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Abstract

Accurately detecting sudden changes, or steps, in genetic diversity across landscapes is

important for locating barriers to gene flow, identifying selectively important loci, and defining

management units. However, there are many metrics that researchers could use to detect

steps and little information on which might be the most robust. Our study aimed to determine

the best measure/s for genetic step detection along linear gradients using biallelic single

nucleotide polymorphism (SNP) data. We tested the ability to differentiate between linear

and step-like gradients in genetic diversity, using a range of diversity measures derived from

the q-profile, including allelic richness, Shannon Information, GST, and Jost-D, as well as

Bray-Curtis dissimilarity. To determine the properties of each measure, we repeated simula-

tions of different intensities of step and allele proportion ranges, with varying genome sam-

ple size, number of loci, and number of localities. We found that alpha diversity (within-

locality) based measures were ineffective at detecting steps. Further, allelic richness-based

beta (between-locality) measures (e.g., Jaccard and Sørensen dissimilarity) were not reli-

able for detecting steps, but instead detected departures from fixation. The beta diversity

measures best able to detect steps were: Shannon Information based measures, GST

based measures, a Jost-D related measure, and Bray-Curtis dissimilarity. No one measure

was best overall, with a trade-off between those measures with high step detection sensitiv-

ity (GST and Bray-Curtis) and those that minimised false positives (a variant of Shannon

Information). Therefore, when detecting steps, we recommend understanding the differ-

ences between measures and using a combination of approaches.

Introduction

Identifying a sudden change in genetic diversity (here referred to as a ‘step’) across a landscape

is essential for many fields. A landscape geneticist may want to know if a barrier to gene flow is

leading to geographical population structure [1]. An evolutionary ecologist may be examining

how the frequencies of selectively important loci change across an environment [2]. Or a con-

servation manager may need to determine whether to treat a seemingly homogenous
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population as different management units [3]. By having the most effective set of measures to

detect a step, scientists can make better inferences about their study system. However, there

are a wide range of different metrics available, and little information about which are most

effective at detecting changes in genetic diversity [4,5]. Here, we aim to bridge that gap by

using simulated data to present a guide to molecular ecologists on the best way to detect steps

in genetic data using a spectrum of diversity measures.

In molecular ecology, the identification of a step along a gradient of genetic diversity

requires us to detect a significant change in alpha diversity (the genetic diversity of each sam-

pled location) and/or beta diversity (pairwise genetic differentiation/distance between loca-

tions). Because beta diversity is, by definition, measuring differences between localities, it is

seen to be more effective for detecting steps [5]. However, because alpha diversity does not

change linearly with allele proportion changes, it can also be used in step detection in concert

with beta diversity (e.g. [6]). Choosing a diversity measure that can best detect a step is difficult

because there are many proposed measures for alpha and beta diversity, and there is much

debate on which should be used in various situations [4].

Even with the wide variety of techniques and software available to investigate genetic steps

[7], there is a surprising lack of variety in the genetic diversity measures used within them.

Many of the most commonly used programs (such as GENELAND [8]; Barrier [9]) or tech-

niques [10] measure genetic distance with FST, GST and similar measures (also known as q = 2

based measures, see below). Other programs (such as dartR [11]; GENODIVE [12]) allow for

the selection of a wider variety of measures, but the defaults are set to the commonly used FST/

GST measures. Lastly, some methods do not use genetic diversity measures in the classical

sense at all, instead using a diffusion approximation model [13], estimated migration surfaces

[14,15], or more cluster-based metrics (e.g. STRUCTURE [16]; fastSTRUCTURE [17]). How-

ever, because some of these methods rely upon detecting departure from Hardy-Weinberg

equilibrium they can also be seen as q = 2 (see below) related measures. These FST/GST/q = 2

related metrics are used as the default despite their much-discussed limitations (see below)

and the existence of more robust genetic diversity metrics [18]. The lack of uptake of different

diversity measures stems partly from the lack of theoretical literature demonstrating the com-

parative benefits of different measures [18], but more likely a lack of more practical demon-

stration how they can be applied to current research. By testing multiple diversity measures

here, we hope to identify the most effective metrics to detect steps, which could then be added

into the above analysis tools to improve their accuracy and effectiveness.

We arrange the different metrics considered according to the q-profile of diversity mea-

surement–a convenient framework of diversity measurement that unites many of the most

commonly used measures [18]. The q denotes a variable whose choice determines the “order”

of the measure. This profile can be split into three informative values when applied to genetic

data: richness of alleles or haplotypes (q = 0), Shannon Information (q = 1), and heterozygosity

or nucleotide diversity (q = 2) [18]. Each value has an entropy and complexity level (“H-mea-

sure”) and a numbers equivalent diversity metric (“D-measure”). While H-measures and D-

measures have similar properties for the same value of q, D-measures have the benefit of being

on the same scale (“effective numbers”) for all values of q, allowing better comparison of diver-

sity across values of q, studies and systems. Each level of q-profile has different properties,

strengths and weaknesses (outlined below), and therefore it has been recommended that all

three are used in concert [18].

The q = 0 metrics measure the number of allelic types in a population and do not consider

the frequencies of the alleles. The alpha diversity metric, allelic richness, is based on the total

number of alleles in a population, and when comparing populations (beta diversity), q = 0 rep-

resents the number of unshared alleles between populations (variants include Jaccard
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dissimilarity and Sørensen dissimilarity [18]). Allelic richness measures (q = 0) weight rare

alleles equally to common alleles, which has benefits and drawbacks. By weighting rare alleles

higher, q = 0 based measures are better at detecting standing variation within samples [18].

However, this can only occur if all alleles are sampled, and sampled correctly. Alleles are easily

missed with incomplete sampling, and q = 0 measures are prone to being biased by genotyping

errors (which are especially common in biallelic data [19]). This problem with q = 0 measures

cannot be completely eliminated even by the most recent correction for sampling bias [20].

The q = 1 based measures are based on Shannon Information theory and weight each allele

by its proportional abundance. The q = 1 measure for alpha diversity is based on the chance

that a newly sampled allele will be of a novel type, whereas for beta diversity the mutual infor-

mation (MI) is the chance that knowing an individual’s allelic type will correctly identify its

location of origin (also transformed to Shannon Differentiation). Because measures with q> 0

include information on the proportional abundance of alleles, q = 1 can give greater insight

than richness alone. Despite q = 1 based measures being frequently used in studies examining

species diversity, for instance Shannon diversity index, they are currently used less in molecu-

lar diversity studies [18]. By considering rare alleles proportional to their abundance in the

population, the q = 1 measures have fewer sampling error problems than q = 0 measures, and

these problems can be eliminated by suitable corrections [20]. The q = 1 measures also have an

advantage over q = 2 measures because the latter are insensitive to rare alleles (see below [18]).

The q = 2 measures are the most commonly used measures of alpha and beta genetic diver-

sity. They reflect the chance that two randomly selected alleles from a population are the same

type. Familiar q = 2 measures include heterozygosity (He) for alpha diversity, and FST, GST,

Jost-D for beta diversity (genetic differentiation [21]). The q = 2 measures intrinsically down-

weight rare alleles, which simultaneously makes them robust to sampling problems, but worse

at detecting the presence of variation among rare alleles, which might be disadvantageous,

because loci where the minor allele is rare are typically very common [18]. Some q = 2 mea-

sures also have some undesirable mathematical properties which may confuse interpretation

of studies (e.g. beta diversity having a dependence on alpha diversity [22]).

While most genetic diversity measures are captured directly in the q-profile, some are not,

but are still seen to have desirable properties, especially when using biallelic data. Specifically,

Bray-Curtis (BC) dissimilarity, also known as allele frequency difference (AFD [23]), is a

beta-diversity based measure that is simply the average absolute allele proportion difference

between two sites [23]. It has been tangentially linked to the members of the q-profile [24], but

has only recently been explored as a genetic diversity measure in direct comparison to other

metrics in the q-profile. We test it here because it has been proposed as a straightforward mea-

sure of genetic dissimilarity when using biallelic data [23].

