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Abstract

Experimental data indicate that colorectal cancer cells with CD133 expression exhibit enhanced 

tumorigenicity over CD133− cells. We hypothesized that CD133+ cells, compared to CD133−, are 

more tumorigenic because they are more interactive with and responsive to their stromal 

microenvironment. Freshly dissected and dissociated cells from a primary colon cancer were 

separated into carcinoma –associated fibroblasts (CAF) and the epithelial cells; the latter were 

further separated into CD133+ and – cells using FACS. The CD133+ cells formed large tumors in 

NOD-SCID mice, demonstrating the phenotypic cellular diversity of the original tumor, whereas 

CD133− cells were unable to sustain significant growth. Affymetrix gene array analyses using t-

test, fold-change, and multiple test correction identified candidate genes that were differentially 

expressed between the CD133+ vs. − cells. RT PCR verified differences in expression for 30 of 

the 46 genes selected. Genes upregulated (+ vs − cells) included CD133 (9.3-fold) and CXCR4 (4-

fold), integrin β8 and fibroblast growth factor receptor 2 (FGFR2). The CAF highly express the 

respective ligands: SDF-1, vitronectin, and FGF family members, suggesting a reciprocal 

relationship between the CD133+ and CAF cells. SDF-1 caused an increase in [Ca2+]I in cells 

expressing both CD133 and CXCR4, confirming functional CXCR4. The CD133+/CXCR4+ 

phenotype is increased to 32% when the cells are grown in suspension, compared to only 9% 
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when the cells were allowed to attach. In Matrigel 3-D culture, the CD133+/CXCR4+ group 

treated with SDF-1 grew both more colonies compared to vehicle as well as significantly larger 

colony sizes of tumor spheres. These data demonstrate proof of principle that the enhanced 

tumorigenic potential of CD133+, compared to CD133−, cells is due to their increased ability to 

interact with their neighboring CAF.
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Human solid tumors are characterized by phenotypically heterogeneous populations of 

malignant cells with varying degrees of differentiation and tumor initiating potential. The 

trans-membrane glycoprotein CD133, originally characterized as a cell surface marker for 

hematopoietic stem cells (1, 2), identifies a subset of malignant cells with enhanced 

tumorigenic activity in cancers from a variety of tissues including, prostate, brain, breast, 

pancreas, liver, uterus and colon (3–12). Similar to the other cancers, CD133-positive 

(CD133+) cells isolated from colorectal tumors grow in suspension culture as anchorage-

independent epithelial spheroids (colospheres) and efficiently initiate new tumor formation 

when xenografted into immunodeficient NOD-SCID mice (7, 8). Ricci-Vitiani et al. (8) 

showed that subcutaneous injection of as few as 3 ×103 CD133+ human colon cancer cells, 

suspended in matrigel, generated visible tumors in mice between 4 and 5 weeks post-

transplant, whereas injection of as many as 105 CD133-negative (CD133−) cells isolated 

from the same patient failed to produce tumors over the same time course. Subpopulations 

of CD133+ cells isolated from established colon cancer-derived cell lines such as HT29 and 

LoVo also exhibit increased proliferation, invasion through extracellular matrix (ECM), and 

colony formation in culture (13), and clinically, the level of CD133 expression in tumor 

tissue negatively correlates with both disease-free and overall survival of colorectal cancer 

patients (14–16).

Although the preponderance of data indicates that expression of CD133 identifies a 

subpopulation of cancer cells with enhanced tumorigenic potential and prognostic value, 

CD133 does not appear to functionally regulate the aggressive phenotype. This point is 

illustrated by the observations that siRNA-mediated suppression of CD133 neither 

compromised the tumorigenic potential of primary human colon cancers cells xenografted in 

nude mice (17) nor the proliferation, migration, invasion and anchorage-independent growth 

of CD133+ LoVo and Caco-2 cells in culture (18). Thus a mechanistic explanation for the 

enhanced tumorigenicity of CD133+ colon cancer cells remains enigmatic.

In addition to cell autonomous properties, the tumorigenicity of cancer cells is also 

influenced by their interactions with the tumor microenvironment. Solid tumor tissue 

contains a multitude of non-malignant cells, collectively known as tumor stroma, which 

directly through cell-to-cell contacts, and indirectly through paracrine signaling networks, 

mediate regulation of protease activity and modulation of ECM proteins to promote 

tumorigenesis, angiogenesis and metastatic spread (19, 20). The most prevalent cells found 

in the tumor stroma are the cancer-associated fibroblasts (CAFs) (21), which in multiple 
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studies have been shown to promote and/or enhance the tumorigenic potential of both 

adenoma and adenocarcinoma cells. An example of the former is a study by Olumni et al. 

(22), in which CAFs isolated from malignant human prostate tissue promoted robust tumor 

formation when co-injected subcutaneously with an SV40 T-antigen immortalized, but non-

tumorigenic, human prostate epithelial cell line called Tag-HPE into immune deficient mice 

(22), whereas neither the prostate CAFs nor Tag-HPE cell line alone produced tumors when 

injected into the mice. Similarly, Orimo et al. (23) showed that CAFs isolated from breast 

cancers, but not normal breast fibroblasts, significantly enhanced the tumorigenicity of 

human MCF-7-ras breast cancer cells when co-injected into immune-deficient mice, and 

Hwang et al. (24) demonstrated that tumor-associated human pancreatic stellate cells (an 

activated myofibroblast-like cell) enhanced the tumorigenicity and metastasis of human 

BxPC-3 pancreatic cancer cells in mice. Together, these studies demonstrate that CAF can 

enhance tumor growth and spread. Thus, we hypothesized that the increased tumorigenicity 

of CD133+ colon cancer cells may be due, in part, to its enhanced interactions with CAFs of 

the tumor microenvironment.

To begin testing this hypothesis, we performed a comprehensive molecular profiling of 

CD133+ and CD133− carcinoma cells, as well as of the CAFs isolated from the same patient 

specimen, in order to reveal phenotypic differences between these cell populations. Herein, 

we report that, compared to CD133− colon cancer cells, CD133+ cells have reduced 

transcript levels for cell adhesion and matrix proteins, but increased transcripts for proteases, 

and cell surface receptors such as the cytokine receptor CXCR4, which mediates tumor cell 

proliferation and metastasis (25). Additionally, CAFs express the ligands for the receptors 

overexpressed by the CD133+ cells, including the CXCR4 receptor ligand CXCL12 (also 

known as stromal derived factor-1 or SDF-1), indicating the potential for enhanced paracrine 

signaling between these cells. Functional studies confirmed that CD133+ colon cancer cells 

exhibit enhanced proliferation in response to SDF-1 compared to CD133− cells, supporting 

the hypothesis that the enhanced tumorigenic potential of CD133+ cells is due, in part, to 

enhanced paracrine signaling with CAFs of the tumor microenvironment.

MATERIALS AND METHODS

Cell isolation and culture

Cell cultures were established from a freshly dissected colon tumor, which was obtained 

under an IRB-approved protocol from a 68-year-old woman with Stage II (pT3 N0) disease. 

The tissue was rinsed twice in Dakin’s solution (4% boric acid and 0.5% bleach), minced, 

and digested as described previously (26). Dissociated cells were cultured in DMEM 

supplemented with 200 U/ml penicillin, 200 µg/ml streptomycin, 0.25 µg/ml amphotercin B, 

and 50 µg/ml gentamicin (Invitrogen, Carlsbad, CA), 10% fetal bovine serum, and 1% 

insulin-transferrin-selenium (ITS) (Invitrogen, Carlsbad, CA). Using a tumor outgrowth 

procedure, we isolated and separately cultured both the carcinoma cells and CAF from the 

same tumor. Suspension epithelial cell cultures were grown in ultra-low adhesion flasks 

(Costar; Corning; Lowell, MA). The isolated CAF were grown in standard tissue culture 

flasks (Cellstar; Grenier Bio-One; Monroe, NC). Both the carcinoma cells and CAF were 
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maintained in the DMEM, 10% FCS, 1% ITS, 1% nonessential amino acids (Invitrogen), 

and 1% penicillin-streptomycin.

