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Abstract: During the early meiotic prophase, connections are established between chromosomes
and cytoplasmic motors via a nuclear envelope bridge, known as a LINC (linker of nucleoskeleton
and cytoskeleton) complex. These widely conserved links can promote both chromosome and
nuclear motions. Studies in diverse organisms have illuminated the molecular architecture of these
connections, but important questions remain regarding how they contribute to meiotic processes.
Here, we summarize the current knowledge in the field, outline the challenges in studying these
chromosome dynamics, and highlight distinctive features that have been characterized in major
model systems.
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1. Introduction

Segregation of homologous chromosomes during meiosis is essential for sexual repro-
duction. During the first meiotic division (Meiosis I), homologous chromosomes segregate
from each other to generate haploid gametes. Faithful partitioning of homologs depends
on their prior pairing, synapsis, and recombination during meiotic prophase.

The processes of pairing and synapsis are facilitated by active movements of chromo-
somes within the nucleus. These are mediated by connections between specific chromosome
loci and cytoskeletal motors outside of the nucleus, which are usually established upon
meiotic entry and require transmembrane proteins that span the intact nuclear envelope
(NE). In some cases, the nucleus also rotates, oscillates, or translocates within the cell vol-
ume [1–4]. They can lead to the clustering of chromosome regions in a region of the nuclear
envelope near the spindle polar body (SPB) or centrosome, resulting in a chromosome
configuration called the “meiotic bouquet” [5–9]. These movements typically abate once
chromosomes are fully paired and synapsed.

Telomeres, the physical ends of linear eukaryotic chromosomes, are the most com-
mon loci that mediate attachment to the NE, but analogous roles are played by cen-
tromeric regions in Drosophila and specialized meiotic “Pairing Centers” in the nematode
Caenorhabditis elegans [3,10–12]. In the ciliate Tetrahymena thermophila, centromeres and
telomeres are both tethered and form clusters at opposite ends of the nucleus [13]. While the
chromosome loci that mediate attachment vary, in most or all organisms, these connections
depend on LINC (linker of nucleoskeleton and cytoskeleton) complexes, comprised of pairs
of SUN (Sad1 and UNC-84 homology) and KASH (Klarsicht, ANC-1, and Syne-1 homology)
domain proteins that span the inner and outer nuclear membranes, respectively, and inter-
act within the perinuclear lumen—the space between the nuclear membranes [9,14]. The
amino termini of SUN domain proteins are typically intrinsically disordered and extend
into the nucleus to interact with proteins bound to telomeres or other chromosome regions,
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while carboxy termini containing the SUN domain reside in the lumen, where they interact
with the KASH domains. The amino termini of KASH domain proteins protrude into the
cytosol and typically interact with cytoskeletal filaments or motors [9,15].

Although NE attachment and movement of chromosomes during meiosis are widely
conserved across eukaryotes, the key functions of these chromosome dynamics are still
under debate [15]. A longstanding hypothesis is that associations between chromosomes
and the NE may promote homology search by reducing its dimensionality from the 3D
nuclear volume to the 2D nuclear surface. Some evidence directly supports the role of
attachment and/or movement in accelerating homolog pairing [16–19]. Subtelomeric se-
quences play key roles in recombination partner choice in some organisms, consistent
with the idea that telomere-led movements promote homology search within adjacent
regions [20–22]. However, homolog pairing is observed even prior to chromosome associa-
tion with LINC complexes in some organisms, and active chromosome movements often
persist until, or even after, synapsis is completed, suggesting that these interactions may
also play other roles [6,23]. In C. elegans, the disruption of these attachments leads to nonho-
mologous synapsis, indicating that they inhibit inappropriate pairing and/or SC formation,
in addition to promoting proper pairing [10,12,15]. Both computational simulations and
experimental evidence have indicated that chromosome attachments to LINC complexes
and the resulting chromosome movements help to eliminate nonhomologous interactions
and/or resolve chromosome entanglements [24–26]. They can also promote spreading of
the SC along paired chromosomes from sites of nucleation [27,28].

