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Abstract: While the languages of the world vary greatly, they exhibit systematic patterns, as
well. Semantic universals are restrictions on the variation in meaning exhibit cross-linguistically
(e.g., that, in all languages, expressions of a certain type can only denote meanings with a certain
special property). This paper pursues an efficient communication analysis to explain the presence of
semantic universals in a domain of function words: quantifiers. Two experiments measure how well
languages do in optimally trading off between competing pressures of simplicity and informativeness.
First, we show that artificial languages which more closely resemble natural languages are more opti-
mal. Then, we introduce information-theoretic measures of degrees of semantic universals and show
that these are not correlated with optimality in a random sample of artificial languages. These results
suggest both that efficient communication shapes semantic typology in both content and function
word domains, as well as that semantic universals may not stand in need of independent explanation.

Keywords: semantic universals; efficient communication; quantifiers; monotonicity; conservativity;
simplicity; informativeness; semantic typology

1. Introduction

While the languages of the world vary greatly, linguists have discovered many restric-
tions on possible variation [1–3], at all levels of linguistic analysis. For example, when it
comes to phonology, it has been argued that all languages have at least one unrounded
and one back vowel [2]. Similarly, at the level of syntax, certain categories (e.g., nouns
and verbs) have been argued to exist in all languages [1]. (See Reference [4] for some
hesitance about positing universal syntactic categories.) It has also been argued that de-
pendency lengths in natural language are much shorter than chance [5,6]. There are also
universals of word order, which have recently been argued to arise from communicative
efficiency pressures, of the kind we will discuss below [7]. (The tradition of identifying and
explaining linguistic laws (e.g., generalizations of Zipf’s law [8]) also could be considered
under the umbrella of statistical universals [9–14]. These will be discussed in more detail
in Section 6.2).

Semantic universals are restrictions on the range of variation in meaning across
languages. For example, while the basic color terms of the languages of the world
vary greatly [15], it has been shown that all such terms denote convex regions of color
space [16,17]. Recently, in several domains—e.g., kinship terms, color terms—such uni-
versals have been argued to arise from pressures for efficient communication, namely a
trade-off between simplicity and informativeness [18–20]. Roughly: a language cannot be
both maximally simple (in terms of, e.g., cognitive load) and at the same time maximally in-
formative (in terms of, e.g., helping a speaker convey their intended meaning to a listener).
Intuitively, a maximally simple language would have a single term, which could not be
used to convey significant information. A maximally informative language, on the other
hand, would contain individual expressions for every possible thought to be expressed;
such a language would be highly complex, relying on significant memorization. (These
concepts can and will be made precise in information-theoretic terms [20,21]. For instance,
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the maximally informative language described here maximizes the mutual information
between words and meanings. Our precise definitions are in Section 3). The general claim:
the semantic systems of the world’s languages optimally balance these two competing
pressures. (See Reference [9] for the closely related idea that word frequency distributions
arise from competing pressures of minimizing effort for the speaker and the hearer.)

While the aforementioned case studies apply to domains of content words, the histori-
cally most prominent domain of semantic universals has been from a domain of function
words, namely determiners [22,23]. In particular, the quantifiers expressed by determiners
have been argued to have properties, such as monotonicity, quantitativeness, and conserva-
tivity. Recent work has offered a different explanation for these universals in quantifiers,
namely that they arise from a pressure of learnability: quantifiers satisfying the universals
are easier to learn than those that do not and, therefore, get lexicalized [24,25]. This argu-
ment, however, does not rule out the possibility of explaining these universals in terms of
the aforementioned trade-off.

In this paper, we present two experiments which suggest that the semantic universals
for quantifiers can be seen as arising from the trade-off between simplicity and informative-
ness. Both experiments measure how optimally a language trades off these two pressures,
and whether ‘more natural’ languages are more optimal. The first experiment introduces a
measure of the degree of naturalness of an artificial language as the percentage of quantifiers
in the language which belong to those known to exist in natural languages. This measure
significantly correlates with optimality. (This is a replication of the main result reported in
Reference [26]). For the second experiment, we introduce information-theoretic measures
of degrees of semantic universals—namely, monotonicity and conservativity—and show that,
surprisingly, these measures are not correlated with optimality in a random sample of
languages. That is: artificial languages that have a higher degree of these universals do not
tend to balance these pressures any better than those with lower degrees.

These results suggest at least two conclusions. On the one hand, the first experiment
shows that the semantic typology of quantifiers, a functional part of the lexicon, can be
explained by efficient communication. Building on Reference [26], this is the first of a
growing number of results suggesting that the same pressures shape semantic systems in
domains of function words in addition to content words, from indefinites [27] to logical con-
nectives [28,29] to person systems [30]. More provocatively, the two experimental results,
taken together, suggest that semantic universals may be epiphenomenal: while empirically
true, they arise as a consequence of a fundamental pressure for efficient communication
and do not themselves stand in need of independent explanation.

The paper is structured as follows. In the next section, we introduce relevant back-
ground in quantifiers, their semantic universals, and the efficient communication hypothe-
sis. Section 3 introduces methods common to both experiments: how to measure simplicity
and informativeness for quantifiers, as well as the optimality of a language. Section 4
presents the results of the first experiment, while Section 5 presents the second experiment,
with degrees of the semantic universals defined in Section 5.1. Following that, a discussion
section explores the consequences of these two experimental results and points to directions
for future work.

2. Background
2.1. Quantifier Semantics

The semantic domain we focus on is that of quantifiers, which are the semantic objects
expressed by determiners. A determiner is an expression taking a common noun as an
argument and generating a Noun Phrase [22,23]. We will assume, following Reference [22],
a division of the determiners into two classes: grammatically simple and complex. Exam-
ples of simple determiners are all, some, no, few, most, five. Examples of complex determiners
are all but five, fewer than three, at least eight, or fewer than five. Note that we do not at present
provide a full account of exactly what the distinction amounts to. For example, while
being a single ‘word’ (i.e., monomorphemic) certainly suffices for being simple, we leave
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it open that some determiners that are not monomorphemic will still count as simple.
(Arguably, most is not monomorphemic. See References [31–34]. Moreover, some argue
that a much wider class, including no and few, are also not monomorphemic. However,
these arguably should count as simple for the purpose of formulating semantic universals.)
For present purposes, however, the reader may consider the simple determiners to be the
monomorphemic ones (roughly: single words).

