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A topological fluctuation theorem
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Fluctuation theorems specify the non-zero probability to observe negative entropy produc-
tion, contrary to a naive expectation from the second law of thermodynamics. For closed
particle trajectories in a fluid, Stokes theorem can be used to give a geometric character-
ization of the entropy production. Building on this picture, we formulate a topological fluc-
tuation theorem that depends only by the winding number around each vortex core and is
insensitive to other aspects of the force. The probability is robust to local deformations of the
particle trajectory, reminiscent of topologically protected modes in various classical and
quantum systems. We demonstrate that entropy production is quantized in these strongly
fluctuating systems, and it is controlled by a topological invariant. We demonstrate that the
theorem holds even when the probability distributions are non-Gaussian functions of the
generated heat.
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oncepts from topology have played a key role in under-

standing a wide range of physical phenomena by provid-

ing an intuitive and mathematically rich -effective
description of the system!2. In classical systems, topology has
played a crucial role, for instance, in characterizing 2D
turbulence® and defect-mediated phase transitions*. Topological
defects abound in soft matter systems, such as dislocation and
disclination pairs in 2D melting® and various liquid crystalline
systems®, and have recently featured in a variety of intrinsically
non-equilbrium active matter systems’-!1. An early example of
topological protection arose from use of the Gauss-Bonnet the-
orem in the physics of membranes!2. More recent work examined
relevant topological invariants in mechanical lattices!? or dis-
sipative systems in continuous spacel* or lattice models with
underlying periodic structure!>~20. Many such systems exhibit
non-Hermitian properties such as exceptional points21=2° and a
non-zero topological vorticity of the edge state!420, The topolo-
gical systems that support protected edge states are robust to
disorder and perturbations, providing a key towards under-
standing such phenomena.

Fluctuations can give rise to particle trajectories with negative
entropy, which appears to contradict a fundamental law of
macroscopic physics. Fluctuation theorems provide a quantita-
tive, probabilistic prediction for this negative entropy production.
These universal laws are valid even during processes that drive
systems far from equilibrium. While the probability to observe
such “violations” is typically exponentially small in the relevant
system size, it can be appreciable in small systems. The first
theorem was discovered over two decades ago by computer
simulations and justified heuristically?®, then proven for a large
class of systems2’~2%. This led to a class of relations dealing with
the distribution functions of thermodynamic quantities such as
exchanged heat, applied work or entropy production®). Addi-
tional relations were moreover found in a variety of systems with
non-reversible microscopic dynamics31-36. Further work exten-
ded the concepts of thermodynamics to the level of individual
trajectories’”38. Another key insight related entropy production
in the medium to that part of the stochastic action, which
determines the weight of trajectories that is odd under time
reversal3®40, These and other developments opened the possibi-
lity for experimental or numerical measurements on the single
molecule level, providing verification of the fluctuation
theorems*!:42, Notably, critical insights were obtained for the
behavior of bio-molecules*3. Brownian dynamics of tracers in the
presence of vortex-like singularities has been studied with an
empasis on the winding number distribution and extensions to
entanglement problems in polymer physics*4-48. However, no
connection has so far been made to stochastic thermodynamics.

Here, we identify a topological invariant that predicts obser-
vable quantities, in a strongly fluctuating system without under-
lying periodic structure. Our analysis allows us to quantify the
ratio of particles with negative entropy production, purely as a
function of winding number around vortex cores. We build on
the geometrical properties of individual trajectories under the
influence of external forces. This is studied in the context of a
stochastic particle in a force-field, which is ubiquitous in nature
(see Fig. 1). In particular, a particle moving around a closed path
picks out only the non-conservative component of the force-field,
which gives the entropy production. This allows us to formulate a
topological fluctuation theorem based only on the vortex winding
number. While previous work looked at entropy production in
flow-fields**°0, the topological equivalence of particle trajectories
and its consequences have not been studied. We begin with a
general statement of the theorem using the examination of
entropy production in the medium. We then demonstrate it in
various examples including one or several vortices by calculating

the corresponding exact winding number distribution or per-
forming Brownian dynamics simulations. We find that even when
the winding number distributions are non-Gaussian functions of
the vortex circulation, the theorem holds exactly.