Immunocytochemistry (ICC)

Verification of epithelial and mesenchymal cell types was performed by ICC as described 

previously (26). Briefly, cells were fixed in 4% paraformaldehyde, rinsed with PBS and then 

permeabilized in absolute methanol (ice-cold) for 10 min. The coverslips were then placed 

in 2% milk for blocking and then rinsed in PBS 1% BSA. Primary antibody incubation for 1 

h R.T, rinsed, and then secondary antibody applied for 1 h RT. Antibodies used were pan-

cytokeratin AE1/3 (1:200 dilution; Santa Cruz), α-SMA (Sigma A5228; 1:200), and 

vimentin (Sigma V6630; 1:40). Secondary antibodies (1:200) used were either goat anti-

rabbit IgG or goat anti-mouse IgG labeled with Alexa 546 and 488 (Molecular Probes; 

Eugene, OR), respectively.

Immunohistochemistry (IHC)

Spheroids were fixed in 10% neutral formalin for 24 h, immobilized in 2% agar solution, 

and embedded in paraffin blocks and sectioned (5 µm). Prior to staining, the sections were 

deparaffinized with xylene, dehydrated with ethanol, and subjected to antigen retrieval using 

citrate buffer (10 nM pH6 at 98C for 20 min) to optimize antigen immunoreactivity. 

Antibodies for IHC included CD133 (AC133/1, 1:50 dilution, Miltenyi Biotec), CD44 (1:50, 

Cell Signaling), MUC4 (Clone 1G8, 1:100; Invitrogen), CEA (1:800; Biocare Medical; 

Concord, CA), CD34 (1:100; Biocare), CD166 (1:400, GeneTex; Irvine, CA), αSMA 

(ab5694, Abcam, 1:400), and Mayer’s mucicarmine (Poly Scientific; Bay Shore, NY). 

Additionally, CK7 (1:200), CK20 (1:100), Ki67 (1:100), and the universal negative control 

for anti-rabbit and anti-mouse IgG were all purchased from Dako (Carpinteria, CA). The 

ApopTag® Peroxidase in Situ Apoptosis Detection Kit was used to detect apoptotic cells by 

labeling and detecting DNA strand breaks by the TUNEL method (Millipore; Billerica, 

MA). The streptavidin biotin technique was used to visualize the immunostain. The slides in 

Figures 8 and 9 underwent a tertiary step with streptavidin alkaline phosphatase at 1:200 for 

15 min (Vector Labs, SA-5100) and the chromagen was fast red for 5 min.

Cell sorting

Cells were dissociated in Accumax (Innovative Cell Technologies, Inc., San Diego, CA) and 

resuspended in PBS containing 0.5% BSA and 2 mM EDTA. Human FcR blocking reagent 

was used to block non-specific Fc receptor-mediated antibody labeling. FACS with a 

FACSAria (Becton Dickinson Biosciences, San Jose, CA) s. analysis was performed using 

monoclonal antibodies for CXCR4 (clone 12G5; BD Biosciences), CD133/1 (AC133) 

conjugated to R-phycoerythrin (PE) or allophycocyanin (APC), and istotype-matched IgG 

controls (Miltenyi Biotec; Auburn, CA).

In vivo tumorigenicity assay

CD133+ and − cells were purified by FACS sorting. Serial limiting dilution of equivalent 

numbers of both CD133+ and − cells mixed 1:1 in growth factor reduced Matrigel (BD 

Biosciences, San Jose, CA) and phosphate buffered saline (PBS) were injected 
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subcutaneously into a 10-week-old male non-obese diabetic- severe combined 

immunodeficient (NOD-SCID) mice under an IACUC-approved protocol. Tumor sizes were 

measured transcutaneously over time. Tumor weight and tumor volumes [V=(π/6)hd2] were 

obtained at 6 weeks. Specimens were fixed with 10% formalin and embedded in paraffin. 

Sections were stained with hematoxylin and eosin (H&E).

Gene Expression Analysis

Total cellular RNA was extracted using RNAqueous (Ambion; Austin, TX) according to the 

manufacturer’s recommendations from three pairs of samples (CD133+ and CD133−) that 

were sorted on three separate days. Total RNA was also prepared from three separate CAF 

cultures in the same manner. RNA was quantitated using a NanoDrop ND-1000 (NanoDrop 

Techniologies, DE, USA). RNA integrity was assessed by visualization of 18S and 28S 

RNA bands using an Agilent BioAnalyzer 2100 (Agilent Technologies, CA). Total RNA 

extracted from the samples was processed using the RNA labeling protocol described by 

Ambion (MessageAmp™ aRNA Kit Instruction Manual) and hybridized to Affymetrix 

Gene Chips™ (HGU133 Plus 2.0 arrays). Data quality was assessed by applying the quality 

matrix generated by Affymetrix GeneChip™ Command Console (AGCC) software. The 

resulting data was analyzed with Partek Genomics Suite (Partek Incorporated, MO, USA). 

Principal component analysis as a quality assurance measure was performed. The raw data 

was normalized through robust multichip averaging upon import to Partek Genomics Suite. 

To identify differentially expressed genes, an ANOVA was applied to the extracted gene 

expression measures. In order to reduce the occurrence of false positives multiple test 

corrections (Benjamani-Hochberg and Bonferroni) were applied. The data set was filtered 

for a p-value of < 0.05 and <0.01 resulting in the final list of differentially expressed genes.

Real-time quantitative polymerase chain reaction

Real Time SYBR® Arrays were utilized to validate a subset of the genes generated by the 

analysis of the Affymetrix gene expression data. This approach combines the quantitative 

performance of SYBR® Green-based real-time quantitative PCR with the multiple gene 

profiling capabilities of a microarray. The real time array is a 96-well plate containing qPCR 

primer assays for 45 genes of interest plus 3 housekeeping genes (GAPDH, Rpl19 and Bpol) 

to serve as normalizers. The 48 assays were duplicated on same the plate to facilitate 

comparison of CD133+ & CD133− samples and eliminate plate to plate variance. Biological 

replicate sets (test, control) were assayed on three separate plates for proper statistical 

analysis. A melt curve was carried out at the end of each PCR run protocol to identify 

multiple PCR products that would confound the data. The list of primers used is shown in 

Table 2 of Supplemental Materials.

Total RNA (1 ug) was used in the Affymetrix gene expression analysis was used in a single 

reverse transcription reaction to generate cDNA. The resulting product was distributed 

equally among the 48 wells containing the assay primers. The assays were carried out under 

standard real time run parameters specific to the Taq polymerase (Applied Biosystems, 

Foster City, CA) being used. Delta CT values were calculated and used to determine fold 

changes. Student’s t-test was carried out on the biological replicates in order to determine 

the degree of confidence at which differential expression can be discerned.
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Intracellular calcium imaging

Single cell recordings of agonist-mediated increases in intracellular calcium ([Ca2+]i)was 

performed as described previously (27). Briefly, cells were washed in KRH physiological 

medium and then loaded with 2.5 µm of the calcium sensing dye Fura-2 AM ester 

(Molecular Probes; Eugene, OR) with 0.055 Pluronic F-127 (wt/vol) for 50 min at 25°C. 