As a first approximation, and following the influential study of Reference [22], we
assume that determiners denote what are called type 〈1, 1〉 generalized quantifiers. In other
words: quantifiers are the mathematical object denoted by the determiners, which are
syntactic units in a natural language. These quantifiers are relations between two subsets
of a given domain of discourse. For example, using the notation where J·K is the semantic
interpretation function that maps expressions of a natural language to their meaning:

JeveryK = {〈M, A, B〉 : A ⊆ B}
Jat_most_3K = {〈M, A, B〉 : |A ∩ B| ≤ 3}

JmostK = {〈M, A, B〉 : |A ∩ B| > |A \ B|}.

Moving forward, we will refer to a given tuple M := 〈M, A, B〉 as a model (and will
use the term ‘structure’ interchangeably), so that a quantifier is a set of models. To see
an example, the sentence ‘Every person is happy’ will be true just in case the model
M := 〈M, JpersonK, JhappyK〉 ∈ JeveryK, which according to the definition, is just when
JpersonK ⊆ JhappyK, i.e., the set of people is a subset of the set of happy entities. (Here, M
is the ‘domain of discourse’, the set of objects relevant for a given conversation.)

As a shorthand, we will say that a determiner has a certain semantic property to
mean that the quantifier that the determiner denotes has that property. Sometimes, for a
determiner, such as every, we will write every as a shorthand for JeveryK, i.e., for the quantifier
that it denotes. We will use Q and its ilk as variables over quantifiers. Because quantifiers
are viewed as set-theoretic objects, we will write M ∈ Q when a structure/model M belongs
to a quantifier. (See Reference [23] for a thorough exposition of quantifiers in this tradition.)
In other words, when a sentence Det N VP is true when interpreted in a model M, we will
write 〈M, JNK, JVPK〉 ∈ Det. In the experiments that follow below, we will take a language
to be a set of quantifiers.

2.2. Semantic Universals for Quantifiers

Having now introduced the framework of generalized quantifiers for the semantics of
natural language determiners, in this section, we will introduce and precisely define the two
semantic universals studies in this paper: monotonicity and conservativity [22,23,35]. Both
of these properties state that the (grammatically) simple determiners in natural languages
only ever denote a mathematically distinguished subset of the possible quantifiers. One can
think of this in terms of a dictionary: the simple determiners are single words, which will
have entries in a dictionary. The universals state that only particular kinds of quantifiers get
entered as entries in the dictionary (i.e., lexicalized); languages will rely on more complex
expressions and compositional interpretation to express other quantifiers [23,24].

2.2.1. Monotonicity

To motivate our first universal, consider the following sentences.

(1) a. Many scientists program in Python.
b. Many scientists program.

It is clear that (1a) entails (1b): the former cannot be true without the latter being true.
Similarly, this entailment does not depend on the choice of the restrictor—scientists—or
nuclear scopes—program in Python and program—so long as the latter scope is strictly more
general than the former. Moreover, competent speakers of English recognize this fact easily.
What speakers thereby implicitly know is that many is upward monotone:
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(2) Q is upward monotone if and only if whenever 〈M, A, B〉 ∈ Q and B ⊆ B′; then,
〈M, A, B′〉 ∈ Q.

By contrast, the pattern reverses if we replace many with few, as seen in the follow-
ing examples.

(3) a. Few scientists program in Python.
b. Few scientists program.

Here, (3b) entails (3a). Now, truth is preserved when we move from a more general
scope to a more specific scope. In this case, we say that few is downward monotone:

(4) Q is downward monotone if and only if whenever 〈M, A, B〉 ∈ Q and B ⊇ B′; then,
〈M, A, B′〉 ∈ Q.

Finally, a determiner is monotone if and only if it is either upward or downward
monotone. (Similar definitions can be given for the ‘left’ argument, i.e., the restrictor. See
Section 5.1.1). The reader can verify that all of the simple determiners mentioned at the
beginning of the section are monotone.

This appears to be no accident of our choice of English or of that particular list of
simple determiners. Reference [22] proposed the following semantic universal.

MONOTONICITY UNIVERSAL: All simple determiners are monotone. (Reference [22] also
included conjunction of monotone quantifiers in this definition. This was, however,
mainly to capture exact readings of bare numerals (e.g., three). Because, however, many
theorists take bare numerals to have an ‘at least’ meaning, that clause is not needed.)

This universal rules out quantifiers, such as an even number of and at least 6 or at
most 2: increasing or decreasing the set B can cause the cardinality of A ∩ B to change
in a way that flips the truth value of sentences with those determiners, so they are not
monotone. The claim then is that no simple determiner in any natural language denotes
those quantifiers.

2.2.2. Conservativity

Our next universal captures the intuition that the restrictor genuinely restricts what
a sentence talks about. That is, sentences of the form Det N VP are in some sense about
the Ns and nothing else. This universal can be observed by noting the felt equivalence
between the following pairs of sentences.

(5) a. Every student passed.
b. Every student is a student who passed.

(6) a. Most Amsterdammers ride a bicycle to work.
b. Most Amsterdammers are Amsterdammers who ride a bicycle to work.

The formal concept at play here has been called conservativity.

(7) Q is conservative if and only if 〈M, A, B〉 ∈ Q if and only if 〈M, A, A ∩ B〉 ∈ Q.

Reference [22] formulated and defended the following universal. (Because the term
conservative was not introduced until Reference [35], the original formulation was in terms
of a quantifier living on a witness set. We follow the norm of formulating in terms of
conservativity for concision.)

CONSERVATIVITY UNIVERSAL: All simple determiners are conservative. (In fact, con-
servativity often is a claim about all determiners, not just the simple ones. See
Reference [24] and references therein for discussion.)

This universal rules out quantifiers that depend on other portions of the model besides
A, such as B \ A. As an example, there is no determiner equi in any language such that the
following two sentences are equivalent in meaning.

(8) a. Equi students are at the park.
b. The number of students is the same as the number of people at the park.
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2.3. The Learnability Hypothesis

In recent work, semantic universals for quantifiers [24], color terms [25], and respon-
sive predicates [36] have been argued to arise from a learnability pressure. Expressions
satisfying these semantic universals are shown to be easier to learn than those that do not
satisfy the universals. Together with the assumption that languages choose to lexicalize
easier-to-learn meanings, these facts about learnability would explain the typological facts
in these domains.