Results

Consider the motion in d dimensions of a tracer particle with
diffusivity D and mobility y in a stationary force field F(r), where
D = pukpT with kpT representing the thermal energy. The sto-
chastic dynamics of the particle is characterized as a function of
time 0<7<t by its trajectory r(r), which satisfies the Langevin
equation

i(7) = uB(x(r)) + V2D (1), M

where & represents a d-dimensional Gaussian white noise of zero
mean and unit variance. Using the Helmholtz-Hodge decom-
position, the force field can generally be separated into a con-
servative component that derives from a potential U(r) and a
rotational component f(r) that satisfies V- f(r) =0, i.e, F(r)=
— VU(r) + f(r). Let us assume that the rotational component of
the force field is generated by a topological defect, such as the
vortex line shown in Fig. 1a for the physically relevant case d = 3.
In the general case, such a defect takes the form of codimension 2
manifold ¥ giving rise to a vorticity field satisfying

Q= /S dr' A dr/ (afj - a;i), ()

where § is an arbitrary smooth surface intersecting > transversally
at a single point, the constant Q is the strength of the vortex and
summation is performed over i < j (distinct pairs)>1>2, For such a
vortex-induced force-field, we derive a topological fluctuation
theorem in terms of the probability p(n, t) for any closed trajec-
tory of duration ¢ to wind # times around the vortex, which reads

p(_”at)_ _ﬂ
T —r(h) v

for any U(r) (see Fig. la for a depiction of a representative force
profile and closed loop in d=3). Here, Q corresponds to the
quantum of heat generated via the closed trajectories of the tracer
particle that enclose the vortex domain. It is helpful to define
y=Q/(kgT) as the quantum of entropy production (in units of
kp). Figure 1b shows a number of exemplar closed trajectories
with different winding numbers. Note that the theorem [Eq. (3)]
is valid at any time t. Therefore, while the positive and negative
winding number distributions are expected to evolve with time
and be affected by conservative contributions from the force, their
ratio is topologically protected.

The derivation of the topological fluctuation theorem starts
from the probability distribution of the particle to be at position x
after time ¢ starting initially from x,, which can be be found via

r(H)=x

Plx, t1x,0) = / Dr(0)P[x(r)x,), )

r(0)=x,
where the probability of a specific stochastic trajectory is defined
in terms of the Onsager-Machlup action associated with Eq. (1) as

Plr(7)Ixp] =
Nexp(— /0 dr {é (i‘(r) — yF(r(T)))z —+ gV . F(r(T))} >7

where A is a normalization factor, and the Stratonovich con-
vention is implied. Defining the kinematically reversed, or
backward, trajectory ¥(7) as ¥(r) = r(t — 1), we then find from
Eq. (5) that the ratio between the probabilities of the backward
and forward paths is given by the part of the stochastic action that
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Fig. 1 Vizualizations of tracer particle trajectories in vortex force-fields. a A tracer particle undergoes diffusion and drift in a force-field whose non-
conservative component is generated by a vortex line (thick green), tracing out a stochastic trajectory (thin irregular loop). The force-field has the same
rotational component throughout but varying irrotational components (the cross-sections depict force-field streamlines)—however, closed loops pick up
only the rotational component. b Different particle trajectories around a single vortex line (green) can be characterized by the winding number n. The
leftmost two are topologically equivalent with n =1, while the rightmost two have the opposite sign and winding numbers n = —1and n= — 2, respectively.
¢ Force-fields can contain multiple vortex-cores (thick green lines or rings), around which particles can trace closed trajectories (thin irregular loops).

is odd under this transformation, namely,

Plr(7)|x]

——— =exp(—T

Plr(n)xg] ~ © p(=D), (6)
where T = kBLT fot dr¥(7) - F(r(7)) corresponds to the heat gener-
ated (in units of kgT), or entropy production, during the motion
of the particle along the trajectory. We then consider a closed
trajectory described by a curve C (by setting x = x,), which does
not intersect with X, and implement the Stokes Theorem
fasw = [sdw for the 1-form w = F,dr! over the surface S enclosed
by C2, namely

1 % 1 ;
=" ¢ dr By = / dr'F,
kgT Jc kpT Jas=c

1 . 4

=7 /S dr' A dr' (3, — F,).
It is manifest in Eq. (7) that T picks out only the rotational
component of the force. Moreover, using the decomposition
F=—-VU+f and Eq. (2) directly yields T =yn, with n the
number of times that the forward trajectory winds around the
vortex singularity. We thus find that ' is independent of the
initial position x, or the specific shape of C so long as it corre-
sponds to the same winding number n. Hence, T is identical for
topologically equivalent curves (see Fig. 1b), and independent of
the conservative component of the force-field.