Ambiguity about the functions of these movements stems, in part, from experimental
challenges in studying these mechanisms, as well as from the apparent differences in
the consequences of disrupting the components of these movement systems in diverse
experimental models. Some of the proteins involved, including the LINC complexes
and cytoskeletal filaments and motors, play other essential roles in cell proliferation and
development. Additionally, it is challenging to directly observe and quantify meiotic
chromosome dynamics, which can last from several hours to days. Meiotic cells can also
display indirect consequences of disrupting these movements, often reflecting the activation
of meiotic checkpoints that monitor the synapsis, induction and repair of double-strand
breaks (DSBs), or formation of crossover precursors, and they feed back to regulate meiotic
progression. Thus, defects in attachment or movement may lead to cell cycle delays, changes
in the number and distribution of DSBs, altered crossover patterning, and/or apoptosis of
meiotic cells, confounding the analysis of the direct effects of these movements. The impact
of these surveillance mechanisms varies markedly between organisms [29,30]. In most
cases, chromosome connections and movements are essential for the successful completion
of meiosis, while, in others, particularly in budding yeast, the effects of disrupting these
processes are quite subtle [31–34].

Here, we review how early meiotic events, including chromosome reorganization,
homolog pairing, and meiotic recombination, are coordinated with chromosome–LINC
complex cytoskeletal interactions, highlighting the conserved and divergent features
among the experimental organisms. We also summarize the current knowledge regard-
ing the molecular requirements for chromosome attachment and movement in major
experimental models.

1.1. Homolog Pairing during Meiosis

Chromosome attachment to and movement along the NE typically occur during early
meiotic prophase, as chromosomes first establish physical contact with their homologous
partners [6,9]. In most eukaryotes, the process of homolog pairing is coupled with assembly
of the synaptonemal complex (SC), although some organisms have lost the ability to form
this structure. SC assembly initiates at discrete points between each chromosome pair
and extends processively from these sites, thereby “zippering” homologs into side-by-side
alignment along their lengths [6,35].
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In some species, including budding yeast and mammals, the nucleation of the synapsis
depends on and occurs at sites where a DSB has been made and initial steps in homologous
recombination, including inter-homolog strand invasion, have occurred [36]. Proximity to
a chromosome attachment site likely facilitates the homology search required for strand
invasion; this may account for the tendency of synapsis to initiate in subtelomeric regions
in many species [16,20–22]. DSBs may also be enriched in these regions, perhaps as a
mechanism to promote efficient pairing and synapsis [22].

In a few organisms, homologous synapsis occurs even in the absence of DSB induction.
These include the fruit fly Drosophila melanogaster and nematode Caenorhabditis elegans,
which have independently derived recombination-independent pathways for pairing and
synapsis [6,37]. In Drosophila females, centromeric regions first cluster near the nuclear
envelope and then pair in premeiotic cells [38,39]. Homologs probably separate during the
intervening mitotic divisions, so it is unclear how this premeiotic pairing contributes to
homologous synapsis during meiotic prophase; it may simply be that mechanisms that
promote pairing during meiotic prophase are initiated prior to meiotic entry.

1.2. Nuclear Envelope Remodeling

The nuclear envelope in eukaryotes comprises of the inner and outer nuclear mem-
branes (the latter of which is contiguous with the endoplasmic reticulum), nuclear pores
that penetrate both membrane layers, and numerous additional membrane-spanning and
-associated proteins. A fibrous protein network often assembles along the interior surface of
the inner membrane, providing mechanical support. In metazoans, this nucleoskeleton is
comprised of intermediate filament proteins known as lamins. Although lamin homologs
are not found outside of metazoans [40], similar structures have been observed in protists
and plants, and coiled-coil proteins that contribute to this structure have been identified in
plants [41–43].

The nuclear lamina creates a barrier to chromosome diffusion in many cells, since it
behaves as a stable meshwork to which chromosomes are physically tethered. Large-scale
movement of chromosomes along the nuclear envelope during meiosis probably requires
remodeling of the lamina [44]. The mechanisms by which this occurs vary widely among
metazoans: the lamina is reduced or absent during early meiosis in some species, such as
chickens [45], while, in others, meiotic cells express specialized lamin isoforms that form a
more dynamic network [44,46]. The lamina can also be remodeled through posttranslational
modifications that reduce protein–protein binding, analogous to and likely overlapping
with the mechanisms that promote lamina disassembly during nuclear divisions [47,48].