While the aforementioned studies all used methods from machine learning to measure
learnability at a large scale, several studies have also studied the learnability of these
properties in children and non-human primates. Reference [37] argues that conservative
quantifiers are easier than non-conservative ones for children to learn (though, see Ref-
erence [38] for a failed replication). (Reference [24] also found no learnability difference
between conservative and non-conservative quantifiers, thus discussing the possibility
that conservativity has a different source.) Similarly, Reference [39] finds that monotone,
as well as connected (roughly: conjunction of monotone), quantifiers are easier to learn
than non-monotone ones, and Reference [40] finds that this learnability bias is present
in non-human primates, as well. In addition to these, artificial language learning experi-
ments have suggested that cross-linguistically attested systems for person marking [41]
and evidentials [42] are easier to learn.

Taken together, these results provide strong evidence that learnability plays a role in
shaping the semantic systems of the world’s languages.

2.4. The Efficient Communication Hypothesis

While the previously discussed studies show that learnability likely plays a role in
shaping semantic systems, they by no means imply that it is the only (or even the best)
explanation. An alternative account with wide appeal holds efficient communication to be a
key explanatory principle in semantic typology. See Reference [19] for an overview and
Reference [43] for a survey going beyond semantics.

The key idea here is that natural languages optimally trade-off between two competing
pressures: to be simple (e.g., to represent cognitively) and to be useful in communication
(i.e., informative). Intuitively, one can think of simplicity in terms of how hard it would be
to store all of the meanings in a language and one can think of informativity in terms of how
well a speaker can convey an intended meaning to a listener. A maximally simple language
may have a single word; this would be very unhelpful for communication, since it does not
allow speakers to make any distinctions. By contrast, a maximally informative language
may have a unique expression for every possible meaning; this would be, however, very
complex to represent or learn. (The notions of simplicity and informativeness are being used
in an intuitive sense at the present moment, but they can be made precise in terms of least
effort [8,9,43] or information theory [18,20,21]. Our precise definitions come in Section 3.
In addition, see the discussion of linguistic laws in Section 6.2). While it is impossible to
be both maximally simple and maximally informative, there will exist a Pareto frontier of
languages which optimally trade-off the two pressures: these are the languages for which
there is no other language that is both simpler and more informative. In other words,
the languages on the Pareto frontier are those that are doing “as well as possible” at jointly
optimizing the two competing pressures for simplicity and informativeness.

The efficient communication hypothesis states that natural languages should lie on or
near this Pareto frontier. Reference [18] showed that the kinship systems of the world’s
languages lie much closer to the Pareto frontier than those of artificial languages. Since that
pioneering work, similar analyses have been carried out for color terms [20,44], container
terms [45], and numeral systems [46]. Starting with the precursor to the present paper,
Reference [26], the framework has also been applied to several domains of function words,
from indefinites [27] to logical connectives [28,29] to person systems [30]. These studies
suggest that efficient communication shapes the structure of the semantic systems of the
world’s languages, across both content and function words.
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Like Reference [27], the present paper will compare not just natural versus artificial
languages but will also compare random languages that do and do not satisfy proposed
semantic universals for the domain in question (indefinites there, quantifiers here). Fur-
thermore, instead of simply comparing languages that do and do not have a property, we
will introduce information-theoretic methods for measuring degrees of having a semantic
universal, to see whether this correlates with closeness to the Pareto frontier.

3. Methods

While the two experiments in this paper differ in what property of languages they
measure, they share many common features: the measures of simplicity and informative-
ness, and the measure of optimality as closeness to the Pareto frontier. In this section,
we provide explicit definitions of all of these components, before turning to the actual
experimental results.

3.1. Measuring Simplicity and Informativeness

Our measure of cognitive simplicity relies on representing quantifiers in a Language
of Thought [47–49], i.e., using formulas in a logical language containing operations for
set union, intersection, and complementation, as well as for measuring cardinalities and
comparing, multiplying, and dividing them. Table 1 shows the entire set of operators used
in this paper.

The complexity of a quantifier is the length of the shortest formula in this language that
denotes the quantifier. We found the shortest such formula by exhaustively enumerating
all formulas with up to 12 operations and comparing the truth-values across all models
up to size 10. For memory reasons, we collapse isomorphic models, representing a model
〈M, A, B〉 by the cardinalities of the four sets A∩ B, A \ B, B \ A, M \ (A∪ B). This prevents
us from capturing quantifiers, such as the first three, which do not satisfy the universal
known as QUANTITY [24]. Future work will explore methods that relax this assumption
while simultaneously addressing the resulting combinatorial explosion. Even in this
restricted setting, this exhaustive search generated 279,120 distinct quantifiers.

Note that using length only is equivalent to using the probability of generating an
expression with a PCFG that assigns equal weight to all productions from the same non-
terminal. (Future work may explore non-uniform weights in a PCFG for this domain.
Ideally, these weights would be estimated from behavioral data of, e.g., human learn-
ing [49].) The complexity of a language is the sum of the complexities of the quantifiers in
it. We specify an upper bound on the number of possible quantifiers in a language (10 in
our experiments) and divide the sum by this number.

Table 1. The operators in the grammar for generating quantifiers.

Boolean Set-Theoretic Numeric

∧, ∨, ¬ ∩,∪,⊂, | · | /,+,−,>,=, %

Our measure of informativeness stems from notions of communicative success: a speaker
has an intended model that they want to communicate to a listener using the quantifiers in
their language [19,50]. This is captured by the following:

I(L) := ∑
M

P(M) ∑
Q∈L

P(Q|M) ∑
M′∈Q

P(M′|Q) · u(M′,M).

The prior over models, as well as the conditional distributions, are assumed to be
uniform where defined (e.g., P(Q|M) = 1/n if M ∈ Q; 0 otherwise, where n = |{Q ∈ L :
M ∈ Q}| is the number of quantifiers in L containing M).

This measure captures the following communicative scenario: a speaker has a model
(M) in mind, that it wishes to communicate to a listener. To do so, they can use the
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quantifiers in the language L. The speaker’s behavior is captured by P(Q|M). The listener
then guesses a model (M′) that the speaker has in mind, with probability P(M′|Q).

The utility u(M′,M) measures how good it is for the listener to guess M′ when the
speaker had in mind M. We base this on a measure of the distance between models, captur-
ing the notion that non-exact matches can still be better or worse [51,52]. More precisely:

u(M′,M) =
1

1 + d(M′,M)
where

d(M′,M) = ∑
X∈A\B,A∩B,B\A,M\(A∪B)

max{0, |X| − |X′|}.

Intuitively, this measure is inversely proportional to how many elements one has to
move to transform the listener’s guessed model into the sender’s model (by summing this
value across the four ‘zones’ in a model of the form 〈M, A, B〉). (The addition of 1 in the
denominator both prevents division by zero and makes distance-0 models have maximal
utility of 1.) For example, suppose M has 3, 4, 2, and 1 elements in A \ B, A ∩ B, B \ A, M \
(A ∪ B), respectively, and M′ has 2, 4, 3, and 1 elements in the same zones. We then have
that d(M,M′) = 1, since moving one element from A \ B to B \ A will make the four zones
have the same size in the two models.