Changes in [Ca2+]i were monitored with a Nikon Diaphot inverted microscope (Nikon 

Instrument Group, Garden City, NY) equipped with a Nikon 40X (1.3NA) Neofluor 

objective. The fluorescent light source was a PTI deltaScan RD-1 ratio fluorescence 

spectrometer system, equipped with a light-path chopper and dual-excitation 

monochrometers. The Fura-2 was alternately excited at 340 and 380 nm, and 2fluorescence 

emission was monitored through a 510 nm bandpass filter (Omega) with a Photometrics 

Coolsnap EZ camera (Tucson, AZ). Increases in [Ca2+]i were recorded in response to 400 

ng/ml of the ligand stromal-derived growth factor-1α (SDF-1α) (Peprotech; Rocky Hill, NJ) 

at room temperature to verify the presence of functional CXCR4.

Matrigel culture

Cells were embedded in Matrigel (BD Biosciences; San Jose, CA) in the top of a transwell 

insert (8 µm pore, Costar) in duplicate. A single treatment of SDF-1α (400 ng/ml) or vehicle 

(0.2% BSA) was place in the bottom well in DMEM. Cells were allowed to grow. After 30 

days, the number of cell clusters was quantified by visual counting using a 25 mm2 reticle 

(Upstate Technical Equipment Company, Inc., East Syracuse, NY). The size of the cell 

clusters were measured with a micrometer. Student’s t-test was used to assess significance 

between the paired groups, defined at p<0.05.

RESULTS

Isolation and characterization of human colon cancer cells and CAFs

Colon cancer cells and CAFs were isolated from a freshly resected Stage II, moderately 

differentiated, right colon tumor in accordance with an institutional-approved IRB protocol 

as described in Methods. The primary cell culture, named CT03, consisted of two 

morphologically distinct cell populations: non-adherent clusters of cells and adherent cells 

that spread on the bottom of the tissue culture flask, (Fig 1A). Immunocytochemical analysis 

identified the spheroid-cell clusters (colospheres) as cytokeratin-positive (Fig 1B), CD34-

negative (data not shown) cells, whereas, the adherent cells stained positive for vimentin and 

but were negative for cytokeratin expression (Fig 1C), consistent with a fibroblast 

phenotype. A subpopulation of the vimentin-positive adherent cells also expressed α-smooth 

muscle actin (SMA) (Fig 1C), suggestive of myofibroblasts (28).

Isolated colospheres exhibit phenotypic heterogeneity and are similar to the surgical 
specimen

Cells within the colon epithelial spheroids exhibit phenotypic heterogeneity and varying 

degrees of differentiation. Similar to the patient’s original tumor (Fig 2), a subpopulation of 

cells express CD133. Glycosylated CD133 localizes to the apical microvilli of primitive 

epithelial cells (29) and on the luminal surface of the glands (15); this pattern of expression 
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is recapitulated in the colon spheroids (Fig 2). Cross-sections of the colospheres demonstrate 

that the central core do not express CD33, but are apoptotic, as evidenced by the stain for 

TdT-mediated dUTP Nick-End Labeling (TUNEL). Cells peripheral to the core, however, 

are highly proliferative, with 59.9± 8.8% (mean ±SEM) of the cells showing strong 

immunostaining for nuclear Ki67. Some cells within the spheroids exhibited glandular 

organization, with positive mucicarmine staining within acellular lumens (Fig 2, pink areas 

indicate presence of mucin). The original tumor stained positive for mucicarmine and also a 

specific mucin protein, MUC4. Both the patient tumor and the colospheres stained positive 

for the cell-surface glycoprotein carcinoembryonic antigen (CEA) (Fig 2). Although prior 

reports indicate that CD133+ colon cancers do not express CK20 (13, 30), the spheroid cells 

did rarely express CK20, consistent with the original tumor which was predominately 

negative for CK20, with only a small proportion of the tumor sampled positive for CK20. 

CK20 is a marker for the differentiated phenotype of colorectal cancers, expressed in up to 

92% of colon cancers (31). CK7-positive tumors characterizes only 16% of all colorectal 

cancers, while colorectal cancers that express both CK20 and CK7, such as this patient’s 

tumor represent only 12% (31). This phenotype is recapitulated in the cultured colospeheres 

(Fig 2). Finally, most cells within the spheroids as well as the original tumor sample express 

both CD44 and CD166, both putative colon cancer stem cell surface protein markers (32, 

33).

CD133+ cells exhibit enhanced tumorigenicity when compared to CD133− cells

To assess the relative tumorigenicity of the subpopulation CD133+ cells, the epithelial 

spheroids were dissociated into single cells using Accumax (Innovative Cell Technologies; 

San Diego, CA), labeled with fluorescently-tagged antibody to CD133 (AC133), and 

separated by fluorescence-activated cell sorting (FACS) (Fig 3A). Cells exhibiting the 

highest level of CD133 expression (CD133+ cells) were separated from the cells expressing 

very low levels detectable CD133 (Fig 3B, similar expression levels as cells labeled with 

non-specific IgG control antibody). To evaluate tumorigenicity, the sorted cells were serially 

diluted and resuspended in growth factor-reduced Matrigel. CD133+ cells transplanted 

subcutaneously at 103 were able to form tumors in NOD-SCID mice, whereas CD133− cells 

were either unable to sustain growth or formed very small tumor masses (Fig 3C and D). 

Tumor volumes at 6 weeks were 11±4 and 420±114 mm3 (CD133− vs. CD133+, 

respectively, p=0.01, t-test) (Fig 3D). The tumors harvested from the xenograft demonstrate 

phenotypic cellular heterogeneity similar to the primary tumor tissue isolated from the 

patient (Fig 3E and H, respectively). Regions of the xenograft tumor displayed both 

moderately-differentiated (Fig 3F) and well-differentiated cancer (Fig 3G), recapitulating 

the histopathology of the patient’s tumor (Fig 3I and J, respectively).

Gene Expression Analysis: Comparison of CD133+, CD133−, and CAF cells

Overview—In order to explain the different in vivo biologic behaviors, we hypothesized 

that the increased tumorigenicity of CD133+ colon cancer cells may be due, in part, to 

enhanced interactions with CAFs of the tumor microenvironment. Using the Affymetrix 

Gene Chip platform (HGU133 Plus 2.0 array), we 1) compared the differential gene 

expression between CD133+ and CD133− cells, and 2) examined the reciprocal receptor-

ligand relationships between the epithelial cells (CD133+ or CD133−) and CAF isolated 
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from the same tumor. As expected, unsupervised hierarchical clustering showed that the 

CAF and the epithelial cells clustered at opposite ends of the dendrogram, confirming that 

CD133+ cells were more similar to CD133− cells, than they were to the CAF (Fig 4).

ANOVA analysis of the CD133+ versus CD133− carcinoma cells revealed 1410 and 318 

differentially expressed genes significant at the p≤0.05 and 0.01 level, respectively. To 

reduce the false discovery rate, two multiple test corrections were applied to the 1410 genes 

list: The method of Benjamani and Hochberg identified 1155 gene transcripts, whereas the 

very stringent Bonferroni correction only identified 35 significant genes. We selected 45 of 

the 1155 genes for real-time PCR validation (qPCR). Of the 45 genes selected, all 14 of 

gene transcripts evaluated as significant by Bonferroni correction, were also verified by 

qPCR (data not shown). However, many true positive results would have been excluded 

with this level of stringency. Of the 45 genes selected that were significant by the 

Benjamani-Hochberg analysis (p<0.05), 27 of 45 genes (60%) were concordant by qPCR 

(Table 1).