To complete the calculation, we thus set x =x, in Eq. (6) and
integrate over all initial positions and topologically equivalent
loops to obtain a topological fluctuation theorem for vortex-
induced force fields (details in Methods)

P(_”: t)
p(n,t)
where p(n, t) denotes the probability for any closed trajectory of
length ¢ to wind n times around the vortex axis.
The above derivation is easily generalizable to the case of m
non-intersecting vortex branes. Denoting y; and #; the dimen-
sionless quantum of heat and winding number associated with a

given vortex i, the entropy production becomes I' =3, y;n;.
Integrating Eq. (6) over initial conditions and trajectories, which

?)

= exp(—ny), (8)

share the same set of winding numbers {n;},_, ,, the topolo-
gical fluctuation theorem for multiple vortices then reads

p({_ni}7 t) _ _ 4
P({ni}7 t) - eXp( 1=Z:l Yini)7 (9)

where p({n;}, t) is the probability that a closed trajectory of length
t has wrapped n; times around each vortex i for i=1,...m.

As for a single vortex, Eq. (9) is set by topology and thus holds
at all times and for any conservative force affecting the particle
motion. Moreover, as both sides of Eq. (9) depend only on the set
of winding numbers {n,;} reached at time ¢, the fluctuation theo-
rem is insensitive to the history leading to {n;} and in particular to
the order in which the trajectory winds around each vortex. Since
any combination of winding numbers leading to the same value
of T leaves the r.h.s. of Eq. (9) unchanged, the latter can be further
summed over all such configurations in order to get a weaker
formulation of the theorem:

pr=—30ymt) _ ¥
pT=S" it exp igl Yifti |-

(10)

Exact solution for a single vortex. To shed some light on the
topological fluctuation theorem (3), we now focus on the physi-
cally relevant case d=3 and consider the motion of a tracer
particle in a flow field created by a single straight vortex line
oriented along e,, which is given in cylindrical coordinates (r, ¢, z)
by

fr)=-Le,  Vxfk)=Qed(r,) (11)

21 ¥ = ’

where e, = (—sin¢,cos¢,0) and r, =r(cos¢,sin¢), so that
from Eq. (7) we can readily evaluate T = ¢'7 [(dS - Vx F(r) = yn.

The simple case where the particle motion is restricted to a ring
following the flow streamlines, such that the drive is effectively
uniform, has been treated previously®. This problem (general-
izable to higher dimensions) corresponds to a biased random
walk and the fluctuation theorem can be shown to result from the
Gaussian form of the winding distribution.
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Fig. 2 The topological fluctuation theorem for a single vortex. a The exact winding number distribution for a free vortex exhibits a power law scaling for
large positive n values. b At all times t and initial radial position ro, the ratio of negative to positive winding number distributions maps onto the theoretical
prediction (3) (inset) resulting in an exponential scaling of p(n, t|ro) for large negative windings (caption in panel a). ¢ In the presence of boundaries

restricting the particle motion with diffusivity D inside a disk of radius R and outside the vortex center, the winding angle distribution shows exponential
tails at small times (red curve, Dt/R2 = 0.1), while it becomes Gaussian for larger t (blue curve, Dt/R2 =10). The theorem holds irrespectively of the shape
of the distribution (inset, the orange curve corresponds to Dt/R2 =1). d, e Representative trajectories corresponding to cases Il and Il discussed in the text.
f The probability ratio (14) averaged over initial positions ro and trajectory times t as function of the total winding angle A¢ for the three cases (case |
corresponding to isotropic confinement) discussed in the text and Ar=Az=0. In a, b y = 2z, while in c-e y = 0.1 x 2z. In d-f we used kgT/k =10, while for

case Il (resp. IIl) a=0.5(1) and x. = 0(4).

However, from the above derivation the relation (3) holds even
when the Brownian particle is allowed to move transversally to
flow streamlines. Considering closed trajectories winding around
a vortex line in free space, the Fokker—Planck equation describing
the evolution of the distribution P(r,¢,z,¢) can be solved
exactly®3, such that the winding distribution is given, up to a
normalizing constant, by (details in the Methods section below)

e 7‘2
t duR 2innuI 0
p(n, t|ry) o /0 uRe [e K, (_ZDt)} ,

where k, = \/u? + iuy/(2n), ry denotes the initial radial position
of the particle and I, is the modified Bessel function of the first
kind, of order v.

