further details of this method can be found 
elsewhere [4].

Statistical analysis
CSF velocity and pressure gradient data calculated from 
the ROIs were represented as box plots. CSF velocities 
and pressure gradients were compared between groups 
as nonparametric data using Kolmogorov–Smirnov and 

Fig. 1  Velocity mapping of the volunteer by 3D-PC at 4 different stages of the cardiac cycle. In-plane velocities were visualized using vectors and 
through-plane velocities were visualized using colors. The color-coded CSF velocity field vector was then superimposed onto T2-weighted images 
of the stationary tissues. Red circle indicates Sylvian aqueduct
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Mann–Whitney U tests. All statistical analyses were con-
ducted using SPSS software version 13 (SPSS Japan Inc., 
Tokyo).

Results
Comparison of velocity between AD patients, iNPH 
patients, and healthy elderly volunteers
Figure  1 shows velocity images for a 67  year old male 
volunteer. Figure  2 shows the calculated velocity in 
the Sylvian aqueduct of AD patients, iNPH patients, 
and healthy elderly volunteers. There was no sta-
tistically significant difference (p  =  0.380) between 
the AD (median  =  0.868  cm/s) and iNPH groups 
(median =  1.452 cm/s). Similarly, there were no signifi-
cant differences (p = 0.912) between the AD and healthy 
controls (median  =  0.801  cm/s) or between the iNPH 
and healthy controls (p = 0.271).

Comparison of pressure gradient between AD patients, 
iNPH patients, and healthy elderly volunteers
Figure  3 shows pressure gradient images for a 67-year-
old male volunteer. Figure 4 shows the pressure gradient 
in the Sylvian aqueduct of AD patients, iNPH patients, 
and healthy elderly volunteers. The median pressure 
gradients for each group were: 426.6  Pa/m for the AD 
group, 473.8  Pa/m for iNPH group, and 117.8  Pa/m for 
the healthy elderly group. Both the AD and iNPH groups 
had significantly greater pressure gradients in the Sylvian 
aqueduct compared to the healthy controls (p < 0.001 for 

both comparisons). There was no significant difference 
between the AD and iNPH groups (p = 0.696).

Comparison of rotation between AD patients, iNPH 
patients, and healthy elderly volunteers
Figure  5 shows rotation images for a 67-year-old male 
volunteer. Figure  6 shows the rotation in the Sylvian 
aqueduct of AD patients, iNPH patients, and healthy 
elderly volunteers. There was no significant differ-
ence (p  =  0.845) between the AD (median  =  10.243 
cycle/s  cm2) and iNPH groups (median  =  9.159 
cycle/s  cm2). Both the AD and iNPH groups had 
greater rotation compared to the healthy elderly 
group (median =  3.447 cycle/s  cm2, p  <  0.001 for both 
comparisons).

Discussion
In the present study, we assessed three elements that 
describe CSF motion (CSF velocity, pressure gradi-
ent, and rotation) in the Sylvian aqueduct, using a time 
resolved 3D-PC MRI sequence and compared these 
between AD patients, iNPH patients, and healthy elderly 
volunteers. Although previous studies have investigated 
the physiology and pathology of AD and iNPH patients, 
few reports have analyzed CSF dynamics using MR, par-
ticularly in AD patients. Moreover, apart from one pre-
liminary study [3], no other studies have shown that the 
pressure gradient is elevated in iNPH patients compared 
to healthy elderly controls, and our present report is the 

Fig. 2  Box plots of velocity in the Sylvian aqueduct for AD patients, iNPH patients, and healthy elderly volunteers. There were no statistically signifi-
cant differences between the patient groups and volunteer group. AD Alzheimer’s disease, iNPH idiopathic normal pressure hydrocephalus outside 
values are indicated by a small “o” and far-out values are indicated by an asterisk
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first to investigate the pressure gradient in AD patients. 
Therefore, the present study analyzed the components 
of fluid dynamics such as velocity, pressure gradient, and 
rotation, in order to better understand the pathology of a 
disease that also presents as a similar enlargement of CSF 
spaces.

The results showed that CSF velocity was not statisti-
cally significantly different between the AD and iNPH 
patient groups and healthy elderly volunteers. However, 
pressure gradient and rotation were significantly greater 
in AD and iNPH patient groups compared to the healthy 
elderly group. Pressure gradient was determined using 

the Navier–Stokes equations, consisting of acceleration, 
convection, and viscosity terms. We hypothesized that 
CSF viscosity and convection, as well as the anatomical 
morphology of the Sylvian aqueduct are not significantly 
different between the AD and iNPH patient groups and 
the healthy elderly group. This would mean that only 
acceleration has a significant effect on the pressure gra-
dients of CSF, with acceleration increases resulting in 
pressure gradient increases. In other words, the AD and 
iNPH patient groups had greater CSF flow accelera-
tion compared to the healthy controls, and this conse-
quently influenced the pressure gradient. Furthermore, 