1.3. Chromosome–Nuclear Envelope Attachments during Meiosis

In most organisms studied to date, the meiotic connections between the chromosomes
and cytoskeleton are mediated by LINC complexes, which are comprised of SUN and
KASH domain proteins. These proteins are more broadly conserved than lamins and have
diversified within some clades to form large families [15,49]. Homologs of these proteins
have not been detected in ciliates but may simply have diverged beyond recognition.

In some cases, two or more SUN domain proteins contribute to meiotic chromosome
movements, and loss of one results in only partial defects [50–52]. LINC proteins that contribute
to meiotic chromosome movement typically play other essential roles, e.g., as components of the
spindle pole body in fungi, as well as the links between the centrosomes, nucleus, and mediators
of nuclear positioning and movement in metazoans [49,53,54]. Thus, they are typically broadly
expressed, but some may be restricted to meiosis—e.g., budding yeast Csm4 is a meiosis-specific
paralog of Msp2 [34].

Meiotic chromosome attachments and movements often depend on additional inner
nuclear membrane proteins, expressed specifically during meiosis. These include Bqt3
and Bqt4 in fission yeast and MAJIN (membrane-anchored junction protein) in most
metazoans [55–57]. How these transmembrane proteins contribute to meiotic attachment
and movement remains unclear; they may serve as adaptors to connect SUN proteins to
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chromatin-binding proteins and/or promote other activities of the LINC complexes, such
as clustering or force transduction.

SUN domains form homo- or heterotrimers [58]; these trimers may dimerize to form
symmetrical hexamers, which have been proposed to lead to extended branched networks
(Figure 1) [59]; however, it is unclear whether such interactions occur in vivo. If so, extended
networks may contribute to the clustering of LINC proteins during meiosis, as well as to
their ability to sustain and/or respond to forces acting tangential to the plane of the NE.
However, deletion of the trimeric coiled-coil region of C. elegans SUN-1 does not impair
meiosis, suggesting that if such networks indeed promote clustering of LINC complexes in
meiosis, they do not depend on this coiled-coil region [60]. Alternatively, meiosis-specific
transmembrane proteins, such as MAJIN and Bqt3/4, may promote associations between
LINC proteins that lead to clustering.
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Figure 1. Schematic representation of meiotic chromosome–NE–cytoskeletal complexes in diverse
species. The SUN domain forms a trimer, and an adjacent extended α-helical domain forms trimeric
coiled-coils, while KASH domain proteins dimerize. SUN domain trimers can dimerize and are
proposed to interact with KASH domains from different dimers to create branched complexes, which
may contribute to the clustering of chromosome attachment sites during meiosis. The nucleoplasmic
domain of SUN proteins interact with chromosomal proteins, which often depends on the expression
of meiosis-specific adapter proteins. Small proteins that span the inner nuclear membrane, includ-
ing MAJIN in most metazoans and Bqt3/4 in fission yeast, are also essential for the coupling of
chromosomes to the LINC complex and/or clustering of LINC complexes (translucent structures
in the background). Cytosolic domains of KASH domain proteins often interact with dynein or
microtubules; however, in budding yeast, they link telomeres to Myosin II on actin filaments. CDK2
and PLK-2/CHK-2 kinases are recruited to chromosome–LINC complex attachment sites in mice
and C. elegans, respectively, and their activities (blue cloud) are required for the connection of telom-
eres/Pairing Centers to LINC complexes. In C. elegans, phosphorylation of the nuclear lamina by
PLK-2 liquefies or disrupts the nuclear lamina to promote chromosome movements. In mice, CDK2
activity also limits promiscuous synapsis between nonhomologous chromosomes.
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Chromosome attachment to LINC complexes also typically requires expression of
meiosis-specific proteins that bind to chromosomes. These include Ndj1 (S. cerevisiae),
Bqt1/2 (S. pombe), TERB1/2 (most metazoans), and the pairing center proteins HIM-8 and
ZIM-1, -2, -and -3 (C. elegans) [31,32,56,57,61–64]. Some of these have DNA-interacting
domains, while others interact with constitutively expressed DNA-binding proteins, such
as Rap1 (yeast) or TRF1 (vertebrates). In budding yeast, the incorporation of the histone
variant H2A.Z at telomeres during meiosis is also important for their interaction with the
SUN domain protein Mps3 [65,66].