A detailed examination of this probability distribution reveals that
it is strongly non-Gaussian. Indeed, for positive winding numbers
p(n, t|ry) is asymptotically scale free: p(n, tlro)n ~ 3253 (gee

—+00
Fig. 2a), while, as a consequence of the fluctuation theorem (3), it
decays exponentially as #n— — oo, This difference in scaling
behaviors results in a strong asymmetry of the overall distribution
between the positive and negative winding number sectors (see
Fig. 2b).

(12)

Computational verification of the theorem. For more compli-
cated force profiles, solving the Fokker-Planck equation may not
be possible, and one needs to resort to Brownian dynamics
simulations. Below we address two such non-trivial cases in order
to illustrate the quantization of the medium entropy production
in presence of an external potential, as well as the application of
the theorem to the multi-vortex case.

As the data shown in Fig. 2b suggests, a numerical verification
of the theorem in free space would be very demanding due to the
need for excessive sampling. On the contrary, constraining the
stochastic trajectories inside a finite volume with an externally

applied potential U(r) significantly speeds up the winding
number statistics convergence. In practice, however, such
confinement also imposes to make sure that stochastic trajectories
cannot reach the vortex cores where the winding angle is ill-
defined; which we achieve by means of a stiff potential barrier
(see Methods for details about numerical simulations). For
simplicity, we moreover consider the case of an effectively two-
dimensional vortex force such that all vortex lines are along the
third spatial direction, as described by Eq. (11). For such force
fields, the dissipated heat (7) reads

_ Wyib¢ AU

T
ky T’

i=1 27 (13)
where, as before, y; denotes the it vortex strength, while A¢; and
AU are the corresponding total winding angle and potential
energy difference between the final and initial positions. Note that
Eq. (13) holds irrespectively of the observation time, such that the
numerical verification of the theorem can be carried out either
looking at finite time distributions, or after time averaging at fixed
initial conditions.

Quantization of the medium entropy production. We first
discuss the quantization of the medium entropy production for
closed trajectories as predicted by Egs. (2) and (7) in a config-
uration where the Brownian particle is harmonically trapped,
namely for which

U(x,y,2) = Ig [((x —x)" + a2 + 2],
where (x,y,z) denote the cartesian coordinates of r, while the
parameter « introduces anisotropy in the confinement and the
position of the potential minimum can be shifted along x by
varying x.. In an experiment, U would, e.g., model the confine-
ment operated on a colloidal particle by optical tweezers.
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From Eq. (13), the dissipated heat only depends on the total
winding angle around the vortex and the potential difference
between both ends of the trajectories. It is thus enlightening to
consider the probability ratio

P(_A(pv —Ar7 t|r0 + Ar) _ T

IA¢, Ar, t|ry) = 28, Br, ir) e,

(14)

where p(A¢, Ar, t|r,) denotes the joint probability of total winding
angle A¢ and difference between initial and final positions Ar for
a trajectory of length f given an initial condition r,. Naturally,
setting Ar=0 (closed trajectories) leads to A¢=2mn and
vanishing AU, such that the theorem (8) is readily recovered.

Let us now consider trajectories for which the initial and final
points share the same radial and axial coordinates: Ar = Az=0,
while the total winding angle A¢ remains arbitrary. In case I
where the potential is isotropic (@ =1) and its ground state
coincides with the vortex core (x,=0), AU is independent of the
winding angle A¢ such that the probability ratio 9 averaged over
trajectory time and initial positions follows the predicted
exponential scaling for all winding angles (see orange line in
Fig. 2f). In general, however, I is affected by the symmetries of the
trap such that 9 does not decay exponentially with the winding
angle A¢. Setting a # 1 (case II, Fig. 2d), AU depends explicitly on
A¢ and vanishes only for A¢ = nm. Consequently, the averaged
winding angle probability ratio departs from the exponential
scaling for all A¢ not multiple of 7 (see red line in Fig. 2f).
Moreover, in the third case of an isotropic harmonic potential,
but whose minimum is shifted of x,#0 (Fig. 2e), the winding
angle probability ratio shows similar oscillations as in case II,
except that due to the lack of reflection symmetry of U those are
2m-periodic (blue line in Fig. 2f). In all cases, thanks to the
topological protection offered by closed loops the data shown in
Fig. 2f systematically falls on the predicted exponential curve for
A¢ integer factor of 27.

The multi-vortex case. To simplify the following analysis and
allow for the study of fixed time trajectories, we now consider the
case where the potential U(r) acts as a stiff wall confining the
particles inside a cylinder of radius R and such that U= 0 inside
of the cylinder. For such confinement and a single vortex line
located at r = 0, we find that for ¢ < R%/D the distribution p(¢, £)
exhibits exponential tails, while for ¢>> R2/D the effect of con-
fining boundaries leads to p(¢, t) being Gaussian (see Fig 2¢). As
expected from Eq. (13), in this case one can set AU=0 and the
fluctuation theorem is found to hold at winding angles for all
observation times, independently of the particular shape of the
distribution.