We note here that this choice of utility function u(M′,M) is one choice amongst many
for defining how good of a guess M′ is when M is the intended model in the speaker’s
mind. Other choices are possible. For instance, one could define this utility in terms
of (negative) expected surprisal of the listener in learning which sets different objects
belong to. (Thanks to an anonymous reviewer for suggesting this measure.) One difficulty
with implementing this is in defining distributions over the individual objects, above and
beyond the distributions over models.

Furthermore, one could change the overall shape of the informativeness measure.
Following Reference [18], a natural candidate would be

I′(L) := ∑
M

P(M) ∑
Q∈L

P(Q|M) · − log P(M|Q).

Noting that P(M)P(Q|M) = P(M, Q), and letting M and Q be random variables
jointly distributed according to P, one can observe that I′ as just defined equals the condi-
tional entropy H(M|Q) [21]. In information-theoretic terms, this measures how many bits
of information the speaker would need to send, over and above the quantifier they chose,
in order to single out their intended model. Similarly, following References [20,30], one
could measure informativeness by the mutual information

I(M;Q) := ∑
M,Q

P(M, Q) log
P(M|Q)

P(M)
= H(M)− H(M|Q),

as well. At present, we flag this bit of modeling degree of freedom and leave the pursuit of
other measures of utility (and informativeness more generally) to future work.

3.2. Measuring Optimality

To test whether ‘more natural’ (to be measured in different ways in the subsequent
experiments) languages are more optimal, we need a measure of optimality for a language.
To do this, we measure how close a language is to the Pareto frontier, the set of languages
which are not dominated (i.e., which have no language both simpler and more informative).
The Pareto frontier contains the fully optimal languages: they cannot be made less complex
or more informative without becoming worse on the other dimension. Writing P for the
Pareto frontier, we define the optimality of a language as

optimality(L) := 1− minL′∈P d(L, L′)√
2

,
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where d is the Euclidean distance between points in the plane. This measure takes the
closest point on the Pareto frontier to a given language. If a language is on the frontier,
i.e., is optimal, that minimum distance will be 0, so the degree of optimality will be 1.
Because both communicative cost and complexity range from 0 to 1, the theoretically
largest value for the minimum distance is

√
2; by dividing the minimum distance by this

value, optimality ranges from 0 to 1. To summarize: the degree of optimality of a language
increases as it gets closer to the Pareto frontier, the set of optimal languages.

A complication arises when trying to apply this measure: because the space of possible
languages is enormous, we cannot exhaustively enumerate it and thereby uncover the true
Pareto frontier. (As noted in the previous section, there are 279,120 unique quantifiers. This
means that there are ∑N

k=1 (
279120

k ) distinct languages of N or fewer quantifiers (where (n
k) is

the binomial coefficient). For example, there are approximately 8× 1047 languages of size
10 or less.) Moreover, most random sampling procedures are not guaranteed to uncover the
Pareto frontier. Because of this, we need a method to estimate the Pareto frontier without
being able to calculate it directly.

To estimate the true Pareto frontier, we used an evolutionary algorithm [53]. Such
algorithms take inspiration from evolutionary processes in that points in a space change
over a sequence of generations, with ‘children’ arising via ‘mutation’ from previous points.
More importantly, such algorithms are explicitly designed to solve multi-objective optimiza-
tion problems. Since the Pareto frontier can be seen as the set of solutions to the problem
of simultaneously optimizing multiple objectives (simplicity and informativeness), these
algorithms are well-suited to estimating it.

Our algorithm—provided in full detail in Algorithm A1 in Appendix A—can be
intuitively described as follows. We start with an initial seed of randomly generated
languages. For some specified number of ‘generations’, we select the dominant languages
among the current set of languages. Each language then has an equal number of ‘children’
languages (enough to maintain the size of the pool of languages). A child arises from a
parent language by some small sequence of ‘mutations’. In our case, this was between
1 and 3 mutations, where a mutation could be: (i) deleting a quantifier from the parent
language, (ii) adding a quantifier to the parent language, or (iii) swapping a quantifier in
the parent language (i.e., deleting one and adding a new one).

After running the above algorithm for some specified number of generations, we then
take the dominant languages from the pool together with the languages we previously
sampled, and then linearly interpolate between all of the points to form a smooth and dense
frontier. (More sophisticated evolutionary algorithms specify a convergence criterion. We
leave the explorations of these refinements to future work. This entire process is depicted
in Figure 1.

(1) Apply evolutionary algorithm to
simultaneously optimize the two ob-
jectives.

(2) Find the dominating points
among those from (1) and from the
sampling procedure.

(3) Interpolate between all points.

Figure 1. The overall Pareto frontier estimation algorithm, in three steps. Each red point is one artificial language sampled
according to an independent procedure. The black points in panel (3) constitute the final estimate of the true Pareto frontier.
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4. Experiment 1: Degree of Naturalness
4.1. Sampling Languages

To answer the question of whether natural languages optimize the trade-off between
simplicity and informativeness, we systematically control ‘how natural’ a language is by
biased sampling. While a completely random language can be generated by randomly
sampling a specified number of quantifiers from the space of all quantifiers generated
by our grammar, an alternative sampling procedure allows us to control a degree of
naturalness of sampled languages.

While there is no existing dataset of quantifiers across a large set of natural languages,
a major cross-linguistic study [54,55] found that all natural language quantifiers belonged
to three classes:

• Generalized existential: depending only on |A ∩ B|.
For example: Jat least threeK = {〈M, A, B〉 : |A ∩ B| ≥ 3}.

• Generalized intersective: depending only on |A \ B|.
For example: JeveryK = {〈M, A, B〉 : |A \ B| = 0}.

• Proportional: comparing |A ∩ B| and |A \ B|.
For example: JmostK = {〈M, A, B〉 : |A ∩ B| > |A \ B|}.
We call a quantifier quasi-natural if it can be expressed in one of the three forms above.

In addition, a language will be considered natural if it contains only quasi-natural quantifiers.
Our complete sampling procedure, then, worked as follows: for each number of words

between 1 and 10, we generated 8000 languages. Each language of size n was chosen to have
m ≤ n quasi-natural quantifiers, with m chosen uniformly from {0, . . . , n}. All remaining
quantifiers were chosen randomly from the set of all quantifiers whose minimal formula
has 12 or fewer operators. We refer to m/n as the degree of naturalness of a language. Thus,
a language that has only quasi-natural quantifiers will have a degree of naturalness of 1 (and a
language that has no quasi-natural quantifiers will have a degree of naturalness of 0).