Similarities between CD133+ and CD133− cells—Because this isogenic cancer cell 

line was segregated by CD133 expression levels, as expected, gene array results verified that 

PROM1 (CD133) was 9.3-fold enriched in the CD133+ cells compared with the CD133− 

cells (Table 1). Many investigators have suggested that other stem cell markers such as 

CD44 (a subset of CD133+ cells), EpCAM, and CD166 (30, 32) select for in vivo 

tumorigenesis in immunodeficient mice. In our microarray analysis, there were no 

appreciable differences in the co-expression of other putative colon cancer stem cell markers 

CD44, EpCAM, Lgr5, CD166, CD49b, Bmi1, between the CD133+ and CD133− cells 

(Supplemental Table 1). To determine whether key genetic determinants of the adenoma-to-

carcinoma sequence are differentially expressed by CD133+ versus CD133− colon cancer 

cells, we compared the gene expression levels of oncogenes (Src, Raf-1, Met, K-ras), tumor 

suppressor genes (APC,DCC, TP53, PTEN), DNA mismatch repair genes (MLH1, MSH2, 

MSH, MGMT) and other genes specific for colon carcinogenesis (CHK2, TGFBR2). No 

statistically significant differences were identified between CD133+ and − cells, indicating 

that the cells share the same genetic background for colon cancer-specific oncogenes and 

tumor suppressor genes (Supplemental Table 1).

Differences between CD133+ and CD133− cells: Our analysis revealed gene expression 

differences between CD133+ and CD133– cells in three major categories: cell adhesion/

matrix proteins, matrix-digesting proteases, and cell surface receptors involved in 

proliferation/metastasis (Full gene list available at GEOarchive at www.ncbi.nlm.nih.gov/

geo). Specifically, genes downregulated in CD133+ relative to CD133−cells included the 

extracellular matrix proteins: COL1A1 (collagen type1α1;-3-fold), COL1A2 (collagen 1α2; 

-5-fold), fibronectin (FN1; -3.8-fold), chondroitin sulfate proteoglycan 2 (CSPG2; -2.5-

fold), and osteonectin (SPARC; -7-fold). CD133+ also exhibited increased expression, 

relative to CD133− cells, of proteases that may mediate degradation of extracellular matrix 

proteins and facilitate cell migration including: cathepsin C (CTSS; 1.65-fold), 

transmembrane protease-serine 3 (TMPRSS3; 2.15-fold) and sulfatase-2 (SULF2; 2.21-

fold). CD133+ cells, compared to CD133− cells (Table 2A), overexpressed transcripts for 
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cell surface receptors that may mediate cell surface-linked inter-cellular signal transduction, 

such as CXCR4 (4-fold), a chemokine receptor vital to stem cell growth and homing, 

integrin β8 (ITGB8, 2.1-fold-increase), CD74 molecule (CD74; 3.1-fold), and fibroblast 

growth factor receptor-2 (FGFR2, 1.2-fold). The transcripts for the cognate ligands CXCL12 

(also known as stromal-derived growth factor, SDF-1, the ligand for CXCR4), macrophage 

inhibitory factor (MIF, the ligand for CD74), vitronectin (VTN, a ligand for ITGB8), and 

fibroblast growth factor family members (FGF, ligands for FGFR2), are all expressed 

equally by both CD133+ and CD133− cells (Table 2A). Compared to the CD133+ or 

CD133− carcinoma cells, the CAF cells, isolated from the original patient cancer specimen, 

demonstrate high expression levels for CXCL12, MIF, VTN or the FGF ligands (Table 2B). 

However, only the CD133+ cells significantly overexpressed the corresponding cell surface 

receptors for the ligands: CXCR4, CD74, ITGB8, FGFR2 (Table 2C), indicating that only 

the CD133+ cells, but not CD133− cells, have a strong reciprocal relationship with the CAF. 

Together, these results are consistent with the hypothesis that the CD133+ cells may be 

better positioned to engage in paracrine signaling with CAF in the microenvironment.

The CD133+/CXCR4+ phenotype can be maintained in anchorage-independent culture 
conditions

To test if cells that are enriched for CD133+ can propagate and maintain CD133+/CXCR4+ 

cell surface expression in culture, we sorted the colospheres into CD133+ and CD133− 

single cells and maintained each cell population in low-adhesion flasks. After 9 weeks, 

repeat FACS analysis demonstrated that the CD133+ group continued to remain relatively 

enriched for CD133 cell surface expression (Fig 5A), with a proportion of CD133+ cells 

also co-expressing CXCR4 (Fig 5B). The CD133− group maintained minimal CD133 and 

CXCR4 expression, (Fig 5A and B).

To evaluate whether cell culture conditions affected CD133/CXCR4 expression, the cells 

were grown either in a suspension culture using low-adhesion flasks or allowed to adhere 

onto tissue-culture plastic. If the cells were grown in low adhesion flasks, the cells grew in 

suspension as spheres, as expected (Fig 6A). However, if the cells were grown in standard 

tissue culture plastic, after approximately 2 weeks, most of the cells settled to the bottom of 

the flask and grow as a monolayer in an anchorage-dependent manner (Fig 6B). If the colon 

cancer cells were allowed to grow as a suspension culture, there was marked enrichment of 

the double–positive (CD133+/ CXCR4+) phenotype (32% of the total cell population), 

compared with the same cells grown as a monolayer (9% of the total cell population) (Fig 

6C and D, respectively). Conversely, the CD133−/CXCR4− phenotype was increased to 

46.7% of the total monolayer cell population if grown in adherent flasks compared to 29.8% 

if grown in suspension. Therefore, these results indicate that the anchorage-independent 

growth condition (suspension culture) preferentially enriched for the CD133+/CXCR4+ cell 

type, whereas the anchorage-dependent growth condition selected for the CD133−/CXCR4− 

phenotype.

CD133+/CXCR4+ cells have functional CXCR4

Since the gene array analysis revealed that CXCR4 was over-expressed 4-fold in the 

CD133+ over the CD133− cells, we validated functional CXCR4 in CD133+ cells using 
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two-color FACS and selecting for the relative presence or absence of CD133, as well as the 

relative presence or absence of CXCR4. CXCR4 is a G-protein coupled receptor activated 

by the chemokine SDF-1α, initiating a signal transduction cascade involving the generation 

of inositol triphosphate, release of intracellular calcium, and activation of downstream 

kinases that affect cellular proliferation, migration, and invasion (23, 34, 35). An increase in 

intracellular calcium was measured in 75% of the double positive (CD133+/CXCR4+) cells 

in response to ligand SDF-1α (400 ng/ml) (Fig 7A), confirming the presence of functional 

receptor. We used carbachol (10 µM) as a positive control to assure that the cells were 

adequately loaded with the calcium indicator dye Fura-2. The M3 muscarinic receptor has 

been shown to be expressed in most human normal and colon cancer tissue tested (36), and 

thus, the acetylcholine agonist carbachol should elicit an increase in intracellular calcium on 

the cells (Fig 7A–C). As expected, SDF-1α did not stimulate a calcium response in the 

CD133+/CXCR4−, nor the CD133−/CXCR4− cell fractions (Fig 7B and C, respectively), 

demonstrating the lack of functional CXCR4 in these cell subpopulations. This assay was 

not performed on the CD133−/CXCR4+ cells because this fraction represented a small 

minority (<10% total cell population) and the amount of healthy live cells retrievable for this 

assay was insufficient for analysis.

SDF-1α stimulates growth in CD133+/CXCR4+ cells

CAF-derived SDF-1α has been shown to stimulate carcinoma cell growth directly through 

the CXCR4 receptor on the cancer cell (23). Coculture of CAF with the epithelial cells will 

not directly test whether SDF-1α can stimulate CD133+/CXCR4+ cell growth because CAF 

secrete multiple growth factors, which may stimulate other CD133+ cell surface receptors. 