We now address the multi-vortex case considering a config-
uration of four counter rotating vortices of strengths+Q in a
closed domain of radius R, all located at r = R/2 and 90 degrees
from each other, as depicted in Fig. 1d, except that for simplicity
the particle motion in simulations is restricted to two dimensions.

To be able to sample winding number distributions with
sufficiently accurate statistics, we define the joint probability
p{di,¢_}, 1) of total winding angles ¢, and ¢_ around,
respectively, counter-clockwise (CCW) and clockwise (CW)
rotating vortices. The distribution, shown in Fig. 3a, exhibits a
non-trivial, time-invariant, 27-periodic structure. In particular,
while p({¢, ¢_}, ) shows local maxima when both ¢, and ¢_ are
integer factors of 27, it vanishes up to numerical precision when
both of them are odd integer factors of 7. Despite this complex
behavior, representing the ratio p({—¢., —¢_}, )/p({¢, ¢_}, t) as
a function of y(¢, —¢_) reveals a clear exponential scaling at all
accessible times (see Fig. 3b), in agreement with Eq. (9).

We now examine the total entropy production distribution
p(T,1). Figure 3c shows that although it exhibits a Gaussian
envelope, it features prominent modulations that can not be
described in terms of simple functions. Nevertheless, the ratio
p(—T,1)/p(T, t) always verifies Eq. (10) at all times and for all
winding angle configurations (see Fig. 3d).

Lastly, our Brownian dynamics simulations allow us to record
the individual winding distributions p.(¢,t) associated with
CCW(+) and CW(—) rotating vortices. As shown in Fig. 3e, the
two distributions show smooth damped oscillations and are
symmetric with respect to each other. Examining the ratios
p+(— ¢, 1)/p.(¢, £), we find that they do not satisfy the theorem.
Namely, we find in both cases that the probability ratio of
winding oppositely to the direction set by the vortex flow to that
of winding along it is always larger than predicted by the theorem
(see Fig. 3f). This striking feature is a direct consequence of the
fact that in presence of many vortices, trajectories winding with
an angle ¢ around a given vortex are not all topologically
equivalent.

Towards a description of emergent topological phases. It would
be interesting to connect the fluctuation theorem (8) to the
topologically protected edge currents found in a variety of con-
densed matter systems driven out of equilibrium!315-20.25,
Although in depth treatment of this problem, in particular the
formulation of a counterpart of (8) for field theories describing
emergent features of many body systems (see refs. >4=>7 for
relevant references), lies outside of the scope of this work, here we
outline a possible avenue to tackle it in non-equilibrium Markov
networks.

In this part, we consider the minimal model introduced and
studied in ref. 20, which consists of a two-dimensional on-lattice
dynamics made of repeating motifs playing the role of non-
equilibrium cycles in some abstract space (conformation,
chemical, etc...). We moreover restrict the study to a square
lattice as represented in Fig. 4 such that to each motif, or lattice
site, are associated four internal states labeled from A to D. The
following results nevertheless remain easily generalizable to other
types of lattices, and we show in the SM that similar conclusions
can be reached from the study of an analogous one-dimensional
model.

The lattice model sketched in Fig. 4 involves two kinds of
transitions, respectively, referred to as “internal” and “external”,
respectively, between internal states (A-D) at each site or between
neighboring sites. We denote y.y and y;, the associated clockwise
external and counter-clockwise internal rates, while the reverse
transition rates are written with primes. The possible moves from
a lattice site at position (x, y) are thus:

yp 2 (), Ky+ay =2 (x+ay+a)
VR O SR AR ) 1
(x,y)c 2 (x7)’)B (x’)’)A 2 (x+ avy)D

with a denoting the lattice step. In ref. 20 it was found that for
chiral systems (e.g. Yi, K Yexp» ¥in K Vin) and fast external rates
(YPext>> yin) this dynamics leads to topologically protected chiral
modes localized at the edge of the simulation domain.