In this paper, we first ask which measures are sensitive to steps under standard conditions,

here defined as a steep step with a maximal allele proportion difference, and a large genome

sample size (n), number of loci (L), and localities sampled (K). Even under these conditions,

we expect some measures to have low step sensitivity, through being unable to detect steps

(false negatives) or having high rates of false positives. So, we next examine the measures with

reasonable properties under standard conditions and ask which are more sensitive under sub-

optimal conditions. This allows us to differentiate step detection sensitivities between mea-

sures. Specifically, we ask how step sensitivity is affected by step steepness, the magnitude of

allele proportion difference, proximity to fixation, genome sample size, number of loci, and

number of localities. Lastly, we ask if there is a single measure (or set of measures) that has the

best step detection over all conditions (i.e., has the lowest rates of both false negatives and false

positives). All analyses are confined to biallelic loci, such as the currently popular single nucle-

otide polymorphisms (SNPs).
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Materials and methods

Calculation of diversity measures

We calculated alpha and beta diversity measures including three levels of the q-profile (0, 1

and 2) using formulae adapted from Sherwin et. al. [18] for biallelic loci, as well as the beta

diversity measure Bray-Curtis [23] (see Table 1 at the end of the methods for a full list of all

terms and variables with reference to all equations in the text). To calculate the entropy mea-

sures (H measures) of alpha diversity we took the allele proportion of the minor allele at a

locus (p) and/or the number of different alleles at a locus (S) and entered them into Eqs 1–3.

The superscripts before H or D denote the order of q, while the subscripts denote the diversity

measure type (alpha, beta or gamma).

0Ha ¼ S � 1 ð1Þ

1Ha ¼ � p � loge pð Þ � 1 � pð Þ � loge 1 � pð Þ ð2Þ

2Ha ¼ 1 � ðp2 þ 1 � pÞ2
� �

ð3Þ

These H measures could then be used in Eqs 4–6 to obtain the ‘effective-number’ diversity

measures (D measures). This is the number of equally frequent alleles that would be needed to

give the same H value as the alleles identified in the genetic dataset (which are usually not

equally frequent).

0Da ¼
0Ha þ 1 ð4Þ

1Da ¼ e1Ha ð5Þ

2Da ¼ 1= 1 � 2Hað Þ ð6Þ

To calculate pairwise beta diversities for q = 0, 1 and 2, we used minor allele proportions of

each locality (p1 and p2), and the average minor allele proportion across localities (pav). We

then used the alpha diversity equation for each value of q (1–3) to calculate the mean alpha

diversity of each locus across the two localities (Eq 7) and the gamma diversity of the locus

when considering the two localities as a single homogeneous population (Eq 8).

qHa ¼

qHa:p1 þ
qHa:p2

2
ð7Þ

qHg ¼
qHa:pav ð8Þ

Each beta diversity metric was calculated in two ways: (1) by averaging final beta values across

loci (‘AvLast’ variant) and (2) by averaging mean alpha diversities and gamma diversities over

loci (L) before calculating the final beta value (‘AvFirst’ variant). These variants give slightly

different means and variances (see Supplementary Information S1 File for variance

calculations).

For q = 0 beta measures, both Jaccard (Eqs 9 and 10) and Sorenson (Eqs 11 and 12) dissimi-

larity measures were calculated using ‘R’, the number of shared alleles between localities 1 and

2.
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Table 1. Summary of variables and symbols used in text.

Variable Definition

AvFirst,
AvLast

Variants of beta diversity measures based on whether values are averaged across loci before or after

calculation of measure.

BC Bray-Curtis. The average absolute value of differences in allele proportions across loci. Eq 27

d Distance along landscape, where d = 0 denotes the start of the range and d = 1 the end.
0Dα “D” measure (effective number) of alpha diversity of order 0. Eq 4.
1Dα “D” measure (effective number) of alpha diversity of order 1. Eq 5.
2Dα “D” measure (effective number) of alpha diversity of order 2. Eq 6.

qDa
Average “D” measure (effective number) of alpha diversities between two localities of order q. Eq

21. Used to calculate “D” measures of beta diversity.
qDγ “D” measure (effective number) of gamma diversity of the pooled localities of order q. Eq 22. Used

to calculate “D” measures of beta diversity.
qDβ.A.AvLast AvLast variant “D” measure (effective number) of beta diversity of order q, using method A. Eq 23.
qDβ.A.AvFirst AvFirst variant “D” measure (effective number) of beta diversity of order q, using method A. Eq 24.
qDβ.B.AvLast AvLast variant “D” measure (effective number) of beta diversity of order q, using method B. Eq 25.
qDβ.B.AvFirst AvFirst variant “D” measure (effective number) of beta diversity of order q, using method B. Eq 26.

H. to. D One of the three Eqs (4–6) that converts “H” measures to “D” measures.
0Hα “H” measure (entropy) of alpha diversity of order 0. Eq 1.
1Hα “H” measure (entropy) of alpha diversity of order 1. Eq 2.
2Hα “H” measure (entropy) of alpha diversity of order 2. Eq 3.

qHa
Average “H” measure (effective number) of alpha diversities between two localities of order q. Eq 7.

Used to calculate “H” measures of beta diversity.
qHγ “H” measure (effective number) of gamma diversity of both localities of order q. Eq 8. Used to

calculate “H” measures of beta diversity.
0Hβ.Jac.AvLast Jaccard dissimilarity, AvLast variant. “H” measure (entropy) of beta diversity of order 0. Eq 9.
0Hβ.Jac.AvFirst Jaccard dissimilarity, AvFirst variant. “H” measure (entropy) of beta diversity of order 0. Eq 10.
0Hβ.Sor.AvLast Sorenson dissimilarity, AvLast variant. “H” measure (entropy) of beta diversity of order 0. Eq 11.
0Hβ.Sor.AvFirst Sorenson dissimilarity, AvFirst variant. “H” measure (entropy) of beta diversity of order 0. Eq 12.
1Hβ.MI.AvLast Mutual Information, AvLast variant. “H” measure (entropy) of beta diversity of order 1. Eq 13.
1Hβ.MI.AvFirst Mutual Information, AvFirst variant. “H” measure (entropy) of beta diversity of order 1. Eq 14.
1Hβ.ShD.AvLast Shannon Differentiation, AvLast variant. “H” measure (entropy) of beta diversity of order 1. Eq 15.
1Hβ.ShD.AvFirst Shannon Differentiation, AvFirst variant. “H” measure (entropy) of beta diversity of order 1. Eq 16.
2Hβ.GST.AvLast GST, AvLast variant. “H” measure (entropy) of beta diversity of order 2. Eq 17.
2Hβ.GST.AvFirst GST, AvFirst variant. “H” measure (entropy) of beta diversity of order 2. Eq 18.
2Hβ.JOST.AvLast Jost-D, AvLast variant. “H” measure (entropy) of beta diversity of order 2. Eq 19.
2Hβ.JOST.AvFirst Jost-D, AvFirst variant. “H” measure (entropy) of beta diversity of order 2. Eq 20.