In addition to the structural components of the chromosome–NE linkage complexes,
regulatory kinases are often concentrated at these sites. In C. elegans, two meiotic kinases,
CHK-2 and PLK-2, are recruited by the HIM-8 and ZIM proteins, which contain zinc
finger domains that recognize the DNA sequence motifs enriched in the pairing center
regions [67–69]. In mice, SUN1 interacts with CDK2 during meiosis, likely by binding
directly to a cyclin-like protein, Speedy A, that partners with CDK2 at these sites [70–72]. In
fission yeast, telomeres recruit Cdk1 and promote the accumulation of the kinase with the
spindle pole body, which eventually leads to the exit from the bouquet stage and nuclear
division [73,74].

In some cases, these kinases are thought to directly promote chromosome attachment
or movement, e.g., by modifying the LINC proteins and/or lamina [11,47,68,72,75]. Kinase
activity may also contribute to regulating synapsis initiation and/or may be components
of checkpoints that monitor synapsis [67–69,71]. Intriguingly, some kinases associated with
attachment sites also play roles in crossover formation [76,77]. Thus, chromosome–LINC
complex attachments not only promote pairing and synapsis, but often act as regulatory
hubs that control meiotic progression.

Below, we highlight features of these attachment complexes specific to each of several
major model systems and briefly summarize the reported consequences of disrupting
these interactions.

1.3.1. Mus musculus (Mouse)

In mice, meiosis-specific proteins TERB1 and TERB2 are required to connect the
telomere-associated protein TRF1 to LINC complexes [56,61]. This interaction requires the
small inner NE protein MAJIN [56]. Homologs of TERB1, -2, and MAJIN are detected in
most metazoans, suggesting conserved meiotic telomere-LINC complex interactions [57].
The meiotic LINC complex is comprised of SUN1 and KASH5 [17,78]. SUN2 also colocalizes
with telomeres [52] but presumably plays a minor role, since its absence does not impair
meiosis, in contrast to SUN1. The cytosolic domain of KASH5 interacts with dynein to
promote movement along the microtubules [78,79]. SUN1 interacts with Speedy A, a cyclin-
like protein that recruits and activates CDK2 [70]; this activity is required for the tethering of
telomeres to LINC complexes [71,72]. Nuclear rotation and chromosome movements occur
concomitantly during meiotic prophase in mouse spermatocytes [4]. Telomere movements
are reduced in recombination and synapsis mutants, perhaps due to feedback regulation
by other meiotic checkpoints [4].

In Terb1, Terb2, Majin, and Sun1 mutants, telomeres fail to attach to LINC complexes,
homolog pairing is disrupted, most chromosomes remain unsynapsed, and the cell cycle is
arrested [17,56,61,80]. In contrast, mutations in Cdk2 result in extensive nonhomologous
synapsis and partner switching, indicating that Cdk2 is dispensable for synapsis initiation,
but important for its proper regulation [71,81].

1.3.2. Danio rerio (Zebrafish)

The homologs of mouse TERB1, TERB2, and MAJIN are expressed in zebrafish meio-
sis, suggesting that a similar molecular mechanism connects the telomeres to LINC com-
plexes [57]. Microtubules concentrate adjacent to the attachment sites [82], and microtubule
depolymerization disrupts bouquet formation [83]. Rapid chromosomal rotations have
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been observed through live imaging [84]. The consequences of disrupting the bouquet
have not been analyzed.

Pairing of telomeres and subtelomeric regions can be detected before synapsis, and
synapsis often initiates near clustered telomeres [22]. Interestingly, DSBs markers are also
enriched in subtelomeric regions [22].

1.3.3. Caenorhabditis elegans

In C. elegans, regions known as homolog recognition regions (HRRs) or pairing centers
(PCs) lie near one end of each of the six chromosomes. These regions span up to a megabase
and contain numerous (~100–1000) dispersed binding sites for one of four paralogous
zinc finger (ZnF) proteins: ZIM-1, 2, 3, and HIM-8 [63,64,85,86]. These proteins contain
short linear motifs in their unstructured N-termini that recruit the meiotic kinases CHK-2
and PLK-2 [67–69]. The activity of both kinases is required to mediate the interaction of
PCs and/or clustering of the LINC proteins SUN-1 and ZYG-12 [68,69]. The cytosolic
domain of the KASH protein ZYG-12 interacts with dynein and generates the processive
movements of chromosomes along the microtubules, which accelerate pairing and are
important for synapsis [12,87]. Cytoplasmic centrosomes are inactivated during meiotic
prophase; consequently, a discrete microtubule aster and tight clustering of PCs are absent,
but the nuclei take on a polarized appearance, due in part to the displacement of the
nucleolus towards one side of the nucleus [88].

