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Abstract

Marine debris is recognised globally as a key threatening process to marine life, but efforts to address the issue are
hampered by the lack of data for many marine habitats. By developing standardised protocols and providing training in
their application, we worked with .300 volunteer divers from 11 underwater research groups to document the scale of the
subtidal marine debris problem at 120 sites across .1000 km of the coast of NSW, Australia. Sampling consisted of
replicated 2565 m transects in which all debris was identified, counted, and, where appropriate, removed. Sites ranged
from estuarine settings adjacent to major population centres, to offshore islands within marine parks. Estuaries and
embayments were consistently found to be the most contaminated habitats. Fishing-related items (and especially
monofilament and braided fishing line) were most prevalent at the majority of sites, although food and drink items were
important contributors at sites adjacent to population centres. The results identified damaging interactions between marine
debris and marine biota at some key locations, highlighting the need for management intervention to ensure habitat
sustainability. This study reinforces the important contribution that volunteers can make to assessing conservation issues
requiring broad-scale data collection. In this case, citizen scientists delivered data that will inform, and help to prioritise,
management approaches at both statewide and local scales. These initial data also provide an important baseline for
longer-term, volunteer-based monitoring programs.
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Introduction

Marine debris is a growing problem with impacts on marine life

[1,2], aesthetics [3–5], global economies [6] and ecosystem

sustainability [7]. Impacts on wildlife have received considerable

attention in the recent past with an every-increasing list of species

documented to sustain negative effects from interactions with

debris [8,9]. The primary impacts include ingestion and entan-

glement, both of which may lead to mortality [2]. Primarily

because many susceptible taxa are charismatic, or listed as

threatened (e.g. turtles [10–12], pinnipeds [13–15], cetaceans

[16,17] and birds [18–20]), marine debris is regarded as a key

threatening process to marine fauna by conservation organisations

and government agencies worldwide (e.g. [21].

Debris is prevalent in all marine environments [22], although

quantification has focused primarily on accessible habitats such as

beaches, estuaries and the ocean surface. In subtidal benthic

habitats, there is clear evidence that the presence of debris can

result in the mortality of vulnerable taxa, such as hard and soft

corals [23,24], with flow-on effects to broader biotic diversity

[25,26]. The fact that diverse habitats are often targeted by

activities that generate debris, such as recreational fishing,

highlights the complex challenges associated with their effective

conservation management [27].

While the huge scale of the marine debris issue has been

recognised, a consistent approach to dealing with it has yet to be

developed and implemented. In the meantime, and especially in

developed countries, community education, which often includes

targeted and regular clean-up activities [28–31], is widely used to

take local steps to combat this global issue. In many cases, broad-

scale monitoring can only be carried out where much of the

workforce comprises volunteers [31–33], and guidelines have been

developed with respect to their training and management [34].

Mainly because of access, most community-based clean-up events

focus on intertidal areas in marine and estuarine habitats, and only

recently have activities extended more broadly into subtidal

habitats through international initiatives such as Project AWARE,

and locally organised events, mostly at popular dive locations

[24,35,36].

In New South Wales (NSW), Australia, an increasing number of

non-government organisations are promoting debris awareness

and clean-up activities (e.g. Clean Up Australia Day, Two Hands

Project, Take 3, Tangaoroa Blue) focusing primarily on intertidal

habitats. Divers also regularly participate in underwater clean-ups

as part of organised activities through dive clubs and dive shops,

often timed to coincide with national (e.g. Clean Up Australia

Day) or international (International Clean Up Day) events.

However, while broad records are generally kept of the type and
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total quantities of debris removed, seldom are data collected in a

sufficiently rigorous way to enable quantitative comparisons

between sites, or over time at the same sites. In response to this,

the Underwater Volunteers NSW program was established to

promote the use of standardised protocols by volunteers, with the

objectives of providing accurate and comparable data for use by

managing authorities. One of the first outcomes of this initiative

was the introduction of a standardised method for surveys of

subtidal marine debris, with subsequent application by 11

underwater volunteer groups across the state.

In this initial analysis of the data set, we provide a broad

overview of debris loads at 120 sites across the NSW coastline. In

particular, we focus on the prevalence of different types of debris

and the contribution of different activities to total debris loads. We

also the use the data to make broad observations about relative

debris loads in discrete marine habitat types and to identify

pressing management issues at both large (statewide) and small

(local) scales.

Methods

Work in marine protected areas was carried out under permits

issued by the NSW Department of Primary Industries (Fisheries);

however, no specific permissions were required for most locations.

The field studies did not involve endangered or protected species.