To eliminate potential confounding conditions, we performed in vitro growth assays by 

adding SDF-1α directly to the colospheres embedded in Matrigel. Cells were sorted with 

dual color FACS for CD133 and CXCR4 and allowed to grow either in the presence of 

SDF-1α (400 ng/ml) or vehicle (0.2% BSA). After 30 days, both the total number of cell 

colonies and the mean diameter of each colony were assessed. The CD133+/CXCR4+ group 

treated with SDF-1α sustained the growth of more colonies compared to vehicle (80±1.5 vs. 

67±3.5, respectively, Figure 7D), as well as significantly larger colony sizes of tumor 

spheres (25±0.01 vs 17±0.008 µm diameter, Student’s t-test, p<.0002) (Fig 7G). The 

CD133+/CXCR4− (Figure 7E) cells formed fewer tumor colonies (68±2 colonies in the 

presence of SDF-1 vs. 62±4 colonies with vehicle) compared to the double-positive cells. 

However, unexpectedly, the CD133+/CXCR4− cells treated with SDF-1α grew larger 

colonies compared to the same cells treated with vehicle (21±0.009 and 16±0.006 µm, 

respectively, t-test, p<0.0001, Fig 7G). This result may be explained by the fact that the 

sorted CXCR4-negative cell fraction express relatively less CXCR4 compared to the 

CXCR4+ fraction, but is not completely depleted of all CXCR4-positive cells. Finally, cell 

colonies characterized by CD133−/CXCR4− (Fig 7F) formed only 48±3 and 26±9.5 

colonies in the presence of ligand and vehicle, respectively, with average size per colony of 

16±0.005 vs. 14±0.01 µm. CD133−/CXCR4+ cells were relatively rare and those that were 

retrieved after cell sorting did not survive in culture. In summary, cells co-expressing both 

CD133 and CXCR4, when treated with SDF-1α, sustained the greatest number of spheroid 

colonies and the largest diameter per colony of spheroid colonies.
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CD133+ cells are spatially located adjacent to a relative abundance of CAF in colorectal 
cancer

To show that CD133+ cells are spatially in close proximity to CAF in the original tumor 

sample, we co-stained a formalin fixed paraffin-embedded block for CD133 (shown in red) 

and α-SMA (brown) (Fig 8). CD133− cells are not surrounded by α-SMA-positive CAF 

(Fig 8A), whereas, in contrast, the CD133+ cells are surrounded by CAF (Fig 8B). Using 

tumor samples from another 11 CD133+ colon cancer specimens, we demonstrate that 

CD133+ cells have a greater propensity to be situated adjacent to CAF (α-SMA-positive 

cells), compared to CD133− cells (Fig 9). Under an IRB-approved protocol, we performed 

dual staining of CD133 and α-SMA. Fig 8C demonstrates in another patient that the normal 

margin colonic villi are surrounded by some α-SMA-positive fibroblasts. The carcinoma 

from the same patient (as Fig 8C) is characterized by CD133+ surrounded by a relative 

abundance of CAF (left), compared to CD133− cells (right, Fig 8D). In a third patient tumor 

sample, the CD133− cells are in close proximity to both α-SMA+ and α-SMA− CAF (Fig 

8E); however, the CD133+ cells are surrounded by predominately α-SMA+ CAF. Close-up 

representative paired CD133− and CD133+ cells from the 11 additional patients are shown 

in Fig 9. In six of these patient samples, CK20 and CK7 staining were also performed. Three 

of the 6 colon cancer specimens were CK20+/CK7−, similar to the majority of colon cancers 

(31), and the other three were double positive for CK20 and CK7 (data not shown). The 

close proximity of CD133+ cells to CAF support our hypothesis that CD133+ cells better 

poised to interact in a paracrine fashion to promote tumor progression compared to CD133− 

cells.

DISCUSSION

Experimental studies show that the CD133+ cells have a higher tumorigenic potential 

among the other malignant cells that comprise a solid tumor. Yet, increased cell 

proliferation, migration, invasion and tumorigenicity of colorectal cancer cells in nude mice 

cannot be attributable to a direct function of CD133 because siRNA-mediated knockdown of 

CD133 has demonstrated no significant differences in these measureable functions 

compared to non-targeted siRNA control cells (17, 18). Although the specific function of 

CD133 is unknown, the CD133 phenotype is clearly associated with more aggressive tumor 

characteristics such as chemotherapy resistance (37, 38) and poor clinical outcome (15, 39). 

Previously, our understanding of the CD133 phenotype has been limited by the lack of a 

specific model to address the contributions of the other cells in the tumor microenvironment. 

In this study, we concurrently isolated the carcinoma cells, along with the CAF, and showed 

by gene microarray analysis that the CD133+ phenotype is characterized by increased co-

expression of cell surface receptors to chemokines and growth factors, increased expression 

of proteases that can break down matrix proteins, and decreased expression of matrix 

proteins. We have shown that the CD133+ cell is more tumorigenic in NOD-SCID mice (Fig 

3C and D),and molecular profiling (Table 2) suggest that the CD133+ cells may have an 

advantage over CD133− cells that allows them to cooperate with other cells in the stromal 

microenvironment, such as their companion CAF, to promote tumor growth, invasion, and 

metastasis. We demonstrate marked overexpression of functional CXCR4 in a population of 

CD133+ cells compared to the CD133− cells, and show that the paracrine CXCR4/SDF-1 
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signaling axis contributes to the growth advantage that CD133+ cells have over the CD133− 

cells.

Zeelenberg and colleagues (40) previously reported CXCR4-deficient colon cancer cells can 

colonize the lung parenchyma to the same extent as CXCR4+ cells, but only CXCR4+ cells 

can grow in this metastatic niche. In this primary colorectal cancer, the CD133+/CXCR4+ 

population is a candidate cell-type that may be likely to become the metastatic cell type, by 

interacting with CAF and/or other cell types that secrete SDF-1α. Furthermore, our analysis 

revealed that CD133+ cells also overexpress other cell surface receptors that mediate 

proliferation and metastasis, all of which may contribute to the overall aggressive behavior 

of CD133+ cells in the tumor microenvironment: fibroblast growth factor receptor-2 

(FGFR2), macrophage inhibitory factor receptor (CD74), and integrin β8 (ITG β8). The 

companion CAF derived from the primary colon cancer overexpress the gene transcripts for 

the activating ligands: the FGF family members, macrophage inhibitory factor (MIF), and 

extracellular matrix protein vitronectin, respectively (Table 2B and C). ITG β8 exclusively 

pairs with αv (ITGAV) and has been shown to promote neurosphere proliferation and 

survival of in vitro neural progenitor cells (41). ITG β8 binds vitronectin, a matrix protein 

found only in the stroma of colorectal cancers and not normal colon mucosa (42), 

implicating a potential role for β8 in the microenvironment of colon cancer. MIF is a 

cytokine secreted by immune cells, CAF, and tumor cells upon inflammation and stress, and 

has been shown to be a non-cognate ligand of the chemokine receptor CXCR4 (43). 

CD133+ cells also have relatively increased gene transcript expression for proteases 

(SULF2, TMPRSS2, PRSS3, CTSO, CTSS) and marked decrease expression for ECM 

proteins (COL1A1, COL1A2, COL3A1, SPARC, FN1, CSPG2) (http://

www.ncbi.nlm.nih.gov/geo). By breaking down the surrounding ECM components, 

proteases facilitate the invasion and metastatic spread of tumor cells, as well as release and 

activate growth and angiogenic factors. Future studies on CD133+colon cancer and their 

CAF involving other receptor-ligand pairs will reveal potentially important paracrine 

signaling systems.