Using a systematic coarse-graining approach, we derive the
Fokker-Planck equation describing the effective dynamics of the
total density p = pa + pp + pc + pp:

0,p = —0, [vap — dg (Daﬁpﬂ ; (15)

where Einstein summation over repeated indices is implied. The
derivation of Eq. (15) for the fully chiral case is presented in
Methods, while the longer version accounting for reversed
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Fig. 3 The topological fluctuation theorem in the presence of multiple
vortices. a, b The strong formulation of the theorem is assessed by
measuring the joint CCW and CW winding angle distribution p({¢,, ¢_1}, t)
(a) whose behavior satisfies Eq. (9) (b). ¢, d The total entropy production
distribution exhibits a complex structure (c), but obeys the theorem
nonetheless (d). e, f On the contrary, individual CCW(+) and CW(-)
winding distributions (e) generally do not satisfy the theorem (f). In all
panels D denotes the particle diffusivity, R is the size of the domain, while t
is the trajectory time. In b, d, f the dashed black lines indicate the
theoretical exponential scaling for the probability ratios. In a, e, f Dt/R2 =1
and in all plots we used y=0.1%2x.

transitions can be found in the SM. The effective drift v and

diffusivity D are non-trivial functions of the rates yf;) and y),, and
their general expressions are given in Methods. We find that the
bulk dynamics is essentially diffusive with 2"k =0 and
Dgl‘élk = Dy,8,p. At the system’s boundaries, however, vedge = yye;
is non-zero and Dedge — Djeje; + D, e e, where the unit vector
e, is orthogonal to the boundaries and points inside the system,
while e is obtained from e, by a —7 rotation (see Fig. 4).
Moreover, our derivation leads to conclude that the density p
takes distinct values in the bulk and at the edges of the system.
Namely, we find in the limit y, , ¥}, < Vo, Vexe Of interest that

edge — —
P 1 (1 (m)(l (ext)
~] 4o et 16
P pulk 4 <’ext + Cin ( )
where we have introduced the ratios (;, =yl /y,, and

Cext = Vaxt/ Vexr- For fully chiral rates corresponding to small or
large values of the ratios {j,, and (., it appears clearly from Eq.

(16) that most of the density is concentrated at the boundaries.
Namely, in this limit p is found to decay from pedge to pbulk
exponentially with a penetration depth ~ a20. Considering with-
out loss of generality both {,, <1 and {.,; < 1, the effective drift
at the edges simplifies at leading order as v} = y;,a, while the bulk
and edge diffusivities are given by

- a? D D
Db :)/L 7”:9(ext+cin7 —= (ext_’_(in'

4 2D, 2D,

Thus, as the system is brought to the fully chiral limit its bulk is
depleted and its edges retain most of the probability density. The
global dynamics is essentially one-dimensional with chiral
currents traveling along the borders with mean speed v >0 and
vanishing fluctuations strength D).

In this context, we can apply the fluctuation theorem to this
problem considering closed trajectories following the boundary
of the system. We then obtain for the winding number
probability ratio

B o e,
p(l’l, t) B P 9Cext + (in '

with N4 denoting the total number of lattice sites at the edge
and where n here corresponds to the number of times the
trajectory has wound around the system. Equation (17) shows
that the ratio of clockwise to counter-clockwise flux probabil-
ities is topologically protected as it does not depend explicitly
on the shape of the system boundary. However, it depends on

(17)

the total perimeter as the transition rates yf]? and yiQt were
assumed constant. We finally note that Eq. (17) was formally
obtained in the limits (., << 1 and {;, < 1. Thus and since the
ratio in the exponential involves a factor that scales with the
system size, computational or experimental verification of Eq.
(17) might be challenging in practice.

Discussion

We have demonstrated a topological fluctuation theorem that
identifies a relevant topological invariant able to predict obser-
vable quantities, in a strongly fluctuating system without under-
lying periodic structure. The ratio of particle trajectories going
against the flow to those going along it is purely a function of heat
generated along the vortices and is topologically protected against
deformations of these trajectories. Thanks to this property, the
theorem holds for any finite observation time and is insensitive to
conservative contributions to the force-field such as a confining
potential, which makes it generic and observable in realistic
experimental conditions.

In the context of micro-machines, where some degrees of
freedom are driven out-of-equilibrium by external forces and
torques that are even under time-reversal, the fluctuation
theorem constrains the probability ratio of negative and
positive entropy production created over cycles performed by
the machine. Remarkably, the theorem predicts that this ratio
is topologically protected for closed cycles in phase space, as
discussed recently for the one-dimensional case in ref. °8, thus
providing some insight for the optimization and design of
micro-machines.

Finally, it will be interesting to investigate how the above
results generalize with the introduction of non-equilibrium
activity, be it as a correlated bath or as persistence in the parti-
cle motion®?.