K Number of localities sampled along landscape including d = 0 to d = 1

L Total number of loci

n Number of individual genomes sampled from each locality used to calculate measured allele

proportion

p1, p2, pav The minor allele proportion at a biallelic locus (alternate allele is: 1 –p�) in locality 1, locality 2, and

in the pooled localities 1 and 2 pav = (p1 + p2)/2pav

pstart, pend Allele proportion at d = 0 and d = 1 respectively

q “Order” of the q-profile. Can be 0, 1, or 2 in this work

R The number of shared alleles between localities 1 and 2

RBC Relative Bray-Curtis. Diversity measure–Eq 28

S1, S2, Stot Number of alleles at a locus in locality 1, locality 2, and in the metapopulation containing both

localities (for biallelic loci, this can only be 1 or 2).

step Intensity of step (0 –linear, 1 –gentle step, 5 –moderate step, 50 –steep step). Used as input to

simulate gradient. Eq 29.

https://doi.org/10.1371/journal.pone.0265110.t001
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Jaccard:

0Hb:Jaccard:AvLast ¼
1

L

XL

i¼1

1 �
R

0Hg þ 1

 !

ð9Þ

0Hb:Jaccard:AvFirst ¼ 1 �

1

L

XL

i¼1
R

n o

1

L

XL

i¼1

0Hg

n o
þ 1

ð10Þ

Sorenson:

0Hb:Sorenson:AvLast ¼
1

L

XL

i¼1

1 �
R

0Ha þ 1

� �

ð11Þ

0Hb:Sorenson:AvFirst ¼ 1 �

1

L

XL

i¼1
R

n o

1

L

XL

i¼1

0Ha þ 1
n o ð12Þ

For q = 1 beta measures, both Mutual Information (Eqs 13 and 14) and Shannon differentia-

tion (Eqs 15 and 16) were calculated.

Mutual information:

1Hb:MI:AvLast ¼
1

L

XL

i¼1

ð
1Hg �

1HaÞ ð13Þ

1Hb:MI:AvFirst ¼
1

L

XL

i¼1

1Hg

( )

�
1

L

XL

i¼1

1Ha

( )

ð14Þ

Shannon differentiation:

1Hb:ShD:AvLast ¼
1

L

XL

i¼1

1Hg �
1Ha

� �
=log 2ð ÞÞ ð15Þ

1Hb:ShD:AvFirst ¼
1

L

XL

i¼1

1Hg

( )

�
1

L

XL

i¼1

1Ha

( ) !

=log 2ð Þ ð16Þ

For q = 2 beta measures, both GST (Eqs 17 and 18) and Jost-D (Eqs 19 and 20) were calculated.

The Jost-D calculation is shown for a pair of localities (K = 2), which is the only case used here.

GST:

2Hb:GST:AvLast ¼
1

L

XL

i¼1

ð 2Hg �
2Ha

� �
=2HgÞ ð17Þ

2Hb:GST:AvFirst ¼
1

L

XL

i¼1

2Hg

( )

�
1

L

XL

i¼1

2Ha

( ) !

=
1

L

XL

i¼1

2Hg

( )

ð18Þ
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Jost-D:

2Hb:JOST:AvLast ¼
1

L

XL

i¼1

2Hg �
2Ha

1 � 2Ha

�
2

2 � 1

 !

ð19Þ

2Hb:JOST:AvFirst ¼

1

L

XL

i¼1

1Hg

n o
� 1

L

XL

i¼1

1Ha

n o

1 � 1

L

XL

i¼1

1Ha

n o �
2

2 � 1
ð20Þ

When calculating the beta diversities on a D scale, the conversion of H measures to D measures

can be performed at different stages:

A—The gamma and average alpha values are converted to D values (Eqs 21 and 22; H. to. D
represents the relevant Eqs 4–6 with the same order of q) and then the results are substituted

into Eqs 23 and 24.

qDa ¼ H:to:D
qHa1 þ

qHa2

2

� �

ð21Þ

qDg ¼ H:to:D qHa:avð Þ ð22Þ

qDb:A:AvLast ¼
1

L

XL

i¼1

f
qDg=

qDag ð23Þ

qDb:A:AvFirst ¼
1

L

XL

i¼1

qDg

( )

=
1

L

XL

i¼1

qDa

( )

ð24Þ

B—We calculate the relevant H beta diversity (Jaccard, Mutual Information, and Jost-D for to

q = 0, q = 1 and q = 2 respectively; Eqs 9, 13 and 19) then convert to D using Eqs 4–6 (Eqs 25

and 26).

qDb:B:AvLast ¼
1

L

XL

i¼1

H:to:D qHb:AvLast

� �
ð25Þ

qDb:B:AvFirst ¼ H:to:Dð
1

L

XL

i¼1

qHb:AvLastÞ ð26Þ

As another beta measure of differentiation, we also use Bray-Curtis (Eq 27), which is the aver-

age absolute difference in allele proportion between localities (this is also sometimes called

AFD [23]). Bray-Curtis is not directly related to the q measures but has been proposed as a

straightforward measure of genetic differentiation for biallelic data, and takes the same form as

the well-known Bray-Curtis measure in ecology [25,26].

BC ¼
1

L

XL

i¼1

jp1 � p2j ð27Þ

In addition to the above measures, previous analyses have compared beta diversity to alpha

diversity, usually when searching for loci under selection (for example [27]). We have called

these ‘relative beta measures’, and they are obtained by taking each AvLast beta diversity mea-

sure and dividing it by the average alpha diversity of the two localities. To calculate relative
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beta for Bray-Curtis, we divided the absolute minor allele proportion difference by the average

minor allele proportion (Eq 28).

RBC ¼
1

L

XL

i¼1

j p1 � p2ð Þj

pav
ð28Þ

Simulated data

Our simulated data assumed a continuous population across a linear landscape (from distance

d = 0 to d = 1), with equal allele proportions (p) for all loci at the same location along the land-

scape (d), see Fig 1. We specified a starting allele proportion (pstart) at distance d = 0 and an

end allele proportion (pend) at distance d = 1. To simulate different intensities of step, we used

the qbeta function in “stats” package in R [28], with the shape parameters a ¼ b ¼ 1

1þstep (note

that the qbeta function is unrelated to either the q-profile or beta diversity, instead it refers to

the quantile function of a beta distribution). The function can be summarised as being the

allele proportion at a certain distance pd, which is the value of x which satisfies d = Ix(a,b) (Eq

29), where a = b = 1

1þstep and 0� d� 1, and Γ(a) is a gamma function. The function was multi-

plied by the total range of allele proportions (pend—pstart) and added to the starting allele

Fig 1. The experimental design used for this study.

https://doi.org/10.1371/journal.pone.0265110.g001
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proportion (pstart).

d ¼ Ix a; bð Þ ¼

Z x

0

ta� 1ð1 � tÞb� 1dt=
Γ að ÞΓ bð Þ
Γ a; bð Þ

ð29Þ

where x = pd
This created a function of allele proportion (pd) from a specified starting allele proportion

(pstart) at distance = 0 to a specified end allele proportion (pend) at distance = 1. When the step

parameter was 0, the gradient was linear, and as the step parameter increased, the gradient was

increasingly sigmoidal (while the step value could be infinite, a value of 50 was enough to cre-

ate an abrupt step, see Fig 1).

Each sampled allele proportion per locus per locality was taken from a binomial distribution

around the true simulated allele proportion from Eq 29. We used the rbinom function in R to

obtain the sampled allele proportion of each locus at each locality, using the true allele propor-

tion (pd, Eq 29) as the probability of success and averaging over the number samples taken (n).

This resulted in a variable sampled allele proportion for each locus, despite being drawn from

identical allele proportions.

Each simulated model took the following variables: number of localities (K), starting allele

proportion (pstart), end allele proportion (pend), number of loci (L), number of genome samples

(n), and intensity of step (step). For each set of simulations, we tested four intensities of step: 0

(linear gradient), 1 (gentle step), 5 (moderate step), 50 (steep step). We also tested five different

pstart to pend ranges, allowing us to understand the beta measures’ properties over different

magnitudes and positions of allele proportions:

• Maximal range: pstart = 0, pend = 1

• Maximal range without fixation: pstart = 0.1, pend = 0.9

• Half-maximal range: pstart = 0, pend = 0.5

• Narrow range near fixation:pstart = 0, pend = 0.2

• Narrow range far from fixation: pstart = 0.3, pend = 0.5

The standard treatment was run 100 times with each combination of step intensity and

allele proportion ranges with the default variables: n = 20, L = 1000, K = 10.