Other investigators have shown that engraftment of human tumors in mice is dependent on 

the specific mouse strain, which harbor the critical microenvironment necessary for 

supporting tumor cell growth. Kelly and colleagues (44) demonstrated that while only a few 

human acute myeloid leukemia (AML) cells can survive in irradiated NOD-SCID mice, a 

large proportion of murine lymphoid or myeloid malignant cells engrafted into non-radiated 

NOD-SCID mice, and these mice developed disseminated disease with very high frequency 

Quintana et al. (45) also confirmed that the tumorigenesis is very dependent on a permissive 

microenvironment. They found that human melanoma cells injected into NOD-SCID mice 

were significantly less tumorigenic (1:46,700 cells engrafted) compared to the same cells 

injected into the more immunocompromised NOD-SCID-IL2Rγ
−/− mice (1:9 cells 

engrafted), which lack the interleukin-2γ receptor responsible for natural killer cell activity. 

Recently, Vermulen et al. (46) demonstrated that CAF derived hepatocyte growth factor 

(HGF) activated c-met on colon cancer stem cells to promote cell growth via β-catenin-

dependent transcriptional activation. Together, these recent studies underscore the 

importance of studying the colon cancer CD133+ cell phenotype in the context of its 
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relevant microenvironment (e.g., in association with the accompanying CAF). After the 

establishment of distant metastasis, CD133 expression is downregulated, and is no longer 

essential for the initiation of tumors in xenografts (47). Shmelkov et al. (47) showed that 

metastatic CD133+ colorectal cancer cells can propagate into both CD133+ and CD133− 

cells, and both subpopulations subsequently have the ability to initiate tumorigenesis in 

NOD-SCID mice, suggesting that the metastatic cancer cells may have acquired alternative 

ways to sustain tumor growth that does not involve the CD133 cell surface marker. Future 

studies are needed to address the possibility that CD133 is important for the initiation and 

progression of primary tumors, but not necessary after the tumor has successfully spread 

distantly.

Our data support the contention that the pro-tumorigenic potential of the CD133+ cancer cell 

type is dependent on specific microenvironmental determinants. Each primary colorectal 

cancer not only has a unique cancer genome, but also has specific reciprocal (paracrine) 

relationships between the epithelial and stromal components, all of which contribute to the 

biological behavior of that specific tumor, including the CAF, tumor-associated 

macrophages (48), other hematopoietic cells, and vascular endothelial cells (49). In this 

report, we show that 1) CD133+ cells are a heterogeneous cell population and that 2) the co-

expression of additional cell surface receptors, for example CXCR4, mediates a critical 

paracrine signaling axis, indicating that the enhanced tumorigenic properties attributable to 

CD133 phenotype relies on the subpopulation of CD133+ cells that can interact with its 

microenvironment. Future studies, particularly in vivo tumorigenesis studies, are needed to 

verify a paracrine signaling loop between CAF and CD133+ colorectal cancers. In the 

emerging era of “personalized medicine” for the treatment of cancers, it will be important to 

define patient-specific therapies based on the molecular characteristics of the individual’s 

tumor, as well as the specific paracrine signaling axes promoted in the cancer 

microenvironment.
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ECM extracellular matrix

FACS fluorescence-activated cell sorting

H&E hematoxylin and eosin

HGF hepatocyte growth factor

IHC immunohistochemistry

ITG β8 integrin β8

PBS phosphate buffered saline

qPCR real-time PCR validation

SMA smooth muscle actin

TUNEL TdT-mediated dUTP Nick-End Labeling

REFERENCES

1. Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoietic stem cell 
antigen: isolation, characterization, and molecular cloning. Blood. 1997; 90:5013–5021. [PubMed: 
9389721] 

2. Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and 
progenitor cells. Blood. 1997; 90:5002–5012. [PubMed: 9389720] 

3. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic 
prostate cancer stem cells. Cancer Res. 2005; 65:10946–10951. [PubMed: 16322242] 

4. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor 
growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007; 1:313–323. 
[PubMed: 18371365] 

5. Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/
progenitor cells. Gastroenterology. 2007; 132:2542–2556. [PubMed: 17570225] 

6. Maw MA, Corbeil D, Koch J, et al. A frameshift mutation in prominin (mouse)-like 1 causes human 
retinal degeneration. Hum Mol Genet. 2000; 9:27–34. [PubMed: 10587575] 

7. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour 
growth in immunodeficient mice. Nature. 2007; 445:106–110. [PubMed: 17122772] 

8. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-
initiating cells. Nature. 2007; 445:111–115. [PubMed: 17122771] 

9. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker 
for human prostatic epithelial stem cells. J Cell Sci. 2004; 117:3539–3545. [PubMed: 15226377] 

10. Rutella S, Bonanno G, Procoli A, et al. Cells with characteristics of cancer stem/progenitor cells 
express the CD133 antigen in human endometrial tumors. Clin Cancer Res. 2009; 15:4299–4311. 
[PubMed: 19509143] 

11. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. 
Cancer Res. 2003; 63:5821–5828. [PubMed: 14522905] 

12. Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for 
tumorigenicity. Int J Cancer. 2007; 120:1444–1450. [PubMed: 17205516] 

13. Ieta K, Tanaka F, Haraguchi N, et al. Biological and genetic characteristics of tumor-initiating cells 
in colon cancer. Ann Surg Oncol. 2008; 15:638–648. [PubMed: 17932721] 

14. Artells R, Moreno I, Diaz T, et al. Tumour CD133 mRNA expression and clinical outcome in 
surgically resected colorectal cancer patients. Eur J Cancer. 2010; 46:642–649. [PubMed: 
20005089] 

Chao et al. Page 14

Lab Invest. Author manuscript; available in PMC 2012 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Horst D, Kriegl L, Engel J, Kirchner T, Jung A. CD133 expression is an independent prognostic 
marker for low survival in colorectal cancer. Br J Cancer. 2008; 99:1285–1289. [PubMed: 
18781171] 

16. Yasuda H, Tanaka K, Saigusa S, et al. Elevated CD133, but not VEGF or EGFR, as a predictive 
marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep. 
2009; 22:709–717. [PubMed: 19724847] 

17. Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin 
Cancer Res. 2008; 14:6751–6760. [PubMed: 18980968] 

18. Horst D, Scheel SK, Liebmann S, et al. The cancer stem cell marker CD133 has high prognostic 
impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol. 
2009; 219:427–434. [PubMed: 19621338] 

19. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. 
Nature. 2004; 432:332–337. [PubMed: 15549095] 

20. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol. 
2006; 1:119–150. [PubMed: 18039110] 

21. Desmouliere A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the 
control of tumor cell behavior. Int J Dev Biol. 2004; 48:509–517. [PubMed: 15349825] 

22. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated 
fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999; 
59:5002–5011. [PubMed: 10519415] 

23. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast 
carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. 
Cell. 2005; 121:335–348. [PubMed: 15882617] 

24. Hwang RF, Moore T, Arumugam T, et al. Cancer-associated stromal fibroblasts promote 
pancreatic tumor progression. Cancer Res. 2008; 68:918–926. [PubMed: 18245495] 

25. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010; 
16:2927–2931. [PubMed: 20484021] 

26. Chao C, Tallman ML, Ives KL, Townsend CM Jr, Hellmich MR. Gastrointestinal hormone 
receptors in primary human colorectal carcinomas. J Surg Res. 2005; 129:313–321. [PubMed: 
16051276] 

