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The P19 embryonic stem (ES) cells are derivatives of the inner cell mass of a mouse 

blastoderm, are multipotent and can give rise to all three germ layers [1]. They are 

anchorage-independent, display no contact inhibition, and are tumorigenic [2]. The P19 ES 

cell line was originally derived from a teratocarcinoma in C3H/HE mice, produced by 

grafting an embryo at 7 days of gestation to the testes of an adult male mouse [3, 4]. 

Depending on the nature of inducers, P19 ES cells can be driven to differentiate into 

derivatives of all three germ layers, an advantage that has been extensively exploited to study 

early developmental events. Dimethyl sulfoxide (DMSO) treatment of P19 ES cell 

aggregates (embryoid bodies) results in differentiation into cardiac- and skeletal muscle-like 

cells [1], whereas retinoic acid (RA) induces differentiation into neurons, glia, and 

fibroblast-like cells [5]. On the other hand, monolayers of P19 ES cells, when treated with 

RA, differentiate into cells with endodermal and mesodermal phenotypes [6]. The type of 

differentiation of P19 ES cell aggregates also depends on the RA concentration; with low 

concentration (10 nM) of RA, these cells differentiate into primitive endoderm-like cells and 

with high concentrations (1 µM) of RA, differentiation is shifted towards neurons and glia 

[3, 7, 8].

Although extensive studies on RA-induced neuronal differentiation of P19 ES cells exist [9–

12], very few studies report specific gene/protein-induced endodermal differentiation. For 

example, endodermal differentiation of P19 ES cells requiring G-proteins, such as Gα13 and 

Gα12 [13–15], JLP (JNK-interacting leucine zipper protein), a scaffold protein [16], a LIM-

protein, Ajuba [17] and a tumor suppressor, Menin [18], has been shown.
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Tumor suppressors are characterized as proteins whose expression or activity needs to be 

attenuated for a cell to become cancerous [19]. In P19 ES cells, endodermal differentiation 

mediated by two tumor suppressors, Ku and Menin, has been reported [18, 20]. Ku is 

primarily involved in DNA repair and non-homologous recombination and is the 

heterodimeric regulatory component of the serine/threonine kinase, DNA-dependent protein 

kinase (DNA-PK) [21]. Ku consists of 80 (Ku80) and 70 kDa (Ku70) subunits [22]. Ku80 is 

also a somatostatin receptor that can regulate the activity of protein phosphatase 2A (PP2A) 

[23]. The fact that somatostatin is an inhibitor of cell proliferation and that PP2A is involved 

in cell cycle regulation [24] validated Ku80 as a suppressor of cell growth.

Ku reportedly inhibits rDNA transcription [25]. Retarded cell growth by Ku via repression 

of RNA polymerase I-mediated transcription has been demonstrated [26, 27]. Ku mediates 

the repression of mouse ribosomal gene transcription [28], and a member of the Ku protein 

family, non-histone protein 1 (NHP1) has been shown to be upregulated in differentiation of 

mouse myoblasts and human promyelocytes [29]. Furthermore, inhibition of the Ku 

heterodimer DNA binding activity, while the Ku protein level remained unaltered, was 

linked to granulocytic differentiation of human promyelocytic cell lines [30]. Report on the 

RNA polymerase I transcription-suppressive effects of Ku presented compelling evidence 

that Ku, directly or indirectly, could affect cell growth [31], and in turn may induce cell 

differentiation.

It has been reported that constitutively active Gα12 and Gα13 induced endodermal 

differentiation of P19 ES cells [13, 14] by modulating the MEKK4/JNK1 signaling pathway 

[15, 32]. Co-expression of an antisense Ku80 (AS-Ku80) reduced Ku80 expression in 

constitutively active Gα13 (Gα13Q226L)-expressing cells and inhibited endodermal 

differentiation. The level of Ku70 also decreased in these cells indicating that the loss of one 

of the Ku subunits results in the loss of the other subunit [20]. This interdependence of the 

two Ku subunits for their stabilization has been reported [33, 34]. Overexpression of either 

Gα13 Q226L or Ku80 down-regulated RNA polymerase I-mediated transcriptional activity 

whereas co-expression of AS-Ku80 restored the activity to control levels [20], but abrogated 

Gα13-mediated endodermal differentiation in P19 ES cells, indicating a critical role of 

Ku-80. However, Ku80 was not sufficient to induce endodermal differentiation in these cells 

[20] suggesting that Ku80 may be an indispensable protein downstream of Gα13 Q226L 

signaling required for the endodermal differentiation of P19 ES cells [20].