4.2. Results

The main results can be seen in Figure 2. In this figure, the x-axis is communicative
cost, which is 1− I(L), and the y-axis is complexity, where both I(L) and complexity are as
defined in Section 3.1. Each point represents a possible language, with the color of a point
corresponding to degree of naturalness. The black line is the estimated Pareto frontier, i.e.,
the set of languages that optimally trade-off between these two factors.

A few things can be observed right away. All of the sampled points that were found
to lie on the estimated Pareto frontier (i.e., which dominate all languages both sampled and
discovered by the evolutionary algorithm) appear to have a very high degree of naturalness.
These are the yellow points on the black frontier, where no brown or blue points (less
natural languages) are to be found. Moreover, this seems to be a general trend: it appears
that languages with a high degree of naturalness tend to be closer to the Pareto frontier
than those with low degrees of naturalness.

In virtue of the methods described in the previous section, we can test this appearance
statistically: the Pearson correlation between optimality and degree of naturalness is
ρ = 0.2516, with bootstrapped 95% confidence interval [0.2444, 0.2589]. Here, and in
what follows, we used a standard non-parametric bootstrap, taking 10,000 bootstrap
samples and estimating the confidence interval using the 2.5 and 97.5th percentiles of the
empirical distributions of the samples [56]. (Appendix B shows a plot of optimality versus
naturalness directly.) This significant positive correlation can be interpreted as follows:
as languages become more similar to natural languages with respect to their quantifiers,
they come closer to optimally trading off between the competing pressures of simplicity
and informativeness.
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Figure 2. Languages in the space of communicative cost and complexity (see Section 3.1, with cost defined as 1− I(L)),
colored by their degree of naturalness. Languages with more quasi-natural quantifiers appear to be closer to optimal,
as measured by closeness to the (estimated) Pareto frontier, depicted in black.

4.3. Discussion

We find a significant positive correlation between the degree of naturalness of an
artificial language and how optimally a language trades off between the competing pres-
sures of simplicity and informativeness. This suggests that efficient communication can
explain the typology of quantifiers in natural language. One possible exception to this
general trend concerns a cluster of languages in the bottom of Figure 2. (Thanks to an
anonymous reviewer for pointing this out.) These languages all contain a single quantifier
which does not belong to the set of quasi-natural ones, thus receiving degree of naturalness
0. At least two lessons can be drawn from the presence of this band of languages. On the
one hand, it strengthens the main results: their zero degree and closeness to the Pareto
frontier does not prevent the general correlation that we find. On the other hand, it does
point to a limitation of our measure of degree of naturalness: it aggregates a binary property
of individual expressions (namely, being quasi-natural or not), thus not being not very
fine-grained. In particular, languages with a single quantifier either have degree 0 or degree
1. The measures introduced in the next section will not have this property.

5. Experiment 2: Degrees of Semantic Universals

The previous experiment showed that languages with more quasi-natural quantifiers
tend to be more optimized for efficient communication. Now, the quasi-natural quantifiers
are indeed monotone and conservative (after all, those are semantic universals), but they
do not exhaust the space of possible quantifiers satisfying those properties. This raises the
question: do these semantic universals on their own support efficient communication?

To address this question, we do two things: first (in the next subsection), we introduce
information-theoretic measures of degrees of both monotonicity and conservativity. (A simi-
lar measure could also be made for quantity; see Section 3.1 where we note that quantity
is assumed in the present work.) Then, instead of controlling how many quasi-natural
quantifiers we sample, we randomly sample quantifiers from the space of all possible
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quantifiers to form languages and measure the resulting degrees of the universals for the
languages, to test whether they are correlated with optimality or not.

5.1. Measuring Degrees of Universals

Both of our graded measures follow the same general recipe, described here. Both
monotonicity and conservativity state that there is a dependence between the truth-values
that a quantifier assigns to different models in the space of all models. For (upward)
monotonicity: all ‘supermodels’ of a true model (those where the scope is widened) are also
true. For conservativity: the ‘restriction’ of a true model must also be true (and similarly
for falsehood), where the restriction of a model just replaces B with A ∩ B. For each
property, we can turn the two types of models mentioned in the definitions into random
variables, and then use (normalized) mutual information to measure the amount of dependence
between them [21]. A fully monotone quantifier will have full dependence, but non-
monotone quantifiers can have more or less such dependence (and mutatis mutandis for
conservativity). We now make this intuition more precise.

5.1.1. Monotonicity

According to the standard definition given above, monotonicity is a binary property.
While one could compare monotone to non-monotone quantifiers in terms of their closeness
to the Pareto frontier, some quantifiers are intuitively more monotone than other quantifiers.
For instance, consider the three quantifiers “some”, “between 3 and 5” and “an even number
of”. While “some” is monotone, and the other two quantifiers are not, intuitively, “an even
number of” is the least monotone of the three because it is not equivalent to a Boolean
combination of monotone quantifiers. Thus, we define a graded measure of monotonicity,
which we can check for correlation with optimality. (See References [57,58], which show
that this measure also increases over time during iterated learning.)

We measure upward monotonicity in information-theoretic terms as the proportion of
uncertainty in the truth-value of a quantifier that is removed after knowing that there is a
submodel where the quantifier is true. In particular, we define M′ �M (M′ is a submodel of
M) just in case M′ = M, A′ = A, and B′ ⊆ B. For a perfectly upward monotone quantifier
Q, if a structure M has a submodel which belongs to the quantifier, then M ∈ Q, as well.
Therefore, for an upward monotone quantifier, all the uncertainty is removed, and the
measure will have value 1.

More precisely, callM the set of all structures. Let {M,F , P} be a probability space
with F = 2M, and P a discrete probability function with full support. (This assumption
can be relaxed but is satisfied by the need probabilities (often uniform) used in efficient
communication analyses.) Then, define two binary random variables 1Q and 1

�
Q as follows,

with M ∈ M:

1Q(M) = 1 iff M ∈ Q

1
�
Q(M) = 1 iff ∃M′ �M s.t. M′ ∈ Q.

In other words, 1Q is the indicator function of the quantifier Q. 1�Q is 1 at a model just
in case that model has a submodel that belongs to Q.