The deletion of PCs or mutation of the ZnF proteins disrupts the attachment be-
tween chromosomes and LINC complexes and abrogates pairing and synapsis of the
corresponding chromosomes [63,64,86]. Deletion of all four ZnF proteins leads to dysreg-
ulated synapsis, perhaps because the PCs normally sequester the activities that promote
synapsis initiation [68,69]. Absence or mutation of SUN-1 also results in nonhomologous
synapsis [10,12], while mutations in or depletion of ZYG-12 or dynein results in aber-
rant and reduced synapsis [12,89]. Direct visualization of synapsis has confirmed that it
usually initiates near the NE, and also revealed that chromosome movements promote
SC elongation in C. elegans, possibly by facilitating homolog alignment and/or resolving
entanglements [27].

1.3.4. Drosophila melanogaster

In Drosophila, the SUN domain protein Klaroid and its KASH partner Klarsicht tether
centromeres to NE and interact with microtubules, inducing nuclear rotations and cen-
tromere clustering and pairing [3]. This initiates in germline cells, prior to the last mitotic
division before the onset of meiosis [38,39]. Despite the role of centromeres in these dynam-
ics, specific pairing of homologs initiates in the euchromatic regions [38,39,90,91]. Meiosis
in males lacks synapsis and crossing-over, but homolog pairing may be promoted by
mechanisms that overlap with those in oocytes [92].

Mutations in either LINC protein result in defects in centromere pairing. Synapsis is
greatly diminished in klarsicht (KASH) mutants. More extensive SC assembly is observed
in klaroid (SUN) mutants, but it is not yet clear whether this occurs between homologs.
Chromosome motion is also more strongly affected in klarsicht than in klaroid mutants,
perhaps due to residual nuclear rotation resulting from connections between Klarsicht
and dynein [3]. These movements may require an inner nuclear envelope protein that is
partially redundant with Klaroid, but this has not been established.

1.3.5. Tetrahymena thermophila

The ciliate Tetrahymena thermophila has two classes of nuclei: a somatic macronucleus
(MAC) that contains many tiny chromosomes and diploid micronucleus (MIC) that can
undergo mitosis or meiosis. In early meiosis, the MIC becomes polarized, with centromeres
and telomeres clustered at opposite sides, and then elongates dramatically [93]. Loss
of centromere clustering results in more severe pairing defects than disrupted telomere
clustering [13,94].
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This reorganization requires microtubules and depends on the formation of DSBs
and the DNA-damage sensing kinase ATR [95,96]. Ectopic DNA damage (e.g., induced
by UV or Cisplatin) restores MIC elongation, but not homolog pairing, in spo11 mutant
cells [95,96], indicating that the role of DSBs in homolog pairing and early meiotic nuclear
reorganization can be uncoupled. This microtubule-dependent polarization resembles the
bouquet stage in other eukaryotes, particularly fission yeast (see below) [13,95]. Notably,
homologs of LINC complex proteins have not been identified in Tetrahymena, and nuclear
envelope components required for this reorganization are currently unknown [93].

1.3.6. Saccharomyces cerevisiae (Budding Yeast)

Budding yeast have an unusual mechanism of meiotic chromosome movement that
involves actin-based motors, rather than microtubules. A meiosis-specific adaptor protein, Ndj1,
connects the telomeres to the ubiquitously-expressed SUN domain protein Mps3 [31–33]. Csm4
and Mps2 are both KASH domain-like proteins; Csm4 expression is restricted to meiosis. Both
paralogs participate in rapid chromosome movements by interacting with Myosin II, which
moves along the actin filaments [34,97–99].