Marine debris surveys have been conducted at a range of

subtidal reefs in northern NSW since 2005 as part of a long-term

program to monitor reef health [27]. We developed a simple

process of gathering data by quantifying debris items in 4 replicate

2565 m transects at each survey site [27]. By using the same

methods with underwater volunteers, we planned to extend

assessments of marine debris across a much broader area than

would otherwise be possible – in this case, the entire coast of NSW

(.1000 km). As volunteers had a range of experience and ability

to work underwater, we developed a standard training procedure

and all participants were required to successfully complete at least

one training session prior to collecting data. Thus, all volunteers

undertook classroom training to ensure they understood the

context of the work and the need for standardised methods. Divers

then worked with the training team, and volunteers who had

already completed the training program, to: complete supervised

underwater surveys using the standardised protocol; examine and

classify the debris recorded; and record data in all requisite fields

on the standardised data sheets (these materials are available on

the UVNSW website – uvnsw.net.au).

Based on local knowledge, groups selected the most appropriate

sites for conducting their surveys. Wherever possible, 4 transects

were deployed at each site (this was not always possible due to tidal

currents or other diving-related factors) and all debris occurring

within these transects was recorded onto pre-printed data sheets. If

practicable, debris items were removed: however, if items were

habitat-forming, and their removal was likely to result in harm to

marine biota, they were recorded but left in situ.

At least one member from each group either uploaded data

directly onto the online UVNSW database (uvnsw.net.au), or

submitted spreadsheets to the project team for data entry. Quality

Assurance/Quality Control procedures are built into the data

entry protocols ensuring high confidence in the resulting data set.

Thus, data were read from the datasheet by one volunteer, entered

onto the database by a second volunteer, and subsequently

proofed by both.

To promote participation, we encouraged volunteer groups to

collect data to address questions about marine debris at locally

relevant scales. For this reason, groups had various objectives for

their specific programs. The groups also had different capacities in

terms of membership as well as access to different habitats and so it

was not practicable to enforce an overarching design at the

statewide scale. Thus, it was often the case that sampling within a

specific region focused primarily on a limited number of habitat

types (Fig. 1 and see below), or that some sites were targeted

multiple times. For this analysis of standing stock of debris, we

therefore used the first sample from sites where repeated sampling

had been carried out. Data were collected from 120 sites from

Cook Island in the north of the state, to Merimbula in the south

(Fig. 1). The majority of the surveys were completed by groups in

the central and mid-northern sections of the coast with relatively

few sites sampled on the far north and far south coast. A total of

690 transects were deployed overall: this was reduced to 470 once

temporal replicates were removed. For this overview of patterns

and debris loads, we classified sites into 6 broad types based on

their topographic setting and tidal regime: estuary (estuaries

without a major embayment) (12 sites); bay (large embayments

which experience tidal flow and freshwater influences – Sydney

Harbour, Port Stephens – Fig. 1) (15 sites); coastal (sites within

150 m of the coast) (18 sites); nearshore reef (150 m–1.5 km from

shore) (16 sites); mid-shelf reef (1.5–6 km from shore) (39 sites); and

offshore reef (.6 km from shore) (20 sites). The classification for

reefs is based on the categories currently used in the habitat

classification system for subtidal habitats in the system of marine

parks in NSW [37].

As the data were collected with different local objectives by each

of the 11 groups, a comparison among regions was confounded by

the lack of data from all habitat categories across regions (Fig. 1).

For this reason, data analyses were necessarily broad and focused

on patterns of difference across habitat types. We consequently

used a 2-way nested design (habitat, site nested within habitat) and

analysed the data using a range of multivariate statistical methods.

To visually examine patterns in debris distribution, we averaged

data across replicates within a site and generated a non-metric

multidimensional scaling (nMDS) ordination based on a Bray-

Curtis similarity matrix of raw data. Because there were a number

of zero values, we added a dummy variable prior to generating the

Bray-Curtis similarity matrix. The significance of differences in

debris patterns were assessed using 2-way nested PERMANOVA

of the full data set, with post hoc tests for significant main effects.

The types of debris driving differences were further explored using

similarity percentages (SIMPER) analysis and by superimposing

vectors representing discriminant categories onto the nMDS plot.

The abundance (Nd) and diversity (Sd) of debris were analysed

separately using univariate 2-way nested PERMANOVA of a

matrix of Euclidean distances. Significant main effects were further

explored using post hoc tests. All statistical analyses were performed

using PRIMER 6+ PERMANOVA [38,39].

Results

Our surveys of 120 sites recorded a total of 2,986 items of

marine debris. Debris loads (items per transect) ranged from 0 (210

of the 470 transects contained no debris) to 218 (the Pipeline, Port

Stephens – Fig. 1). Plastic items were the most abundant (33% of

the total), and mostly comprised of fishing monofilament (82% of

plastic items and 27% of the total debris) which primarily

originated from recreational fishing activities. Plastic fragments

comprised the majority of the remainder of plastic items (10% of

total debris) with plastic bags contributing a further 4% to total

loads. Glass items contributed 20% of the total items and mainly

comprised entire bottles (13% of total debris) and broken

fragments (6% of total debris). A range of metal objects (18%),
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and items with mixed construction (18%), made up the majority of

other items. Fishing was the primary source of most debris items

(38% of the total), with food and drink accounting for a further

27% of the total.