The entropy of 1Q, H(1Q), quantifies the uncertainty about what truth value Q

will assign to a model. The conditional entropy H(1Q | 1�Q) quantifies the uncertainty
about what Q will assign to a model, given that one knows whether or not the model
has a submodel belonging to it. An upward monotone quantifier minimizes (at value 0)
H(1Q | 1�Q): if one knows that a model has a true submodel, and the quantifier is upward
monotone, one knows the truth value at that model. The difference between the entropy
and the conditional entropy between these variables is known as the mutual information:

I(1Q;1�Q) := H(1Q)− H(1Q|1�Q).
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This measures how much information 1
�
Q provides about 1Q. For an upward mono-

tone quantifier, H(1Q|1�Q) = 0, so I(1Q;1�Q) = H(1Q). In other words: for an upward
monotone quantifier, knowing which structures have a true substructure provides as much
information as knowing the entire quantifier.

While this roughly captures what we want from a measure of upward monotonicity,
it needs to be normalized to form a degree that applies across quantifiers, since 0 ≤
I(1Q;1�Q) ≤ H(1Q). We do this by dividing by H(1Q), moving the upper bound to 1.
(This is sometimes called the uncertainty coefficient, defined at least as early as Reference [59]).
Overall, then, we measure upward monotonicity as

mon(Q) :=
I(1Q;1�Q)

H(1Q)

=
H(1Q)− H(1Q|1�Q)

H(1Q)

= 1−
H(1Q | 1�Q)

H(1Q).

To see how this measure tracks intuitions, References [57,58] reports results for the
previously mentioned quantifiers “some”, “between 3 and 5”, and “an even number of”
on all models of a fixed size. “Some” gets monotonicity 1.0 because knowing whether a
structure has a substructure that verifies “some” eliminates all uncertainty about the truth
of the structure. The quantifier “between 3 and 5” has degree 0.7517, and the one with “an
even number of” has degree 0.001, which captures the intuitive order of monotonicity of
these quantifiers. We can also show that maximal degree behaves as desired.

Proposition 1. mon(Q) = 1 iff Q is upward monotone.

Proof. First, note that the degree is one just in case H(1Q|1�Q) = 0. It is commonly known
that H(X|Y) = 0 iff X = f (Y) for some function f from Y’s value space to X’s value
space. In our case, this means that mon(Q) = 1 iff there is an f : {0, 1} → {0, 1} such
that 1Q(M) = f (1�Q(M)). Now, because � is a reflexive relation, 1�Q(M) = 0 implies that
1Q(M) = 0 in general. Finally, note that we must have f (1) = 1. Consider a model M such
that 1�Q(M) = 1. Then, for some M′ � M,1Q(M′) = 1. Because � is reflexive, we also
have that 1�Q(M

′) = 1, so f (1) 6= 0. The reader can verify that f (0) = 0 and f (1) = 1 just
in case Q is upward monotone.

The measure defined above is a measure of upward monotonicity. It can be straight-
forwardly modified to measure downward monotonicity, by replacing the variable 1�Q for
the variable 1�Q, which is true when a model has a supermodel that belongs to Q. Similarly,
these two measures have focused on right monotonicity, looking at truth-preservation in
the nuclear scope of a quantifier. It is common to also consider monotonicity when moving
to more or less general restrictors. The measure of monotonicity can also be applied to the
restrictor by replacing B by A in the definitions of � and �.

Finally, we take the measure of monotonicity of a single quantifier to be the average
of its degrees of left and right monotonicity, where each of these is the maximum value of
the respective degrees of upward and downward monotonicity (in the left versus right
argument). In addition, we take the degree of monotonicity for a language to be the mean
of the degrees of monotonicity of the quantifiers in the language.

5.1.2. Conservativity

We define a graded measure of degree of conservativity in a similar way. It will still be a
normalized mutual information, but now with a different random variable, capturing the
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fact that it suffices to look at A ∩ B instead of B for conservative quantifiers. More precisely,
define the random variable

1
�A
Q (M) = 1 iff M � A := 〈M, A, A ∩ B〉 ∈ Q.

In other words: this variable returns 1 just in case the quantifier is true when restricting
the scope by the restrictor. Finally, our measure of conservativity is:

cons(Q) :=
I(1Q;1�A

Q )

H(1Q)
= 1−

H(1Q | 1�A
Q )

H(1Q)

It is easy to show that maximal degree behaves as desired.

Proposition 2. cons(Q) = 1 iff Q is conservative.

Proof. This follows from the fact that Q is conservative iff 1Q = 1
�A
Q .

Finally, we note that we can also define a measure of left conservativity by replacing
the variable 1�A

Q with the similarly defined

1
�B
Q (M) = 1 iff M � B := 〈M, A ∩ B, B〉 ∈ Q.

See Reference [60] and references therein for motivation for this form of conservativity.
We take the degree of conservativity of a quantifier to be the maximum of its degree of
left and right conservativity, and then the degree of conservativity of a language to be the
average of the degrees of conservativity of the quantifiers therein.

5.2. Sampling Procedure

For this experiment, our sampling procedure was effectively random. For each number
of words between 1 and 10, we generated 2000 languages containing that many words.
The quantifiers in each language were chosen randomly from the set of all quantifiers
whose minimal formula has 12 or fewer operators.

5.3. Results

The main results can be seen in Figure 3. The axes are the same as before, but with a
different interpretation of the color of each language. In the left panel, color corresponds to
degree of monotonicity; in the right panel, color corresponds to degree of conservativity,
as defined in Section 5.1. We note that the horizontal ‘bands’ in this Figure (i.e., groups
of languages with similar complexity) correspond roughly to the number of words in a
language: the least complex languages have a single word with low complexity, while the
most complex have many words with high complexity.

In these plots, it is not immediately clear whether the degrees of the universal proper-
ties are getting higher as the languages get closer to the estimated Pareto frontier. For degree
of monotonicity, we find the Pearson correlation with optimality to be ρ = −0.0590 (boos-
trapped CI: [−0.07460891,−0.04257208]); for degree of conservativity, we find the same
correlation to be 0.0725 (bootstrapped CI: [0.0565, 0.0883]). These are incredibly weak
correlations, which we interpret as showing that neither the degree of monotonicity nor the
degree of conservativity are positively correlated with closeness to the Pareto frontier in this
random sample of languages. (We note that these correlations are between an information-
theoretic property of a language (the degrees), and their optimality (also measured using
tools from information theory), but that these correlations do not directly reflect the entropy
of a language nor the mutual information I(M;Q) discussed in Section 3.1. We thank an
anonymous reviewer for noting this).
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(a) Monotonicity (b) Conservativity

Figure 3. Languages in the space of communicative cost and complexity, colored by their degree of (a) monotonicity and
(b) conservativity. Neither degree correlates with optimality, as measured by closeness to the (estimated) Pareto frontier,
depicted in black.