Next, for the suboptimal treatments, we individually varied the following variables to

determine the sensitivity of each diversity measure:

• Number of genomes sampled (n), from 2 to 30 (in increments of 2).

• Number of loci (L), from 100 to 2000 (in increments of 100).

• Number of evenly spaced localities (K), from 4 to 15.

Only those measures that exceed a minimum set of criteria (high true positive rate, low

false-positive rate, see below) have their results of varying genome sample size/loci/localities

reported.

Step detection

For the beta diversity measures, there were two possible criteria for detection of a step: (1) if

the beta diversity between two adjacent localities was significantly higher than both the beta

diversity of the previous adjacent locality pair and the beta diversity of the next adjacent local-

ity pair (Figure S2.1A in S2 File); (2) if the beta diversities between the two adjacent pairs of
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localities were not significantly different, but the beta diversity of that pair of localities was sig-

nificantly higher than the beta diversity of the previous and next adjacent locality pair

(Figure S2.1B in S2 File). We defined significance as having a p-value less than 0.05 in a t-test

(code in Supplemental Information S4 File). When a step was detected, we recorded its loca-

tion on the linear landscape as the range between the localities of the highest beta or the range

between the furthest localities of the highest two betas (for case (1) and case (2) respectively).

To quantify the sensitivity of each beta diversity measure in detecting a step, we tallied out

of 100 the number of times: a step was detected at the correct location (true positive); a step

was detected at the incorrect location (false positive); no step was detected when no step was

present (true negative) and; no step was detected when one was present (false negative). We

presented true and false positives in our figures and tables, with the remainder of simulations

being negatives (true for linear treatments, and false for step treatments).

Results

Step detection sensitives under standard conditions (fixed n, L and K)

We could not use alpha diversity measures to detect steps because measures of alpha diversity

had a strong dependence on allele proportion. Diversity peaked at an allele proportion of

p = 0.5, regardless of the intensity of the step (see Figure S2.2 in S2 File and Discussion). There-

fore no step detection results are presented here. No relative beta measure (including relative

Bray-Curtis) was able to reliably detect a step under any condition, even when the step was

steep.

Overall q = 0 beta measures were not reliably able to detect steps, instead detecting peaks

in beta diversity when allele proportions departed from fixation. In the maximal range
(p = 0–1) and half-maximal range (p = 0–0.5) treatments, q = 0 measures correctly detected

steep steps (Step = 50; 100% true positives), and showed no false positives on linear gradients

(Step = 0; Table 2). However, when the step was moderate (Step = 5), q = 0 measures consis-

tently detected a step at an incorrect location (false positives = 100%; Table 2). When individ-

ual simulations were examined, this incorrect step was seen to be two peaks of beta diversity in

the maximal range treatment, and a single peak in the asymmetrical half-maximal range treat-

ment (Figure S2.3 in S2 File). Further, q = 0 measures could not detect steps in the narrow
range far from fixation (p = 0.3–0.5) treatment (Table 2), and only rarely detected steps in the

maximal range without fixation (p = 0.1–0.9) treatment (specifically the AvLast variants;

Table 2).

The q = 1 beta measures were all reliably able to detect steps across most allele proportion

treatments (Table 2), although there was a clear difference between AvFirst and AvLast vari-

ants. AvLast variants were able to detect gentler steps (step = 1) but detected false positives in

some treatments (Table 2). In contrast, AvFirst variants did not detect any false positives but

were not as sensitive to weaker steps (Table 2).

The AvLast variants of q = 1 beta measures all had similar step detection properties to each

other, with 1Hβ.MI.AvLast and 1Hβ.ShD.AvLast having identical properties, as did 1Dβ.A.AvLast and
1Dβ.B.AvLast. A step was detected 100% of the time in all steep and moderate step treatments

(step = 5, 50) except the narrow range far from fixation treatment, where a step was detected

51% of the time (Table 2). For the gentle step treatments (step = 1), the AvLast variants of q = 1

beta measures sometimes detected a step at the correct location but more often detected false

positives (Table 2); this false-positive rate was as high as 66 out of 100 simulations in the half-
maximal range treatment (Table 2). For the linear treatments (step = 0), false positives were

detected 10–13% of the time by the AvLast variants of q = 1 beta measures in the half-maximal
range treatment and 0–3% of the time for other allele proportion treatments (Table 2).
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Table 2. Step detection sensitivity of all diversity measures for standard conditions across five allele proportion treatments (p = 0–1, p = 0.1–0.9, p = 0–0.5,

p = 0–0.2, p = 0.3–0.5), each with four step treatments (linear– 0, gentle step– 1, moderate step– 5, steep step– 50). Both true positives (where a step was detected at

the correct location, d = 0.5) and false positives (where a step is detected at the wrong location or any location for the linear treatments) are shown. The remaining values

(out of 100) for each treatment were simulations where no step was detected (true negatives for the linear treatments, false negatives for the step treatments). Darker blue

represent higher numbers of true positives out of 100 simulations, darker red represents higher numbers of false positives out of 100 simulations.

Maximal range: p = 0–1 Maximal range without

fixation: p = 0.1–0.9

Half maximal range:

p = 0–0.5

Narrow range near

fixation: p = 0–0.2

Narrow range far

from fixation: p = 0.3–

0.5

Measure Type of Step 0 1 5 50 0 1 5 50 0 1 5 50 0 1 5 50 0 1 5 50

q = 0 Measures
0Hβ.Jac.AvLast True Positives - 0 0 100 - 0 0 3 - 0 0 100 - 0 0 100 - 0 0 1

False Positives 0 99 100 0 0 0 1 1 0 100 100 0 100 100 100 0 0 0 0 0
0Hβ.Sor.AvLast True Positives - 0 0 100 - 0 0 22 - 0 0 100 - 0 0 100 - 0 0 1

False Positives 0 99 100 0 0 0 1 1 0 100 100 0 100 100 100 0 0 0 0 0
0Dβ.A.AvLast True Positives - 0 0 100 - 0 0 22 - 0 0 100 - 0 0 100 - 0 0 1

False Positives 0 99 100 0 0 0 1 1 0 100 100 0 100 100 100 0 0 0 0 0
0Dβ.B.AvLast True Positives - 0 0 100 - 0 0 3 - 0 0 100 - 0 0 100 - 0 0 1

False Positives 0 99 100 0 0 0 1 1 0 100 100 0 100 100 100 0 0 0 0 0
0Hβ.Jac.AvFirst True Positives - 0 0 100 - 0 0 2 - 0 0 100 - 0 0 100 - 0 0 1

False Positives 0 0 100 0 0 0 1 1 0 100 100 0 80 100 100 0 0 0 0 0
0Hβ.Sor.AvFirst True Positives - 0 0 100 - 0 0 0 - 0 0 100 - 0 0 100 - 0 0 0

False Positives 0 0 100 0 0 0 0 0 0 100 100 0 0 24 100 0 0 0 0 0

0Dβ.a.AvFirst True Positives - 0 0 100 - 0 0 0 - 0 0 100 - 0 0 100 - 0 0 1

False Positives 0 0 100 0 0 0 0 0 0 100 100 0 7 100 100 0 0 0 0 0
0Dβ.B.AvFirst True Positives - 0 0 100 - 0 0 2 - 0 0 100 - 0 0 100 - 0 0 1