27. Tsien RY, Harootunian AT. Practical design criteria for a dynamic ratio imaging system. Cell 
Calcium. 1990; 11:93–109. [PubMed: 2354507] 

28. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006; 6:392–401. [PubMed: 
16572188] 

29. Bauer N, Fonseca AV, Florek M, et al. New insights into the cell biology of hematopoietic 
progenitors by studying prominin-1 (CD133). Cells Tissues Organs. 2008; 188:127–138. 
[PubMed: 18160824] 

30. Vermeulen L, Todaro M, de Sousa Mello F, et al. Single-cell cloning of colon cancer stem cells 
reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A. 2008; 105:13427–
13432. [PubMed: 18765800] 

31. Tot T. Cytokeratins 20 and 7 as biomarkers: usefulness in discriminating primary from metastatic 
adenocarcinoma. Eur J Cancer. 2002; 38:758–763. [PubMed: 11937308] 

32. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem 
cells. Proc Natl Acad Sci U S A. 2007; 104:10158–10163. [PubMed: 17548814] 

33. Levin TG, Powell AE, Davies PS, et al. Characterization of the intestinal cancer stem cell marker 
CD166 in the human and mouse gastrointestinal tract. Gastroenterology. 2010; 139:2072–2082. 
e2075. [PubMed: 20826154] 

34. Mori T, Doi R, Koizumi M, et al. CXCR4 antagonist inhibits stromal cell-derived factor 1-induced 
migration and invasion of human pancreatic cancer. Mol Cancer Ther. 2004; 3:29–37. [PubMed: 
14749473] 

35. Sutton A, Friand V, Brule-Donneger S, et al. Stromal cell-derived factor-1/chemokine (C-X-C 
motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol Cancer 
Res. 2007; 5:21–33. [PubMed: 17259344] 

Chao et al. Page 15

Lab Invest. Author manuscript; available in PMC 2012 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Yang WL, Frucht H. Cholinergic receptor up-regulates COX-2 expression and prostaglandin E(2) 
production in colon cancer cells. Carcinogenesis. 2000; 21:1789–1793. [PubMed: 11023534] 

37. Dallas NA, Xia L, Fan F, et al. Chemoresistant colorectal cancer cells, the cancer stem cell 
phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 
2009; 69:1951–1957. [PubMed: 19244128] 

38. Todaro M, Perez Alea M, Scopelliti A, Medema JP, Stassi G. IL-4-mediated drug resistance in 
colon cancer stem cells. Cell Cycle. 2008; 7:309–313. [PubMed: 18235245] 

39. Takahashi S, Kamiyama T, Tomaru U, et al. Frequency and pattern of expression of the stem cell 
marker CD133 have strong prognostic effect on the surgical outcome of colorectal cancer patients. 
Oncol Rep. 2010; 24:1201–1212. [PubMed: 20878111] 

40. Zeelenberg IS, Ruuls-Van Stalle L, Roos E. The chemokine receptor CXCR4 is required for 
outgrowth of colon carcinoma micrometastases. Cancer Res. 2003; 63:3833–3839. [PubMed: 
12839981] 

41. Mobley AK, Tchaicha JH, Shin J, Hossain MG, McCarty JH. Beta8 integrin regulates neurogenesis 
and neurovascular homeostasis in the adult brain. J Cell Sci. 2009; 122:1842–1851. [PubMed: 
19461074] 

42. Tomasini-Johansson BR, Sundberg C, Lindmark G, Gailit JO, Rubin K. Vitronectin in colorectal 
adenocarcinoma--synthesis by stromal cells in culture. Exp Cell Res. 1994; 214:303–312. 
[PubMed: 7521845] 

43. Vera PL, Iczkowski KA, Wang X, Meyer-Siegler KL. Cyclophosphamide-induced cystitis 
increases bladder CXCR4 expression and CXCR4-macrophage migration inhibitory factor 
association. PLoS One. 2008; 3:e3898. [PubMed: 19066630] 

44. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare 
cancer stem cells. Science. 2007; 317:337. [PubMed: 17641192] 

45. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour 
formation by single human melanoma cells. Nature. 2008; 456:593–598. [PubMed: 19052619] 

46. Vermeulen L, De Sousa EMF, van der Heijden M, et al. Wnt activity defines colon cancer stem 
cells and is regulated by the microenvironment. Nat Cell Biol. 2010; 12:468–476. [PubMed: 
20418870] 

47. Shmelkov SV, Butler JM, Hooper AT, et al. CD133 expression is not restricted to stem cells, and 
both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest. 2008; 
118:2111–2120. [PubMed: 18497886] 

48. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and 
metastasis. Cell. 2006; 124:263–266. [PubMed: 16439202] 

49. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of 
tumour angiogenesis. Nat Rev Cancer. 2008; 8:618–631. [PubMed: 18633355] 

Chao et al. Page 16

Lab Invest. Author manuscript; available in PMC 2012 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Phase contrast image of characteristic features of primary colon cancer cells and CAF 

isolated from a patient with Stage II disease maintained. (A) Mixed cell population with two 

phenotypes in cell culture, consisting of (B), a non-adherent colon cancer cell line that form 

spheres in culture (phase contrast microscopy) that is cytokeratin-positive (pan- cytokeratin 

AE1/3), and (C) carcinoma-associated fibroblasts (CAF) that stain for vimentin, but not 

cytokeratin, with a subpopulation that are α-SMA-positive. Original Magnification 400X.
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Figure 2. 
Immunohistochemical characterization of the original patient tumor sample (400× original 

magnification), compared to the colospheres maintained in vitro (200× original 

magnification).
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Figure 3. 
(A) Comparison of fluorescence by colon cancer cells labeled with AC133, an antibody to 

CD133 conjugated to R-phycoerythrin (PE) and istotype-matched IgG controls labeled with 

PE (Miltenyi Biotec; Auburn, CA). (B) Fractions colon cancer cells with high expression 

levels of CD133 (positives) and relatively low expression levels (negatives) collected by 

fluorescence-activated cell sorting (C) CD133+ and CD133− cells were serially diluted, 

resuspended in Matrigel, and injected subcutaneously in NOD-SCID mice to assay for 

tumorigenic potential; representative mouse injected with CD133+ cells at sacrifice shown. 
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(D) Summary of tumor volumes measured at 6 weeks comparing CD133− vs. CD133+ 

tumors. (E) Representative hematoxylin and eosin stain (H&E) of the tumor xenograft 

(40×). (F, G) Inset from xenograft tumor demonstrates a moderately differentiated tumor 

and well-differentiated tumor forming glandular structures (400×), respectively. (H) 

Representative H&E of the tumor from the patient’s tumor block (40×). (I, J) H&E (400X) 

from patient’s original tumor block showing similar cellular features from the mouse 

xenograft, moderately and well-differentiated features.
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Figure 4. 
Heat Map Comparing CD133+, CD133− colon cancer cells with the accompanying CAF 

cells. Unsupervised hierarchical clustering comparing the CD133+, CD133−, and CAF cells.
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Figure 5. 
Colospheres, enriched for CD133+ or relative lack of CD133 (CD133−), sorted by flow 

cytometry, were maintained in culture for up to 8 weeks. (A) Overlay of histograms (from 

left to right) comparing fluorescence of CD133+ cells labeled with IgG-APC (negative 

control), AC133-labelled CD133-negative cells, and AC133-labelled CD133+ (enriched) 

cells. (B) After 8 weeks, the enriched cells each maintained their respective CD133 

phenotype. Co-expression of cell surface CD133 and CXCR4 in CD133+ cells and CD133-

negative cells.
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Figure 6. 
Effects of growth conditions (suspension vs. attached) on co-expression of CD133 and 