Methods
Detailed derivation of the topological fluctuation theorem. For closed trajec-
tories of total duration ¢, the winding number distribution is defined up to a
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Fig. 4 Schematic of the lattice model used to derive Eq. (15). At each site
(x,y) correspond four internal states A-D while internal and external
transitions are, respectively, represented by gray and black arrows. The
vectors e and e, define the orientation of the system’s boundaries.

normalizing constant as p(n,t) « [ dxoﬂ(xo)fx(y Dr(7)P[r(1)|x0]6(I — yn), with
71(xXp) the distribution of initial positions xo. Using the same convention as in the

main text that 4- # windings correspond to trajectories evolving forward in time,
we thus write

p(—n,t) / dx,7(x,) f Di’(r)P[i‘(r)lxo]B(f + yn)
x / dx,7(x,) f Di(7)P[x(1)|x,]e T8 + yn)

o [ dxyrt, 750 Dr(o)PIx(Dlxgle " 8(T — yn)

= p(n,t)e 7",
where the first equality makes use of Eq. (6), while the second equality is
obtained noting that the total circulation is odd under time reversal (I' = —I)

and that integrating over forward and time-reversed trajectories is equivalent?2.
Finally, the the last equality derives from the relation I' = yn valid when the
rotational component of the force field satisfies Eq. (2).

Brownian dynamics simulations. Here, we provide the details of the Langevin
dynamics simulations. Denoting r(7) the particle position at time 7, which is dis-
cretized in units of dr, it is updated by means of an Euler-Maruyama scheme:

(18)

where f(r) denotes the applied vortex field, y is the mobility of the particle, U is a
confining potential, and & is a Gaussian white noise vector with unit variance.

For the multi-vortex study, the potential U was chosen to ensure that all
trajectories are confined inside a cylinder of radius R, and that they cannot reach
the vortex centers where the winding angles are not defined. Namely, we used the
following form for the potential

r(t + dr) — r(7) = u[f(x(7)) — VU(x(7))]d7 + v/2Dd7 &(7),

(lr] — Ry [r| =R
U =3xq (r—r|=R)" [r—x]<R,. (19)
0 otherwise

When the length-scale £ = /ky T/k is small compared to R+ and R, the trajectories
do not penetrate the limiting regions with r> R and |r — r;| < R« (see Fig. 5), such
that AU in Eq. (13) can be set to 0.

Rescaling space and time in Eq. (18), we set D=1 and pk = 103. With these
units, we used in all simulations y = 0.1 x 27, d#/(uk) = 10~3, R/{ = 10°4/10, and
R, /¢ = 504/10. We have verified that varying moderately these parameters did not
affect our results. Both the data shown in Figs. 2 and 3 were obtained by sampling
the winding distributions over 10° to 108 independent trajectories with uniform
initial conditions.

The two-dimensional lattice model with out-of-equilibrium cycles. Here we
detail the coarse-graining of the non-equilibrium lattice model described in the text
and pictured in Fig. 4. As it involves less lengthy expressions, we restrict here to
fully chiral rates (y.,, = y;, = 0) while for completeness the derivation for the
general case is presented in the SM.

NATURE C

The bulk dynamics. We first investigate the behavior of the system far from any
boundary. Assuming an infinite system or periodic boundary conditions, the
dynamics each state density can be written in the following compact form

01Po(y (X, 1) = Yext [pa(i—l (X4 A, 1) — pogy (%, t)} * Vin {Po(i—%—l)(x’ 1) = pop (X, ) |,
(20)

where ¢ is the 4-periodic map of i €{0,...,3} to {A,..., D}, x = xe, + ye, and
Ax; = aR(—5)e, where the operator R(0) rotates vectors in the plane by an angle
0. We now use the fact that to Eq. (20) only corresponds one conserved quantity:
the total bulk density p, = 1(p, + pg + pc + pp)- To complete the set of fields, we
moreover define three additional auxiliary fields:

%(PA Pe T Pc _PD)7
i (pa+ps—pc—pp);
i(Pa =P — P +pp)-

After straightforward algebra, the set of equations given by Eq. (20) for i =0,...,3
is then recast up to second order in a as