False Positives 0 0 100 0 0 0 1 1 0 100 100 0 80 100 100 0 0 0 0 0

q = 1 Measures
1Hβ.MI.AvLast True Positives - 0 100 100 - 6 100 100 - 0 100 100 - 14 100 100 - 1 51 100

False Positives 0 30 0 0 2 3 0 0 10 66 0 0 3 7 0 0 0 2 0 0
1Hβ.ShD.AvLast True Positives - 0 100 100 - 6 100 100 - 0 100 100 - 14 100 100 - 1 51 100

False Positives 0 30 0 0 2 3 0 0 10 66 0 0 3 7 0 0 0 2 0 0
1Dβ.A.AvLast True Positives - 0 100 100 - 7 100 100 - 0 100 100 - 14 100 100 - 1 51 100

False Positives 0 28 0 0 2 3 0 0 13 66 0 0 3 6 0 0 0 2 0 0
1Dβ.B.AvLast True Positives - 0 100 100 - 7 100 100 - 0 100 100 - 14 100 100 - 1 51 100

False Positives 0 28 0 0 2 3 0 0 13 66 0 0 3 6 0 0 0 2 0 0
1Hβ.MI.AvFirst True Positives - 0 100 100 - 0 100 100 - 0 100 100 - 0 0 100 - 0 0 100

False Positives 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1Hβ.ShD.AvFirst True Positives - 0 100 100 - 0 100 100 - 0 100 100 - 0 0 100 - 0 0 100

False Positives 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1Dβ.a.AvFirst True Positives - 0 100 100 - 0 100 100 - 0 100 100 - 0 0 100 - 0 0 100

False Positives 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1Dβ.B.AvFirst True Positives - 0 100 100 - 0 100 100 - 0 100 100 - 0 0 100 - 0 0 100

False Positives 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q = 2 Measures
2Hβ.GST.AvLast True Positives - 4 100 100 - 8 100 100 - 2 100 100 - 5 100 100 - 1 52 100

False Positives 0 12 0 0 3 3 0 0 19 11 0 0 1 0 0 0 0 2 0 0
2Hβ.JOST.AvLast True Positives - 98 100 100 - 84 100 99 - 0 100 100 - 0 0 100 - 1 37 100

False Positives 36 0 0 0 17 0 0 1 1 10 0 0 0 0 1 0 0 0 1 0
2Dβ.A.AvLast True Positives - 98 100 100 - 84 100 99 - 0 100 100 - 0 0 100 - 1 37 100

False Positives 38 0 0 0 14 0 0 1 0 10 0 0 0 0 1 0 0 0 1 0

(Continued)
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Each of the AvFirst variants of q = 1 beta measures had identical step detection sensitivities

across allele proportion treatments. A step was detected 100% of the time in all steep step treat-

ments, and 0% of the time in the linear gradient treatments (Table 2). A moderate step was

detected 100% of time for both maximal range treatments and the half maximal range treat-

ment, but 0% of the time for both narrow range treatments (Table 2). None of the AvFirst vari-

ants of q = 1 beta measures detected a gentle step under any of the treatments (Table 2).

Further, none of the AvFirst variants of q = 1 beta measures detected any false positives under

any of the treatments under standard conditions (Table 2).

The ability of q = 2 beta measures to reliably detect steps was mixed, with some measures

able to detect steps over most conditions, and others not reliably able to detect steps. The GST

based measures had desirable step detection properties similar to q = 1 measures, and 2Dβ.A.

AvFirst had the best step detection properties amongst measures we tested under standard con-

ditions (Table 2). The remaining measures (2Hβ.JOST.AvLast,
2Dβ.A.AvLast,

2Dβ.B.AvLast,
2Hβ.JOST.

AvFirst and 2Dβ.B.AvFirst) were not suitable for step detection due to their high rates of false posi-

tives in linear treatments (Table 2).

The two GST measures had similar step detection properties to q = 1 measures, with similar

differences between AvFirst and AvLast variants. 2Hβ.GST.AvFirst differed from the AvFirst vari-

ants of q = 1 measures by not detecting moderate steps in the half-maximal range treatment

(Table 2). As with the q = 1 measures, 2Hβ.GST.AvLast was more sensitive to gentler steps than

the AvFirst variant (2Hβ.GST.AvFirst), correctly detecting a moderate step 100% of the time in the

half-maximal range and narrow range near fixation treatments and 52% of the time for the nar-
row range far from fixation treatment (Table 2). However, 2Hβ.GST.AvLast occasionally detected

false positives when the gradient was linear including 19% of the time in the half-maximal
range treatment. 2Hβ.GST.AvLast also detected false positives in the gentle step treatments for the

larger allele proportion range treatments (Table 2).

The step detection properties of 2Hβ.JOST.AvLast,
2Dβ.A.AvLast and 2Dβ.B.AvLast were near-identi-

cal, but poor overall. These measures were prone to high rates of false positives in the two max-

imal range treatments (Table 2). In the half-maximal range treatment, there were no false

Table 2. (Continued)

Maximal range: p = 0–1 Maximal range without

fixation: p = 0.1–0.9

Half maximal range:

p = 0–0.5

Narrow range near

fixation: p = 0–0.2

Narrow range far

from fixation: p = 0.3–

0.5

Measure Type of Step 0 1 5 50 0 1 5 50 0 1 5 50 0 1 5 50 0 1 5 50

2Dβ.B.AvLast True Positives - 98 100 100 - 83 100 99 - 0 100 100 - 0 0 100 - 1 36 100

False Positives 40 0 0 0 13 0 0 1 0 8 0 0 0 0 1 0 0 0 1 0

2Hβ.GST.AvFirst True Positives - 0 100 100 - 0 100 100 - 0 0 100 - 0 0 100 - 0 0 100

False Positives 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2Hβ.JOST.AvFirst True Positives - 100 100 100 - 98 100 100 - 0 100 100 - 0 0 100 - 6 83 100

False Positives 75 0 0 0 71 0 0 0 2 37 0 0 0 0 0 0 8 16 1 0
2Dβ.A.AvFirst True Positives - 85 100 100 - 44 100 100 - 0 100 100 - 0 0 100 - 0 0 100

False Positives 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2Dβ.B.AvFirst True Positives - 100 100 100 - 98 100 100 - 0 100 100 - 0 0 100 - 6 85 100

False Positives 80 0 0 0 78 0 0 0 3 49 0 0 0 0 0 0 14 22 2 0

Bray-Curtis

Bray-Curtis True Positives - 75 100 100 - 54 100 99 - 1 100 100 - 0 1 100 - 2 44 100

False Positives 13 0 0 0 4 2 0 1 0 5 0 0 0 0 1 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0265110.t002
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positives in linear treatment (0–1%), but false positives were detected in the gentle step treat-

ment 8–10% of the time (Table 2). 2Hβ.JOST.AvFirst and 2Dβ.B.AvFirst behaved similarly to their

AvLast variants, but with even higher rates of false positives (Table 2). They detected false posi-

tives 75–80% of the time for the maximal range treatment and 71–78% of the time for the max-
imal range without fixation treatment. These two measures also detected false positives in the

gentle step treatment 37–49% of the time for the half-maximal range treatments, and 8–22% of

the time for the linear and gentle step treatments in the narrow range far from fixation treat-

ment (Table 2).

Interestingly, the 2Dβ.A.AvFirst measure does not have the same poor properties as the other

AvFirst variants of q = 2 beta measures under standard conditions. It detected a large step

100% of the time and had a false positive rate of 0–1% all allele proportion treatments

(Table 2). It detected a moderate step 100% of the time in the maximal range treatments and

the half-maximal range treatments (Table 2). Further, 2Dβ.A.AvFirst correctly detected the gentle

step 44% of the time in the maximal range without fixation treatment and 85% of the time in

the maximal range treatment. Notably, this result occurred when the allele proportion treat-

ment was symmetrical over p = 0.5. When looking at the simulations under standard condi-

tions alone, 2Dβ.A.AvFirst appears to have the best step detection properties of all the measures

we tested (Table 2).