Although neither degree on its own is correlated with optimality, it is possible that the
interaction between the two properties are, i.e., that languages that are both more monotone
and more conservative are closer to the Pareto frontier. (Thank you to Jakub Szymanik (p.c.)
for suggesting this analysis.) To test this, we measured the correlation between optimality
and the product of the two degrees (of monotonicity and conservativity), finding ρ = 0.0337
(bootstrapped CI: [0.0171, 0.0500]).

5.4. Discussion

We introduced information-theoretic measures for degrees of monotonicity and conser-
vativity, and we found that neither one of these degrees (nor their interaction) is significantly
correlated with optimality in a random sample of languages. While this suggests that these
properties on their own do not support efficient communication, some caution must be
taken: Figure 3 shows that very few of the randomly sampled languages come close at all
to the Pareto frontier. This suggests that the Pareto frontier lies in a very low-density region
of the space of languages and that our method of randomly sampling did not effectively
sample from that region. In addition, it is similarly possible that these low-density regions
are also regions of high degrees of monotonicity and conservativity. Future work will
explore methods for more exhaustively sampling from the vast space of possible languages.

6. General Discussion

Let us take stock. We have analyzed quantifiers in natural language from an efficient
communication perspective, measuring how optimally quantifier systems trade-off be-
tween competing pressures for simplicity and informativeness. Experiment 1 showed that
the degree of naturalness—the proportion of quasi-natural quantifiers in a language—is
significantly correlated with optimality, suggesting that more natural languages are more
optimal. Experiment 2 used information-theoretic measures of degrees of monotonicity and
conservativity and found that, in a random sample of languages, neither of these degrees
is significantly correlated with optimality. In this section, we discuss, in turn, (i) what these
results mean for the status of semantic universals, (ii) how they are related to the linguistic
laws literature, and (iii) what future work they suggest.

6.1. Status of Semantic Universals

Taken together, these two results suggest a strong conjecture: the semantic universals
for quantifiers may be epiphenomena. That is to say, the fundamental pressure shaping
quantifier systems cross-linguistically may be efficient communication; the fact that all
natural language quantifiers are, for instance, monotone and conservative would be an
empirically true by-product of these forces. On such a picture, then, there would not be an
independent explanatory burden to explain why quantifiers satisfy the particular semantic
universals (e.g., monotonicity) that they do, i.e., what makes monotone quantifiers special
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compared to non-monotone. Rather: a more general pressure shapes quantifier systems,
and it so happens that the resulting systems have only monotone quantifiers.

What goes for quantifier systems may also hold for other semantic domains. For ex-
ample, while color terms have been argued to be convex [16], and more convex systems
are easier to learn [25], these may be epiphenomena of a pressure for efficient commu-
nication [30]. Similarly, while [27] shows that systems of indefinites satisfying proposed
universals are closer to optimal than those that do not, this effect is significantly smaller
than a comparison between natural versus artificial languages. This, again, suggests that
the universals for indefinites are empirically true generalizations that arise as a by-product
of a pressure for efficient communication.

It must be emphasized, however, that the two results of this paper merely suggest,
but by no means force, this interpretation. As mentioned in Section 5.4, the lack of corre-
lation between the degrees of monotonicity and conservativity and optimality may also
be an artifact of the random sampling procedure employed. The most optimal languages
appear to lie in low-density regions of the space of languages; these low-density regions,
which were missed by our random sampling, may also be regions with high degrees of
monotonicity and conservativity. Future work will develop sampling methods that do not
directly sample natural language quantifiers (as in Experiment 1) but which still allow for
sampling from regions of the space closer to the Pareto frontier than random sampling.

It must also be noted that the claim that natural languages are (nearly) Pareto-optimal
does not necessarily imply that language change directly optimizes for these competing
pressures. It possible that other general cognitive pressures which drive language change
(e.g., the bottleneck in learning across generational transmission [61,62]) are explanatorily
prior. Future work should directly integrate these measures of efficient communication
with methods and models from language change.

6.2. Relationship to Linguistic Laws

While this paper has studied one set of semantic universals, another body of literature has
studied large-scale statistical patterns in language, often under the name linguistic laws [9–14].
A celebrated example is Zipf’s [8] law, stating that the frequency and rank of word types in
natural languages are related by a power law. See Reference [10] for a review of variants of
this law and models thereof and Reference [63] for a thorough exploration of the connection
between information theory and power laws in language. Similar laws have been identified
in texts [11], speech [12,13], and in primate gestural communication [14]. In the subsequent
paragraphs, I explain some similarities and differences, both in the nature of these laws and the
universals discussed here, as well as in models for both.

Many linguistic laws concern properties of linguistic behavior that are directly observ-
able at a large scale. This includes word frequencies, which are easily measurable from
corpora, as well as speech data and deeper syntactic properties [5,6]. Large-scale mea-
surement is essential to the formulation of the kind of statistical patterns characteristic
of this tradition. By contrast, the semantic universals discussed here are generalizations
about what types of meanings are expressed in languages, on the basis of a relatively
small number of observations. One reason for this is that there are very few categories
of expressions where there is enough consensus about their semantics to even formulate
these universals. While it is hard to measure semantic phenomena at the kind of scale
done in syntax (though, see Reference [64]), it would be a worthwhile pursuit to attempt to
formulate and explain ‘semantic laws’ in a similar vein.

One popular explanation of the aforementioned linguistic laws comes from information
theory [9,65]. In particular, where R is a random variable over possible meanings (e.g., objects
of reference), and S a random variable over forms, they argue that languages optimize

Ω(λ) := −λI(S; R) + (1− λ)H(S),

where I(·; ·) is mutual information, and H(·) is entropy [21]. For example, Reference [9]
finds that optimal form-meaning mappings around λ ≈ .41 exhibit frequencies that pattern
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according to Zipf’s law. (See Reference [10] for an overview of this and other explanations of
Zipf’s law.) Note that I(S; R) can be seen as a measure of the informativeness of a language,
as discussed in Section 3.1. Similarly, one can argue that H(S) is a measure of the complexity
of a language, so that minimizing Ω amounts to trying to jointly optimize pressures for
simplicity and informativeness (see Reference [65] for a defense of the particular form that
Ω takes). The information bottleneck (IB) approach [20,30] is a similar approach, with a
different measure of complexity.