Fig. 3  Pressure gradient color mapping of the volunteer by 3D-PC at 4 stages of the cardiac cycle. The intensity of the pressure gradient was indi-
cated using a color scale. The color-coded CSF pressure gradient were then superimposed onto T2-weighted images of the stationary tissues. Red 
circle indicates Sylvian aqueduct
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large velocity changes may lead to a disturbance in CSF 
motion, inducing turbulence in the Sylvian aqueduct, and 
this may have also been reflected in the large differences 
in rotation. Thus, it appears that CSF dynamics are in a 
hyper-dynamic state in both the AD and iNPH patient 
groups. The details of the relationship between pres-
sure gradient and or velocity compared with rotation is 
described elsewhere [15]. To the best of our knowledge, 
this is the first study to report CSF rotation in AD and 
iNPH patients. Moreover, apart from one preliminary 
study [3], no other studies have shown that the pressure 
gradient is elevated in iNPH patients compared to healthy 
elderly controls, and our present report is the first to 
investigate the pressure gradient in AD patients. On the 
other hand, there are various PC MRI studies that have 
shown that the CSF flow in iNPH patients is in a hyper-
dynamic state, which is in accordance with our results. 
Specifically, it has been shown that mean CSF flow is 
greater in iNPH but not AD patients compared to healthy 
controls [7, 10], CSF motion increases in iNPH patients 
[16], and stroke volume increases in iNPH patients [9, 17, 
18]. However, it is not currently possible to use markers 
such as stroke volume [8] to distinguish between iNPH 
and AD. Also, we have compared the result of preopera-
tive CSF dynamics and postoperative surgical results in 
iNPH group. Due to the limited number of patients, we 
currently could not differentiate between shunt respond-
ers and shunt non-responders.

These results pose the question as to why CSF is in a 
hyper-dynamic state in our patients compared to the 
healthy elderly group. A decrease in brain volume due 
to aging or AD leads to a relative increase in ventricu-
lar volume and subarachnoid space leading to a general 
increase in CSF volume, and this consequently increases 
the space available for free CSF motion. It is unlikely that 
this increased freedom leads to pressure gradient eleva-
tion, rotation increase, or turbulence. On the contrary, it 
would most likely decrease pressure gradient and rota-
tion. If so, the most probable factor inducing elevated 
CSF pressure gradients and increased rotation would 
be the restriction in CSF motion due to decreased com-
pliance in the cerebrospinal cavity that surrounds the 
subarachnoid space and ventricles. Mase and colleagues 
reported that iNPH patients had lower compliance com-
pared to patients with ventricular dilatation or asymp-
tomatic ventricular dilatation and healthy volunteers 
[19–21]. On the other hand, Edwards et al. described that 
the compliance of spinal subarachnoid space (especially 
dural sac) has a large effect on the compliance of over-
all CSF, indicating that degenerative diseases of the spi-
nal cord induce decreased compliance [22]. Studies using 
mathematical models showed that decreased compliance 
is a significant element in ventricle enlargement [23, 24], 
and simulations using these models are extremely easy 
to understand. These results all indicated that decreased 
compliance in the CSF environment is important in 

Fig. 4  Box plots of pressure gradients in the Sylvian aqueduct between AD patients, iNPH patients, and healthy elderly volunteers. Both the AD and 
iNPH groups had significantly greater pressure gradients compared to the volunteer group. AD Alzheimer’s disease, iNPH idiopathic normal pressure 
hydrocephalus outside values are indicated by a small “o”
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diseases such as iNPH that are associated with enlarged 
ventricles. Furthermore, Bateman et al. investigated com-
pliance in iNPH and AD groups and found that iNPH 
patients had significantly lower compliance compared to 
healthy volunteers and that the AD group had a compli-
ance that was midway between the healthy volunteers 
and the iNPH group [25], corroborating the presence of 
decreased compliance in iNPH patients and suggesting 
that further investigations are required for AD patients. 
Based on these reports, it seems likely that the increased 
CSF pressure gradient and rotation in the Sylvian aque-
duct of iNPH patients are due to decreased compliance 

in the cerebrospinal cavity. This is presumably the case in 
AD patients who also exhibit increased CSF pressure gra-
dients and rotation in the Sylvian aqueduct.

In the above section, we discussed the common path-
ological state between iNPH and AD based on the fluid 
dynamics analysis of CSF. Regarding the discrimination 
of iNPH and AD, there are some contradictory findings 
in brain tissue biopsy [26, 27] and examinations using 
CSF biomarkers may not be able to differentiate between 
these groups [28]. This indicated that there are overlaps 
between iNPH and AD in addition to the pathological 
condition assessed based on the fluid dynamics analysis 

Fig. 5  Rotation mapping of the volunteer by 3D-PC at 4 stages of the cardiac cycle. In-plane rotations were visualized using vectors and through-
plane rotations were visualized using colors. The color-coded CSF rotation field vector was then superimposed onto T2-weighted images of the 
stationary tissues. Red circle indicates Sylvian aqueduct
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of CSF we reported in the present study. Therefore, it 
can be concluded that there is not currently a suitable 
method to distinctly classify iNPH and AD.

A limitation of the present technique is that this quan-
titative measurements based on the PC technique can 
only measure fluid velocity with 10% accuracy [29], espe-
cially for small voxel size.

Conclusions
In the present study, we quantitatively analyzed time-
resolved 3D-PC MRI data of the Sylvian aqueduct in 
iNPH and AD patients, and healthy elderly volunteers. 
The 3D-PC method is useful to understand CSF dynam-
ics in AD, iNPH, and healthy elderly volunteers. As iNPH 
and AD patients show a different CSF motion profile 
from that of healthy elderly individuals, it suggests that 
there is a difference in compliance between the patient 
groups and healthy controls.
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