There was a clear difference in both the abundance and

diversity of debris items by broad habitat type (Fig. 2). Thus, sites

within estuaries and bays consistently returned the highest values

for both metrics with loads reducing substantially .150 m from

shore (the nearshore, mid-shelf and offshore reef habitats). This

trend was found to be highly significant in the 2-way nested

PERMANOVA (Nd, P,0.001; Sd, P,0.001) which also revealed

a highly significant difference amongst sites nested within habitat

type for both metrics (Nd, P,0.001; Sd, P,0.001). Pairwise

contrasts (Table 1) revealed identical patterns for both debris

abundance and diversity: values were significantly higher in

estuaries than in all other habitats except bays; bays and coastal

sites did not differ significantly but were significantly higher than

the 3 reef categories; there were no differences among the reef

categories.

The nMDS plot of patterns of debris structure (Fig. 3) did not

show clear clustering of sites based on habitat: nevertheless, there

were some obvious trends. With the exception of the 2 sites at

Cook Island (green triangles to the lower right of the main cluster

within the circle), all nearshore, mid-shelf and offshore sites group

to the left of the plot and are typified by low abundances of all of

the discriminant debris categories (Fig. 3). PERMANOVA

indicated highly significant effects for both habitat type

(P,0.001) and site nested in habitat type (P,0.001). Subsequent

pairwise tests (Table 1) revealed that all habitat types were

significantly different from each other with the exception of bay vs

coast, and all comparisons amongst reefs. Most estuarine sites

appear in the lower right of the plot and are typified by high

abundance of fishing line, metal objects, glass bottles and glass

fragments. While there is considerable variation among sites

within bays, those in the upper plot are typified by high abundance

of plastic bags and plastic fragments. Sites within the coastal

category are highly variable, being spread amongst all other

habitat types, but many of these were also discriminated by

Figure 1. Map of the NSW coastline showing the regional coverage of the surveys. The table indicates the number of sites in each broad
habitat category for each region: E = estuary; B = bay; C = coastal; N = nearshore reef; M = mid-shelf reef; O = offshore reef.
doi:10.1371/journal.pone.0094593.g001
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comparatively high abundances of plastic bags and other plastic

items (Fig. 3).

Discussion

This study provides the first overview of differences in the

abundance and type of debris in 6 prominent coastal and marine

habitat types along 1000 km of the coast of eastern Australia.

Estuarine and coastal systems are widely recognised as being

amongst the most heavily threatened natural ecosystems world-

wide [40,41]. This study confirms the significantly higher

prevalence of anthropogenic debris in estuaries and bays

compared to other coastal and marine habitats in NSW. These

findings provide unambiguous guidelines for prioritisation of

mitigation, monitoring and management efforts at a statewide

scale. The fact that the most affected habitats have high natural,

recreational and economic values [40] suggests that there is some

urgency in developing and implementing strategies to reduce

potential impacts. While this may be difficult to implement over

the large spatial scales of the study, location-specific strategies, in

response to some obvious threats revealed in this study (see below),

should be more readily effected. A critical step in targeted

management is the identification of primary sources of debris. In

this case, and reflecting the findings of many other studies

worldwide, fishing-related debris was the most prevalent in all

subtidal habitats (38% of total items), with fishing line being the

most abundant item (27% of total items). However, it is highly

likely that the number of fishing-related items is under-represented

in the data, as only items directly related to fishing activities were

allocated to that category. For example, bricks found at reef sites (a

total of 40 across all sites) are most likely to be remnants of fishing

traps (bricks are used to weight the corners of traps - pers. obs.). In

addition, at some popular fishing sites, it is highly likely that other

items (such as clothing, food and drink items) result from fishing-

related activities [42,43].

Putting the results into a global perspective, while debris loads

across the study were highly variable at the scale of sites (mean

range from 0–77.5 transect21) and transects (0–218 items

transect21), densities at the most-affected sites were amongst the

highest recorded from shallow-water habitats worldwide (equiva-

lent to 620 items 1000 m22 in the Nambucca River Estuary and

528 items 1000 m22 at the Pipeline) [reviewed in [9]). Values

exceeding this have only previously been published for heavily

populated areas such as Indonesia [44] and the West Indies [45].

However, this needs to be balanced by two specific observations:

,45% of the transects deployed during the study contained no

debris (all of these transects occurred .150 m from shore with

most being in the mid-shelf and offshore category); with the

exception of the 2 bays that were evaluated, only a small

proportion of debris items were of domestic (household) origin. So,

despite some isolated, very high loads, our results suggest that

there is generally good waste management in NSW and that much

of the debris found in coastal habitats is deposited in situ (e.g.

through boating and fishing activities).