While the approach to communicative efficiency (i.e., a trade-off between simplic-
ity and informativeness), thus, bears strong resemblance to this work on linguistic laws,
there are at least two important divergences. On the one hand, both of our measures of
informativeness and complexity exploit structure that is particular to the semantic domain
in question, namely quantifiers. This is reflected in the utility measure u(M′,M) and the
particular language of thought used to measure complexity (Section 3.1). It remains to
be seen whether domain-general measures of both can also explain the distribution of
quantifiers in natural language, or whether such domain-specific concepts are necessary.
Furthermore, Ω (and the corresponding equation in the IB approach) introduces a parame-
ter λ for trading-off the two pressures, and then looks at minima for each λ. Our approach
to optimization used a different principle: the evolutionary algorithm of Section 3.2 relies
on the principle of dominance avoidance. A language is considered optimal if no other
language is as good or better on both measures. We leave for future work an investigation
of whether a simple functional form that combines the two measures in this paper and
then minimizes would also work.

6.3. Future Work

There are other directions for future work that could effect the results and the inter-
pretation thereof. In the present paper, we assumed uniform need probabilities over the
space of possible models when measuring informativeness. Ideally, such need probabilities
could be better estimated empirically (e.g., from corpora [18,27]). Because, however, the se-
mantic space here is quite abstract, developing tools for this estimation is a non-trivial
task. Furthermore, the present paper assumed the semantic universal of QUANTITY be-
cause relaxing this assumption causes an exponential increase in the size of the semantic
space (see Section 3.1). A degree of quantity can be defined similarly to our measures for
monotonicity and conservativity. It is possible that this degree, and the other two, as well,
would be correlated with optimality in the richer semantic space. Future work can pur-
sue computationally efficient methods for carrying out these analyses in the face of the
aforementioned combinatorial explosion. In that vein, Reference [66] recently measured
simplicity in the same manner as here, but without assuming QUANTITY, showing that
quantitative, conservative, and monotone quantifiers are all simpler than ones without
those properties. Thus, it may also be possible that quantifiers are a domain where sim-
plicity on its own suffices, without appeal to informativeness. Finally, the idea behind the
degrees of semantic universals in this paper can also be applied to other linguistic domains;
doing so can help clarify the generality of the results in this paper.

In addition to these variations on the experiments reported in this paper, additional
empirical work on the quantifier systems of the languages of the world could help support
the claim that these systems are optimized for efficient communication. In domains, such as
kinship [18], color [20], and indefinites [27], earlier typological work has provided a robust
accounting of many languages’ inventories in those domains. As mentioned in Section 4.1, while
there have been cross-linguistic investigations concerning quantifiers [54,55,67], these have not
yielded a precise account of exactly which quantifiers are expressed by simple determiners in a
large group of the world’s languages. Such a resource would allow us to compare more directly
whether quantifiers in natural language support efficient communication, instead of relying on
alternative measures of naturalness as in the present study.
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7. Conclusions

In conclusion, we have conducted an efficient communication analysis of quantifiers in
natural language, using information-theoretic measures of degrees of semantic universals.
These results suggest, but do not entail, that semantic universals may not stand in need of
independent explanation but, rather, arise as epiphenomena of the trade-off between sim-
plicity and informativeness. Future work will refine these results and their interpretation,
as well as extend the application of information-theoretic degrees of universals to other
semantic domains.
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Appendix A. Estimating the Pareto Frontier

The complete algorithm for estimating the Pareto frontier, described in Section 3.2,
appears as Algorithm A1. It is a simplified version of the non-dominated genetic sorting
algorithm [68]. There are two main parameters: how many generations to run the algorithm
for (num_generations), and how large a pool of languages to maintain at each generation
(num_langs). For the experiments in this paper, we set the number of generations to 100
and the number of languages to 2000. The set of languages L is the full set that we sampled
according to the procedures described in Section 4.1.

The three final lines in the algorithm correspond to the three steps described in
Figure 1 above. The method GENETIC_ESTIMATE contains the basic loop over generations.
For finding dominant languages, we used the pygmo library’s non_dominated_front_2d
method [69]. SAMPLE_MUTATED generates the new population at each generation by giving
each dominant language its offspring. The function MUTATE performs the mutation of a
single language, by choosing a number of mutations to apply and then randomly choosing
from the available mutations.

https://doi.org/10.17605/OSF.IO/Y58K4
https://github.com/shanest/SimInf_Quantifiers
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Algorithm A1 Estimating the Pareto Frontier
Parameters: num_generations, num_langs
Inputs: set of languages L, Pareto dominance method FIND_DOMINANT, INTERPOLATE
method

function GENETIC_ESTIMATE(num_generations, num_langs)
languages← SAMPLE_RANDOM_LANGUAGES(num_langs)
for i = 1, . . . , num_generations do

dominant_languages← FIND_DOMINANT(languages)
languages← SAMPLE_MUTATED(dominant_languages, num_langs)

end for
return languages

end function

function SAMPLE_MUTATED(languages, amount)
amount_per_lang, amount_random← amount/|languages|
mutated_languages← []
for language ∈ languages do

for i = 1, . . . , amount_per_lang do
Add MUTATE(language) to mutated_languages

end for
end for
for i = 1, . . . , amount_random do

language← RANDOM_CHOICE(languages)
Add MUTATE(language) to mutated_languages

end for
return mutated_languages

end function

function MUTATE(language)
mutated_language← language
num_mutations← RANDOM_CHOICE([1, 2, 3])
for i = 1, . . . , num_mutations do

mutation← RANDOM_CHOICE(
{ADD_QUANTIFIER, REMOVE_QUANTIFIER, SWAP_QUANTIFIER})

mutated_language← MUTATION(language)
end for
return mutated_language

end function

estimate← GENETIC_ESTIMATE(num_generations, num_langs)
pareto_frontier← FIND_DOMINANT(estimate∪ L)
pareto_frontier← INTERPOLATE(pareto_frontier)

Appendix B. Optimality versus Naturalness

Figure A1 plots optimality of languages (as defined in Section 3.2) against their degree
of naturalness (as defined in Section 4.1), i.e., the percentage of quasi-natural quantifiers in
the language. While there is significant variability in the data, the noticeably positive slope
of the line of best fit (in orange in the figure) reflects the significant positive correlation
reported in Section 4.2. (We thank an anonymous reviewer for suggesting the inclusion of
Figure A1).
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Figure A1. The optimality of languages plotted against their degree of naturalness, as defined in Section 4.1. In orange is
the line that best fits this data.
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