The Bray-Curtis beta diversity measure was more sensitive to gentler steps than most

other measures, including all q = 0 and q = 1 measures, but was also prone to false positives

when the allele proportion range was large (Table 2). In that respect, it was similar to other the

q = 2 beta measures, but with a lower false-positive rate (Table 2). Bray-Curtis detected a gentle

step 75% of the time in the maximal range treatment and 54% of the time in the maximal

range without fixation treatment (Table 2). As with q = 2 measures, this sensitivity may also be

because of a symmetry of adjacent beta values around p = 0.5. Despite the occasional detection

of false steps, we do not rule out Bray-Curtis as an effective measure for detecting steps.

Comparison of the six best candidate measures under suboptimal

conditions

Based on the highest true positive rates and lowest false positive and negative rates under stan-

dard conditions, we selected six of the 25 metrics: 1Hβ.MI.AvLast,
1Hβ.MI.AvFirst,

2Hβ.GST.AvLast,
2Hβ.

GST.AvFirst,
2Dβ.A.AvFirst, and Bray-Curtis. We chose 2Hβ.GST.AvFirst instead of 2Hβ.JOST.AvFirst, as

the false positive rates of the latter were too high. We used 1Hβ.MI.AvLast and 1Hβ.MI.AvFirst to rep-

resent the AvLast and AvFirst variants of q = 1, though our observations should apply to any of

the q = 1 measures we tested because results were near identical for all the AvLast q = 1 mea-

sures and for all the AvFirst q = 1 measures (Table 2).

Broadly, step detection sensitivity (as measured by number of true positives) increased with

increasing number of genomes sampled (n), increasing number of loci sampled (L) and

decreasing number of localities sampled (K; Fig 2). This reflected, respectively, in: the

increased precision of individual allele proportion measurement, decreased variance between

loci, and increased absolute allele proportion difference between localities. While these general

trends were expected, these properties were not consistent amongst candidate measures nor

consistent across allele proportion treatments. Table 3 summarises the trends for the six cho-

sen measures. For a more detailed comparison of these measures detailing the individual

effects of genome sample size, number of loci and number of localities see Supplemental Infor-

mation S3 File.

When comparing the six candidate beta measures over the maximal range allele distribu-

tion treatment, Bray-Curtis and 2Dβ.A.AvFirst were most sensitive to smaller steps but are prone
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Fig 2. Example of how true positives generally respond to the varied number of genomes (n), number of loci (L)

and number of localities (K). The dashed line indicates the values used in the standard treatments. These results were

taken from an AvLast variant of a q = 1 measure under the moderate step treatment (step = 5) and the narrow range far
from fixation allele proportion treatment (p = 0.3–0.5). For full results for the six chosen measures and treatments, see

Supplement S3 File.

https://doi.org/10.1371/journal.pone.0265110.g002
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to detecting false steps with fewer localities sampled (S3.1 in S3 File). This is likely due to their

convex relationship with allele proportion even when no step was present. In other words, the

adjacent beta diversity of these measures was dependent on allele proportion and peaked at

p = 0.5. Additionally, 2Hβ.GST.AvFirst appeared to have a much higher standard error than the

other measures (Supplement S3.1 in S3 File), had lower rates of true positive detection

(Table 3 and S3.1 in S3 File), and had inconsistent step detection rates depending on whether

the number of localities was even (Supplement S3.1 in S3 File). In the linear and gentle step

treatments 1Hβ.MI.AvLast and, to a lesser extent, 2Hβ.GST.AvLast were prone to detecting false posi-

tives (Table 3 and S3.1 in S3 File).

The patterns in the maximal range without fixation treatment largely aligned with the maxi-
mal range treatment, except that in the former, 2Hβ.GST.AvFirst showed marginally better perfor-

mance and the false positive detections of 1Hβ.MI.AvLast were greatly reduced (Table 3 and S3.2

in S3 File).

The half-maximal range treatment, which is not symmetrical over p = 0.5, did not show the

same high step detection sensitivities of Bray-Curtis and 2Dβ.A.AvFirst as the maximal range
treatments (Table 3 and S3.3 in S3 File). However, unlike 2Dβ.A.AvFirst, which was the least sen-

sitive to detecting steps (i.e. had the lowest rate of true positive detection; Table 3), Bray-Curtis

remained as sensitive to detecting steps as the other measures (Table 3 and S3.3 in S3 File).

This allele proportion treatment also highlighted the problematic false positive detection prop-

erties of 1Hβ.MI.AvLast and to lesser extent 2Hβ.GST.AvLast (Table 3 and S3.3 in S3 File).

In the narrow range close to fixation treatment 2Hβ.GST.AvLast and 1Hβ.MI.AvLast performed

notably better than the other measures (having higher rates of true positive detection; Table 3)

but had problems with rates of false-positive detection (Table 3 and S3.4 in S3 File). 2Hβ.GST.

AvFirst and 1Hβ.MI.AvFirst performed considerably worse (in terms of true positive detection) but

without detecting false positives (Table 3 and S3.4 in S3 File). 2Dβ.A.AvFirst performed poorly in

this allele treatment, detecting less true positives (Table 3), and Bray-Curtis had intermediate

Table 3. Step detection sensitivity, averaged over all optimal and suboptimal conditions, for the best six diversity measures (Mutual Information AvLast variant,

Mutual Information AvFirst variant, GST AvLast variant, GST AvFirst variant, 2Dβ.A.AvFirst, and Bray-Curtis) across five allele proportion treatments (p = 0–1,

p = 0.1–0.9, p = 0–0.5, p = 0–0.2, p = 0.3–0.5), each with four step treatments (linear– 0, gentle step– 1, moderate step– 5, steep step– 50). Both true positives (where a

step was detected at the correct location, d = 0.5) and false positives (where a step is detected at the wrong location or any location for the linear treatments) are shown. Val-

ues are in percentages, averaged across all tested simulations (where genome sample size, number of loci and number of localities was varied. Remaining percentages (out

of 100) for each treatment were simulations where no step was detected (true negatives for the linear treatments, false negatives for the step treatments). Darker green rep-

resents higher percentages of true positives, darker red represents higher percentages of false positives. Comprehensive data are shown in Supplement S3 File.

Maximal range: p = 0–1 Maximal range without

fixation: p = 0.1–0.9

Half maximal range:

p = 0–0.5

Narrow range near

fixation: p = 0–0.2

Narrow range far from

fixation: p = 0.3–0.5

Measure Type of Step 0 1 5 50 0 1 5 50 0 1 5 50 0 1 5 50 0 1 5 50

1Hβ.MI.AvLast True Positives - 7:1 99:8 100 - 11:9 99:8 99:8 - 7:1 95:8 100 - 19:9 88:9 96:6 - 3:9 46:5 98:3

False Positives 3.8 25:2 0 0 1.5 3.5 0 0.2 12:7 44:8 1.2 0 6:5 5:6 0.2 0 0.8 0.7 0.2 0.2

1Hβ.MI.AvFirst True Positives - 5:2 95:7 100 - 5:3 95:9 100 - 5:6 84:2 100 - 1.2 6:8 92 - 0 4:3 82:6

False Positives 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2Hβ.GST.AvLast True Positives - 12:7 100 100 - 16:3 100 99:8 - 11:2 96:3 100 - 10:3 84:2 96:1 - 4:2 47:9 98:3

False Positives 2.6 5:6 0 0 1.9 2.5 0 0.2 10:6 9:2 0.1 0 2 0.9 0.2 0 0.8 0.7 0.2 0.2
2Hβ.GST.AvFirst True Positives - 4:5 89:6 89:6 - 5:3 92:4 100 - 0 4:4 100 - 0 0 82:6 - 0 4:3 82:5

False Positives 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2Dβ.A.AvFirst True Positives - 73 100 100 - 42:3 100 100 - 6:6 73:4 100 - 0 1.1 64 - 0.4 6:4 92

False Positives 9 0 0 0 5:6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bray-Curtis True Positives - 68:4 100 100 - 53:4 100 99:7 - 11 94 100 - 1.9 15:8 95:4 - 4:1 45:4 98

False Positives 10:9 0.2 0 0 7:6 0.3 0 0.3 1:1 6:9 0.2 0 0 0.4 0.9 0.1 1 0.8 0.2 0.3

https://doi.org/10.1371/journal.pone.0265110.t003
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properties, detecting true positives at a rate close to the other, more sensitive, measures

(Table 3 and S3.4 in S3 File).