Another tumor suppressor, Menin is a 61 kDa nuclear protein [35]. It is the product of the 

multiple endocrine neoplasia type I (Men1) gene, mutations of which, are known to cause 

the human autosomal dominant syndrome with development of tumors of the parathyroid, 

endocrine pancreas, and anterior pituitary [36]. A ubiquitously expressed protein, Menin 

bears no homology to functionally identified domains, but binds to JunD thus attenuating 

cell growth [37]. Men1-null mice are embryonically lethal suggesting the cause to be early 

developmental defects [38]. Men1-null embryonic fibroblasts enter senescence earlier than 

their wild-type counterparts and Men1-null ES cells can not form embryoid bodies 

suggesting an impaired differentiation capacity of these cells [38]. Menin’s role in duct cell 

differentiation in mouse submandibular gland [39], and in early differentiation of osteoblasts 

but inhibition of their later differentiation, has been reported [40, 41]. Menin influences 
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Hoxa9 gene expression and thereby regulates hematopoiesis and myeloid transformation 

[42, 43].

In P19 ES cells, RA modulated Menin expression, reduced cell growth and induced 

endodermal differentiation [18]. Although Men1 over-expression suppressed P19 ES cell 

growth, the cells did not undergo endodermal differentiation in monolayer cultures, but did 

so upon cell aggregation. When aggregated in the presence of RA, these cells formed 

smaller embryoid bodies compared to the untreated ones and eventually underwent 

apoptosis [18]. Since endodermal differentiation occurred without RA in the P19 ES cell 

aggregates, the requirement of cell aggregation for Menin to induce endodermal 

differentiation in the absence of RA was hypothesized [18].

RA first binds to its nuclear receptor RARα (retinoic acid receptor alpha) and then triggers 

the transcription of other downstream RARs, especially the RA-receptor and tumor 

suppressor, RARβ2 [44]. In the absence of RARα, RA cannot execute its growth inhibitory 

effect [45]. Whether RA-induction of Menin expression in P19 ES cell aggregates, but not in 

cell monolayers, depended on RARα−mediated RARβ2 activation regulating Men1 
transcription is not clear. However, Menin upregulated the mRNA of the three RARs 

(RARα, RARβ and RARγ) in the P19 ES cell aggregates (embryoid bodies), but not in 

monolayers [18]. These findings indicated that not only is Men1 an RA-responsive gene, but 

it also, in turn, induces the expression of the RARs. Induction of the expression of the RARs 

by Menin may be linked to the endodermal differentiation of P19 ES cells [18]. It’s known 

that RA’s differentiation-inducing function is mediated by ligand-dependent activation of the 

specific RARs. Therefore, Menin could activate the RARs in an RA-independent manner 

and thus result in endodermal differentiation of the P19 ES cells. For example, over-

expression of either Ngn1 or Sox6 or Stra13 has been shown to be sufficient to induce 

neuronal differentiation of P19 ES cells in the absence of RA [46–48]. Also in the absence 

of DMSO, certain transcription factors that induce mesodermal differentiation upon their 

over-expression in P19 ES cells include MEF2C and Nkx2—5 [49], GATA-4 [50], MyoD 

[51] and β-catenin [52]. In the embryoid bodies, only 10–20% of Men 1 over-expressing P19 

ES cells at the core region underwent endodermal differentiation [18] indicating that Menin 

could regulate cellular differentiation that’s co-dependent on cell microenvironment, cell 

adhesion, and inter-cellular signaling, etc. Therefore, Menin’s interaction with other 

unidentified players in these biological processes (aggregation followed by endodermal 

differentiation) seems obvious. While Menin was sufficient to induce endodermal 

differentiation in aggregated P19 ES cells, the differentiation was inhibited by the pan-RAR 

antagonist Ro41-5253. Whether Menin regulates the RARs’ transcriptional activation 

potential remains to be examined and so is the mechanism of the regulation of other 

downstream targets that are critical for endodermal differentiation. In summary, the study 

presented evidence that Menin, a known tumor suppressor, is a key player in the RA 

signaling pathway and is critical for endodermal differentiation [18].

P19 ES cells continue to serve as an ideal model system to study how various gene products 

including tumor suppressors affect early embryonic development and identify the 

mechanism(s) that regulate it. Most importantly, when a gene deletion or over-expression 

causes embryonic lethality thus prohibiting further studies on early developmental events, 
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P19 ES cells can be successfully utilized instead to recapitulate the early embryonic 

developmental processes. In addition, understanding the mechanism by which the tumor 

suppressors are regulated by the morphogen, RA, or the way they themselves regulate RA 

function by modulating the RARs, may prove useful in developing retinoid-based therapies 

for various diseases, especially cancer.
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