CXCR4. (A) Photomicrograph (400×) of colon cancer cells grown in suspension culture 

(low adhesion flasks). The cells maintain anchorage-independence growth after 9 days. (B) 

Photomicrograph (400×) of same cells grown in standard tissue culture flasks. After 9–14 

days, the cells adhere to the bottom of the flask and exhibit a spread phenotype, consistent 

with anchorage dependence. (C) FACS analysis demonstrating that when grown in 

suspension culture, 32% of the cells are double-positive for cell surface CD133 and CXCR4, 

and that 30% of cells are double-negative for both receptors. (D) When the cells are allowed 
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to adhere and spread, the double-positive cells decrease to 8.9%, while the double-negative 

cells increase to 46.7%.
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Figure 7. 
Characterization of CD133+/CXCR4+ cells. (A) CD133+/CXCR4+ cells exhibits an 

increase in intracellular calcium in response to 400 ng/ml of SDF-1 (CXCL12). Subsequent 

treatment with 10 µM carbachol to insures that the cells were loaded with Fura-2. (B) 

CD133+/CXCR4− cells do not respond to SDF-1; however, these cells do have muscarinic 

receptors, as verified by their calcium response to carbachol, indicating that the calcium 

indicator dye Fura-2 was loaded in the cells. (C) CD133−/CXCR4− cells fail to increase 

intracellular calcium with SDF-1, but does respond to carbachol. (D, E, F) Effects of cell 

Chao et al. Page 25

Lab Invest. Author manuscript; available in PMC 2012 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



growth in Matrigel in the presence of SDF-1 (400 ng/ml) or vehicle (0.2% BSA). The 

average number of cell colonies per well are denoted by the number in the corner of the 

photo. Photomicrographs (original magnification, 400X) of representative areas of CD133+/

CXCR4− (D), CD133+/CXCR4+ (E), CD133−/CXCR4− (F) cell colonies are shown. (G) 

Bar graph depicting average diameter of the cell colonies, corresponding to figures shown in 

D, E, F.
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Figure 8. 
Co-staining of CD133 and α-SMA showing the spatial relationship between CD133+ cells 

and CAF, respectively. (A, B) Immunohistochemical characterization of the original patient 

tumor sample (600×, original magnification) of a representative area with (A) CD133− 

colon cancer cells and paucity of CAF and (B) CD133+ colon cancer cells (red stain) 

surrounded by relative abundance of CAF (brown stain). (C, D) Representative area from 

another patient in area of (C) normal colonic villi surrounded by α-SMA-positive (brown 

stain) and (D) malignant tumor with CD133+ (red) and CD133− cells, 200×. (E, F) Colon 
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cancer from third patient in areas with (E) CD133− colon cancer cells and (F) CD133+ 

colon cancer cells, 100×.
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Figure 9. 
Paired samples of CD133− and CD133+ colon cancer cells from 11 colon cancers. The 

slides are co-stained for CD133 (red, apical) colon cancer cells and α-SMA (400× and 

600×). The arrow demonstrates α-SMA immunopositivity in the walls of small blood 

vessels (internal positive control).

Chao et al. Page 29

Lab Invest. Author manuscript; available in PMC 2012 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chao et al. Page 30

TABLE 1

Significant Genes Identified by Gene Array Validated by Quantitative Real-Time PCR

Gene Symbol p-value Gene Array
Fold change

RT-PCR
Fold Change

IGFBP3 7.56E-06 1.77362 1.2545

PLECKHB1 1.01E-05 3.22459 1.1764

CP 1.47E-05 2.86229 0.8721

SULF2 7.45E-05 2.20567 1.4212

IFIH1 0.000106 1.36982 0.285

PROM1 0.000168 9.36934 1.774

CEACAM5 0.000305 1.37876 0.1536

FZD2 0.000635 1.39114 0.3026

ALDH1A3 0.00088 2.33778 1.2188

SMAD7 0.001114 1.34044 0.4519

PTPRN2 0.001715 2.32938 0.7781

RRM2B 0.002429 1.20816 0.4979

RARRES1 0.002608 2.59494 1.2729

MUC4 0.002968 1.79323 2.9041

CTSS 0.003889 1.6457 1.2689

PRKAR2B 0.004508 2.239 0.6976

ITGB8 0.006254 2.18013 2.1667

PPIC 0.012036 1.24324 0.4395

UBD 0.012722 2.24373 1.1454

CXCR4 0.014884 4.0673 1.3265

TNFAIP2 0.017107 1.327 1.2429

FGFR2 0.017493 1.21569 1.3451

PLCG2 0.020757 1.16869 0.9214

MUC1 0.021106 1.38278 0.6375

SCD5 0.024365 1.72136 0.3941

CD74 0.038686 3.12507 1.3607

MS12 0.040851 1.18797 0.1003

Statistical significance demonstrated at p-value ≤ 0.05
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TABLE 2

Comparison of Reciprocal Relationships between CAF and CD133+ or CD133− Colon Cancer Cells

   A. CD133+ vs. CD133− cells

RECEPTOR (Gene Symbol) p-value Fold Change

CXCR4 chemokine (C-X-C motif) receptor 4 0.02* 4.07

CD74 CD74 molecule, major histocompatibility complex, class II invariant chain 0.04* 3.12

ITGB8 integrin, beta 8 0.01* 2.18

FGFR2 Fibroblast growth factor 2 0.03* 1.21

LIGAND

CXCL12 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 0.89 1.02

MIF macrophage migration inhibitory factor (glycosylation-inhibiting factor) 0.88 1.01

VTN vitronectin 0.82 −1.04

FGF ligands 1,2,7,5,13, fibroblast growth factor ligands N.S.

   B. CAF vs. CD133+ or CD133− cells

LIGAND CAF vs CD133+
p-value

CAF vs CD133+
Fold change

CAF vs CD133−
p-value

CAF vs CD133−
Fold change

CXCL12 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 0.0003* 3.73

0.0002* 3.8

MIF macrophage migration inhibitory factor (glycosylation-inhibiting factor) 3.71E-05* 1.87

4.01E-5* 1.85

VTN vitronectin 1.54E-05* 7.29

1.72E-05* 7.03

FGF2 fibroblast growth factor 2 (basic) 1.49E-09* 28.32

1.48E-09* 28.51

FGF7 fibroblast growth factor 7 (keratinocyte growth factor) 3.52E-07* 15.35

3.52E-07* 15.36

FGF13 fibroblast growth factor 13 3.26E-07* 8.10

5.22E-07* 7.9

FGF5 fibroblast growth factor 5 2.83E-05* 2.57

3.50E-05* 2.48
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   B. CAF vs. CD133+ or CD133− cells

LIGAND CAF vs CD133+
p-value

CAF vs CD133+
Fold change

CAF vs CD133−
p-value

CAF vs CD133−
Fold change

FGF1 fibroblast growth factor 1 7.48E-05* 2.12

3.53E-05* 2.35

   C. CD133+ or CD133− Cells vs.CAF

RECEPTOR (GENE SYMBOL) CD133+ vs. CAF
p-value

CD133+ vs. CAF
Fold change

CD133− vs. CAF
p-value

CD133− vs. CAF
Fold change

CXCR4 chemokine (C-X-C motif) receptor 4
0.007* 5.26

0.56 1.29

CD74 CD74 molecule, major histocompatibility complex, class II invariant chain 0.03* 3.32

0.89 1.06

ITGB8 integrin, beta 8 0.009* 2.04

0.73 −.107

FGFR2 Fibroblast growth factor 2 0.005* 1.48

0.015* 1.22

*
Statistical significance demonstrated at p-value ≤ 0.05

Lab Invest. Author manuscript; available in PMC 2012 September 01.