Lastly, in the narrow range far from fixation allele proportion treatment, 2Hβ.GST.AvLast,
1Hβ.

MI.AvLast, and Bray-Curtis all performed consistently well (in terms of true positive detection

rate; Table 3) and had roughly identical step detection properties when genome sample size,

number of loci and locality number was varied (S3.5 in S3 File). Comparatively 2Hβ.GST.AvFirst,
1Hβ.MI.AvFirst, and 2Dβ.A.AvFirst, which also had roughly identical step detection properties to

each other, were notably less sensitive to detecting steps than the other measures tested

(Table 3 and S3.5 in S3 File). Further, these AvFirst measures had the undesirable property of

being sensitive to the number of localities being even (S3.5 in S3 File).

Finally, Table 4 gives a condensed summary of the data shown in Table 3 across all simula-

tions, plus an overview of the properties of the chosen six measures.

Discussion

Measures most effective at detecting steps

No diversity measure was consistently best across all tested scenarios (Table 4), but some mea-

sures stood out as effective for detecting steps in genetic data. The measures most reliably able

to detect genetic steps were q = 1 based beta measures, GST based beta measures, 2Dβ.A.AvFirst

and Bray-Curtis dissimilarity. Out of these, Bray-Curtis and the AvLast variants of GST and

q = 1 beta measures were the most sensitive to steps overall (Table 4), whereas the AvFirst vari-

ant of the q = 1 beta measures did not detect false positives (Tables 2–4). We therefore recom-

mend that to minimise the limitations of each measure, researchers should use a combination

of these measures: one of the AvLast variants of GST, q = 1 or Bray-Curtis beta measures, and

one of the AvFirst variants of GST or q = 1 beta measures.

The best step detection properties were found in the q = 1 beta measures (including Shan-

non Differentiation and Mutual Information). While many have touted the benefit of q = 1

measures more broadly [29–31], our study is the first to highlight the beneficial properties of

q = 1 for the detection of geographic genetic steps. Of these measures, there was a clear trade-

off between high true positive detection and low false positive detection between the AvFirst
and AvLast variants (the order of averaging beta diversity values across loci; Tables 2–4). This

difference appeared to be driven by the standard error in the measures (S3 File), with the

higher standard error of the AvFirst variants leading to the desirable property of not detecting

any false positives in any of our simulations (Tables 3 and 4). However, this higher standard

error also obscured smaller and gentler steps, reducing the overall rate of step detection of the

Table 4. Summary of properties of each of the six best candidate measures—Mutual Information (AvLast and AvFirst variants), GST (AvLast and AvFirst variants),
2Dβ.A (AvLast variant) and Bray-Curtis. Note that we detail the properties of Mutual Information here, but the properties are the same for each of the other q = 1 mea-

sures. ‘True Positive Detections’ was calculated as the percentage of true positives across all step simulations. ‘False Positive Detections’ was calculated as the percentage of

false positives across all simulations. ‘True Negative Detections’ was calculated as the percentage of true negatives across all linear simulations. Properties are shaded based

on their usefulness as a step detection measure: most desirable properties (blue), undesirable properties (red).

Diversity

Measure

True Positive

Detection

False Positive

Detection

True Negative

Detection

Effect of Allele Proportion

Position

Rate of true positives with narrow

steps
1Hβ.MI.AvLast 65.0% 5.3% 94.9% Largely unaffected High

1Hβ.MI.AvFirst 51.9% 0.0% 100% Largely unaffected Moderate

2Hβ.GST.AvLast 65.1% 1.8% 96.5% Largely unaffected High

2Hβ.GST.AvFirst 43.6% 0% 100% Largely unaffected Low

2Dβ.A.AvFirst 57.2% 0.8% 97.0% Strong effect Low

Bray-Curtis 65.8% 1.6% 95.8% Affected. High

https://doi.org/10.1371/journal.pone.0265110.t004
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AvFirst variants. In contrast, the AvLast variants had a stronger sensitivity to smaller and gen-

tler steps (a lower false-negative rate) but were prone to detecting false positives under certain

conditions (Tables 3 and 4 and S3 File). This undesirable property of the AvLast variants

seemed to occur close to fixation. When looking at individual simulations (S3.6 in S3 File), we

found that these false positives, detected when the step was gentle, had two peaks near p = 0

and p = 1 when in the maximal range treatment. This might indicate a similarly to q = 0 mea-

sures in detecting a departure from fixation (see Discussion of q = 0 measures below) and be a

possible downside to the known property of q = 1 measures being more sensitive to rare alleles

than q = 2 measures [18]. However, if the allele frequencies were more uneven between loci, as

would be the case with empirical data, these minor peaks would likely not influence the overall

results.

Despite the various, and valid, criticisms of GST as a diversity measure [5,21], we show that

AvLast variant of GST has one of the best step detection properties of the measures we have

tested here (Table 4). However, because GST is most likely to be used by molecular ecologists

currently, we must highlight its weaknesses more clearly–that, like the q = 1 beta measures,

GST is prone to false step detection near fixation, especially when the number of genomes (n)

or number of localities (K) sampled is low (S3 File). These properties align with studies on GST

/FST, which found that these measures have a strong dependence on K and allele frequency

[32–34]. Interestingly, the step detection sensitivities of GST-based measures and their weak-

nesses are more closely aligned with q = 1 measures than with other q = 2 based measures. Spe-

cifically, the AvLast and AvFirst variants of GST have a similar trade-off in properties to the

corresponding variants of q = 1 measures. The AvLast GST variant was more sensitive to

smaller and gentler steps but was prone to sometimes detecting false positives in certain sce-

narios (Table 3). The rate of false positives showed a similar pattern, but was lower than the

AvLast variant of q = 1, making it a better measure in that respect. The tendency for AvLast
variant of GST to detect false positives that we found here appears to mirror the tendency for

GST /FST to detect false positives in outlier tests [35]. In comparison, the AvFirst variant of GST

did not detect any false positives, but, because of its much larger standard error, was not nearly

as sensitive to steps as other measures (Tables 3 and 4). This measure also had inconsistent

true positive detection behaviour with the number of localities (S3 File). In empirical data one

would often not know the real location of the step, so the lack of consistency of the AvFirst var-

iant of GST would make it a poor measure We therefore recommend not using the AvFirst vari-

ant of GST for detecting steps, instead using the AvFirst variants of q = 1 measures which do

not have these problems.