Mutations that impair the functions of Ndj1, Mps3, or Csm4 delay meiosis, reduce
recombination, and impair spore viability [31–33,97]. Polycomplexes (self-assemblies of SC
proteins) are also prevalent in the nucleoplasm of ndj1 and csm4 mutant cells, suggesting
that telomere-led motion may promote SC assembly [28,100], as in C. elegans. Nevertheless,
only a modest delay in pairing at individual chromosome loci is seen in ndj1, mps3, and
csm4 mutants [18,31,33,34,100]. Thus, telomere-LINC complex association and the resulting
movements are not strictly required for homolog pairing and recombination. This may
reflect the contributions of other homolog alignment mechanisms, as seen in premeiotic
cells [6,23]. Alternatively/additionally, recombination-mediated homology search within
the small yeast nucleus may be sufficient to pair chromosomes efficiently.

1.3.7. Schizosaccharomyces pombe (Fission Yeast)

Fission yeast Bqt1 and Bqt2 proteins connect telomeres to LINC complexes in the
NE [62]. Bqt1 and Bqt2 connect the Rap1 and Taz1 that bind the telomeres to the SUN
domain protein Sad1, which interacts with the KASH domain protein Kms1 [101–103].
Kms1 interacts with dynein motor protein to generate chromosome movements and an
extended “horsetail” configuration of the nucleus [16,104,105]. Two additional NE proteins,
Bqt3 and Bqt4, are required to “prime” the interaction of these proteins with Sad1 [55].

In the absence of Rap1, Taz1, Bqt1, Bqt2, or Bqt4, telomeres fail to connect to LINC com-
plexes, leading to severely decreased spore viability [55,62,101,103]. Absence of the KASH
protein Kms1 results in loss of telomere clusters, while it has only mild effects on spore
viability [102]. Homolog pairing is disrupted upon removal of telomere-LINC complex
attachment or chromosome movements, suggesting that these attachments are required for
pairing [16]. Interestingly, the pairing of centromeric regions is more resistant to removal of
Taz1 compared to chromosome arms, while the loss of chromosome movements impairs
the pairing of both the arm and centromeric regions [16], which suggests that different
mechanisms contribute to the pairing of chromosome arms vs. centromeric regions.

1.3.8. Higher Plants

A bouquet stage mediated by connections between telomeres and LINC complexes
has been described in diverse crop plants, such as wheat, barley, rice, and maize, as well
as in the model cress Arabidopsis thaliana [50,51,106,107]. Centromeres also tend to be
polarized and clustered near the nuclear periphery, but this is insensitive to microtubule
depolymerization, suggesting that it may be a byproduct of prior mitosis [106,107].

The SUN domain family has expanded in many plants. At least two paralogs con-
tribute to telomere movement and clustering in Arabidopsis, maize, and rice [50,51,107]. In
Arabidopsis, the loss of AtSUN1 and AtSUN2 perturbs meiosis, yet roughly half of the chro-
mosomes still successfully pair and synapse [50]. Similar effects are observed in rice lacking
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OsSUN1 and OsSUN2 [51]. Thus, in these higher plants, LINC complexes are required for
bouquet formation, while pairing and synapsis are promoted by other mechanisms, as in
budding yeast.

2. Concluding Remarks

Functional analysis of chromosome attachment and movement during meiosis can
be complicated by other essential roles for LINC complexes and cytoskeletal components
in cell proliferation and development [53]. Thus, most studies of chromosome attachment
and movement have focused on the analysis of meiosis-specific factors, but better tools for
conditional gene inactivation and targeted protein depletion are enhancing the toolbox for
investigation of meiosis and should help to clarify both the mechanisms and consequences
of chromosome attachment and movement.

Direct observation and quantification of meiotic chromosome movements in several
experimental systems, including fission yeast, budding yeast, mouse spermatocytes, Tetrahy-
mena, C. elegans, Drosophila, and some plants, has helped to clarify their effects on pairing,
synapsis, and recombination. Such experiments are technically challenging, particularly in
multicellular organisms, in which meiosis occurs in reproductive tissues that can be difficult
to access, immobilize, and/or maintain in a fully functional state throughout imaging. Con-
tinual improvements in genome editing, fluorescent labeling, and microscopy methods will
make such analyses more feasible and informative. By combining quantitative live imaging
with molecular dissection and quantitative modeling, future work will likely reveal the
functional impact of these unique meiotic chromosome dynamics in unprecedented detail.
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