1

P,
Ps

y M2 2 O
apy =% 7Apb - 7DP1 — adp, + adps |, (21a)
Yoo [22 a2 _ 1
o,py = e“ ?pr - EAPI — adp, + adps | — 2yp;, (21b)
Yew [ 5 a @ 1.
dpy =7 |adpy — adp, == Dpy +—-Bps | —Jp, +byps,  (210)
Vet | 5 T @ 15
Oy = 755 adpy, — adpy — —Apy +—-Dps| = yps — Aypy,  (21d)
where we have defined the operators
- 35— 2 2 3 2
0=0,+0,, 0=0,—9, =0, 10, D=0,—0,,

while y =y + ¥, and Ay = Yext — Yin-

Since the total bulk density p, is the only slow field, we now enslave p;, 3
keeping terms up to second order in a. A quick inspection of the rhs of Eq. (21a)
indicates that p; should be expressed at zeroth order in a, while the expressions of
p2 and p; should include terms up to order a. However, we find from Eq. (21b) that
setting d,p; = 0 the resulting solution for p, is at least of order a, such that the p;
terms contribute to orders a3 and a? in the equations for py, and p, 3, respectively.
We thus neglect these terms in what follows.

Setting 0,0, = 9,p; =0, we end up with

y —Ay> <Pz> Veu (0 2
- =T )+ O (22)
(Ay v J\ps) 2 \9)"
Inverting the 2 x 2 matrix on the lhs, we finally get
Pa Vext® yextax - yinay 2
= Jext? + O(a”). 23
<p3 ) 2(y2 + Vi) (yinax T Yoty )P0 T O @

Replacing these expressions in Eq. (21a), we find that the bulk density dynamics
simply amounts to isotropic diffusion:

_ YeuVinQext + i)’
Ay + i)

Here, we note that the bulk diffusivity is symmetric by exchange of yex; <> yin and is
essentially controlled by the smallest transition rate, as

9,p, = DyAp,, with Dy (24)

y Yi"—az, and D, ~ M.
YV 4 Yeur 4

The dynamics near boundaries. It was discovered in ref. 20 that when considered in
a finite volume, the lattice model dynamics is dominated by the effect of bound-
aries. Namely, the model shows persistent chiral modes localized at its edges. Here,
we consider an effective description where the system boundary in contact with an
homogeneous bulk whose density satisfies Eq. (24). Considering without loss of
generality the bottom boundary (see Fig. 4 for a schematic) such that external
transitions to B and from C are suppressed, we have

0,pp(X, 1) = ~YextP(X; ) + Vi [pC(X7 t) — pg(x, t)} , (25a)
0ipc(X, 1) = Yexepp(X + A%5, 1) + 33, [Pb(xv £) — pc(x, t)] ) (25b)
0,pp (X, 1) = DyAp (x, 1) + 22 Yin [pB(x, t) — py (X, t)], (25¢)

where p;, here accounts effectively the states A and D close to the boundary. As
before, we now define
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Fig. 5 Snapshots of a simulated trajectory with four counter rotating
vortices. The trajectory starts at r =0 (center) and the color labels the
rescaled time Dt/R? with D the particle diffusivity. When t < R2/D the
particle has only explored a small portion of the available domain (a), such
that it encounters the external boundaries only at larger times (b), while for
t>> R2/D its trajectory covers all the disk of radius R (c). In all panels the
black lines mark the boundaries set by the confining potential.

pe= 7 (2py +p5+rc)

(2, +P5 — Pc)

[ s | |

Pl
py = 4(2Pb —ps +pc)-

Carrying out a similar calculation as for the bulk dynamics, we find that p, is the
only conserved field such that p} , can be enslaved to it. Solving the resulting
equations for P/l,z’ we get

;_ 2Vin~ Yext 3@V ext Vin

= Pe 9,p. + O(a”), 26a
Dt Ve @ty 26
I YextVin 2
Py = 9,p, + O(a*). 26b
Pt re S W tred 2
Replacing these expressions into that of p., we finally obtain
dpe = —V|0up + Dysp. + D13} P, @7)

with the coefficients

R

T At Ve

Db, = YeVinYexVext + Vin) + 8¥) 2
=

)

247 + Vo) W + V)
2
VestVinOest + Vi) 2
D a.
L2yt P 0 )
Finally, for a general boundary defined by the unit vectors e and e,

respectively, tangent and orthogonal to the boundary, where e, always points
inside the system and e, = R(5)e, Eq. (27) is rewritten in a more general form as

dp. ==V (veyp.) + YV : (Dp,), (28)
with the Frobenius norm defined as A : B = Tr(AB) and D = Dyeje; + D.e e, .

Data availability

The data supporting the main findings of this study are available in the paper and its
Supplementary Information. Any additional data can be available from the authors upon
request.
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