Bray-Curtis dissimilarity (also known as allele frequency difference–AFD [23]) had good

step detection properties overall. Bray-Curtis aligned most to 2Dβ.A.AvFirst compared to other

q = 2 measures, and under certain conditions it aligned more with the AvLast variants of GST

and q = 1 measures. While Bray-Curtis has been cited as a straightforward way to measure dif-

ferences in allele proportion [23], with differences in allele proportion being equivalent regard-

less of proximity to fixation, we found that the measure had a dependence on allele proportion

(peaking at p = 0.5). This undesirable property was shared with 2Dβ.A.AvFirst and other q = 2

measures, and was an unexpected property of Bray-Curtis. This property can be explained

because as the allele proportion of one or both of sites approaches 0 or 1, the range of possible

Bray-Curtis values decreases, decreasing the average Bray-Curtis value. Therefore, these biases

mean that sampled differentiation as measured by Bray-Curtis is not always equal actual allele

proportion difference. Because we found that Bray-Curtis performed about as well as the

AvLast variants of q = 1 and GST measures (Table 4), and that very few studies have compared

it to other measures [24,36], this measure warrants further mathematical analysis. Further,

because Bray-Curtis had a higher true positive rate and lower false positive rate than the
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AvLast variants of q = 1 and GST measures, we recommend its inclusion in step detection stud-

ies in general.

Lastly, the step detection properties of 2Dβ.A.AvFirst were surprisingly good under standard

conditions (Table 2), especially when contrasted with similar q = 2 measures. However, when

we tested under suboptimal conditions, we could only identify one scenario where this mea-

sure would perform better than any of the other five candidate measures we tested, and in

many scenarios, it performed worse (Tables 3 and 4 and S3 File). This one scenario was under

the maximum range treatment, where this measure had a slightly higher true positive detection

rate of gentle steps (Table 3), but only when K> ~8 (Figure S3.6.21 in S2 File). However, this

is likely an artefact of a strong dependence on allele proportion position leading to high rates

of step detection when the allelic range was large and over p = 0.5. This property plus a lower

sensitivity to moderate and gentle steps overall contributed to the relative poor performance of

this measure. Even though 2Dβ.A.AvFirst did not have such a high standard error as the AvFirst
variant of GST, it still had higher standard error than the AvLast variants of measures that we

tested. Despite these undesirable properties, 2Dβ.A.AvFirst was still a reasonably effective mea-

sure, having high rates of true positive and true negative detection and low rates of false-posi-

tive detection (Table 4).

Measures ineffective at detecting steps

Our findings ruled out over 40 measures for detecting steps because they either have standard

errors that are too high or are too dependent on allele proportion position. These are alpha diver-

sity measures, relative beta measures, many of the q = 2 based measures (including Jost-D) and

allelic richness (q = 0) measures. When alpha diversity was measured along a linear gradient,

diversity peaked at p = 0.5 for all values of q (Figure S2.2 in S2 File), thus having too strong of a

dependence of allele proportion. This property confounds the ability to differentiate sudden allele

proportion changes which characterise a step. A correction could be applied to alpha measures

to counteract this problem (such as with [20]), possibly allowing for the detection of steps with

alpha diversity, but this is beyond the scope this study. Also, all relative beta measures (where

beta diversity was divided by alpha diversity) were not effective at detective steps largely due to

poor standard error properties of ratios [37], and we recommend that they should not be used in

further step detection studies. Interestingly, the excluded q = 2 measures had very poor step

detection properties despite appearing similar to other q = 2 based measures that performed

quite well and therefore chosen for further analysis. These poor q = 2 measures had a high depen-

dence on alpha measures such as allele proportions (see [18]), leading to high rates of false posi-

tive detection. As with alpha measures, corrections could be devised to alleviate these problems.

Allelic richness related beta measures (q = 0) had poor step detection properties in many of

our simulated scenarios, so we do not recommend their use for the detection of steps in genetic

data. However, we stress that these measures should not be discounted as completely uninforma-

tive, because our results confirmed that q = 0 measures are useful for detecting other aspects of

genetic diversity such as rates of fixation and changes in small allele proportions. In scenarios

where steps were characterised by changes in allele proportion away from fixation (e.g. p = 0.3–

0.5), q = 0 measures could not detect even the steepest steps (Table 2). These results are an indica-

tion of the q = 0 measures’ inability to differentiate between differences in allele proportion when

p1 and p2 are not at fixation (0> p> 1). However, when the steps were closer to fixation (p = 0

or 1), q = 0 measures could detect steep steps and detected false positives (peaks of beta diversity

not at the step location) when the step was moderate (Figure S2.3 in S2 File). These peaks of beta

diversity for q = 0 measures are likely detecting a departure from fixation rather than a step in

allele proportion because we can see a single peak in the p = 0–0.5 treatment and two peaks in
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the p = 0–1 treatment (Figure S2.3 in S2 File). While this property is not useful for changes in

allele proportions that are not fixed, with enough loci of varying proportions q = 0 should still be

an effective step detection measure. This would especially be the case in systems where alleles are

expected to be lost on one or both sides of a step (e.g. small population size, or high selection).

When a biallelic locus becomes fixed, the number of the alleles will go from 2 to 1. Therefore,

even the smallest change allele proportion to fixation, from p = 0.01 to p = 0 for example, would

be detected most strongly with q = 0 measures, followed by q = 1 measures to a lesser extent.

However, due to the inevitable incompleteness of sampling, there would rarely be any sampling

that would be sufficiently accurate, and there would be many cases of false fixation.

Guide for detecting steps

Our advice for molecular ecologists is split into two areas: how to design a study to maximise

the chances of detecting a step when one is present (true positive rate); and how to choose

diversity measures to maximise true positive rate while managing the false positive rate. Firstly,

we emphasise the importance of a good sampling strategy in terms of maximising number of

genomes sampled, number of loci and the strategic choice of localities. Our advice agrees with

current guides for formulating landscape genetic studies [38,39]. Specifically, we show that

there is a clear effect of number of loci sampled, but the number of loci that must be sampled

to avoid this effect is much lower than values easily attainable with modern molecular studies.

Therefore, it is advisable for researchers to instead maximise the number of individuals sam-

pled from each site. A reduced number of localities is less of a constraint because a step can

still be detected with a larger distance between localities on either side. However, this obviously

comes at the cost of geographical precision, and the scale of possible inference [39].

Secondly, when choosing a diversity measure, we recommend the use of multiple measures

in concert. Many studies already use multiple diversity measures, and others have recom-

mended this as best practice [18,40]. Specifically, we recommend using at least one of the mea-

sures with high true positive rates (AvLast version of GST, AvLast version of a q = 1 measure,

or Bray-Curtis, Tables 3 and 4) in combination with the AvFirst variant of a q = 1 measure

(such as Mutual Information), which are not prone to false-positive detection (Tables 3 and 4).

Large steps will likely be detected by all measures, but when detecting smaller steps any con-

flicts between results should be carefully considered. For example, if a step was detected by the

more sensitive AvLast variant of MI, but not the AvFirst version of MI one could infer that if

there was a step present it would be small or that this is a false positive. Making this decision

will be determined by how conservative one wishes to be with step detection rate and knowl-

edge of the study system. Additionally, we advise that molecular ecologists make a prior assess-

ment of the variance in allele frequencies in their genetic datasets (across the sampled

localities) to better choose the most appropriate beta diversity measure. If possible, prior

knowledge of how often certain allele frequency clines (e.g. steep or slight) are in the natural

population being studied would also assist practitioners in selecting the most suitable measure.

As mentioned previously, most current methods and software exclusively use, or at least

default to q = 2 measures (i.e., FST or GST). Our study has shown that current software would

benefit by integrating a wider variety of genetic diversity measures. Specifically, an AvFirst var-

iant of a q = 1 measure could be used to decrease detections of false positives. These tools

could also add the sensitive measures of Bray-Curtis and an AvLast variant of q = 1 to maxi-

mise the chances of detecting steps over a wide variety of conditions.

In conclusion, when it comes to detecting steps, we show that not all measures are equal,

each having its own sensitivities and weaknesses. By using a combination of measures in con-

cert, molecular ecologists will be able to more confidently detect and classify steps in their
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systems. Understanding these properties is key to reaching the correct conclusions in land-

scape genetic studies and improving conservation and management outcomes.
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