Although not analysed specifically in this study, it is clear that

ease of access, and consequent in situ deposition, strongly

contributed to comparative debris loads. The items primarily

differentiating estuaries and bays from other habitats were fishing

line (almost always entangled around features of the benthos or

benthic taxa), metal objects, glass bottles, and glass fragments.

While the 2 latter items may be moved by strong tidal currents or

scour following extreme weather events, these discriminatory items

are generally less mobile than many of the other debris items

recorded during the study, and are likely to have been deposited

close to where they were found. Indeed, the sites that had the

highest debris loads (Nambucca River Estuary and the Pipeline,

Port Stephens) were at popular fishing and recreation locations,

with access facilitated by a boardwalk and a breakwater,

respectively. The sites with the highest debris load in the

nearshore, mid-shelf and offshore categories were associated with

moorings (Cook Island North - mean = 6.5 transect21; ex-HMAS

Adelaide - mean = 6.0 transect21; Cook Island South - mean

= 4.8 transect21) which provide a clear focus for boating and

recreational activities that generate marine debris [42,43].

Figure 2. Mean (±SE) debris loads (filled bars) and diversity
(unfilled bars) of debris items per transect averaged over all
sites within each habitat category.
doi:10.1371/journal.pone.0094593.g002

Table 1. Summary of pairwise contrasts (PERMANOVA)
amongst habitats for the multivariate tests of differences in
debris structure, and for the univariate tests for abundance
(Nd) and diversity (Sd). P(perm) values are shown with
significant terms in bold font. E = estuary; B = bay; C = coastal;
N = nearshore reef; M = mid-shelf reef; O = offshore reef.

Comparison Debris structure Nd Sd

E vs B 0.001 0.094 0.061

E vs C ,0.001 ,0.001 0.001

E vs N ,0.001 ,0.001 ,0.001

E vs M ,0.001 ,0.001 ,0.001

E vs O ,0.001 ,0.001 ,0.001

B vs C 0.100 0.153 0.210

B vs N ,0.001 ,0.001 ,0.001

B vs M ,0.001 ,0.001 ,0.001

B vs O ,0.001 ,0.001 ,0.001

C vs N 0.001 0.002 ,0.001

C vs M ,0.001 ,0.001 ,0.001

C vs O ,0.001 ,0.001 ,0.001

N vs M 0.327 0.179 0.610

N vs O 0.354 0.535 0.981

M vs O 0.420 0.425 0.470

doi:10.1371/journal.pone.0094593.t001
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That the highest debris loads occurred in regional areas of NSW

rather than adjacent to major population centres, such as Sydney,

requires some interpretation. While surveys were conducted in the

Sydney region, they were mainly carried out from boats and

targeted reefs within Sydney Harbour rather than accessible shore

sites. Although 3 shore sites were surveyed, these were not in areas

with the highest usage rates. Indeed, access to the latter is often

very difficult due to the risk presented by boat traffic and conflict

with fishers. It is, therefore, highly likely that there are many sites

with much greater debris loads than recorded here, and that these

need to be assessed in any future programs.

By far the majority of studies of benthic debris have been one-

off in nature and very few have assessed accumulation rates (but

see [15,46]). However, accumulation studies are a natural and

important extension of assessments of standing stock [22] and

provide important information to fine-tune management strategies

through, for example, targeted clean up [46]. As has been well

documented for intertidal habitats [47,48] it is highly likely that

accumulation rates are non-linear and dependent on a range of

factors. For example, seasonal effects of storms that flush

catchments, and influx of visitors engaged in boating and fishing

activities, are likely to strongly impact accumulation rates. This

initial spatial overview of debris loads provides an important

baseline against which to measure accumulation rates, and longer-

term monitoring to quantify this has already commenced at the

heavily contaminated identified in this program (e.g. the

Nambucca River Estuary; The Pipeline, Port Stephens; Cook

Island).

From the perspective of management at a local scale,

observations from a number of sites are worth mentioning in

greater detail. Firstly, each of the 3 most contaminated reef sites

are putatively protected from fishing activities by fishing closures (2

sites at Cook Island, a gazetted Aquatic Reserve in northern NSW;

the artificial reef, ex-HMAS Adelaide on the central NSW coast

which is also a designated Reserve with a fishing closure).

Collectively, transects at these sites contained 58 debris items, of

which 40 were directly related to fishing (mostly fishing line).

Clearly, the presence of these items identifies lack of compliance as

an issue contributing directly to debris loads. An important

consideration in inferring non-compliance is that items did not

pre-date protection. In the case of the ex-HMAS Adelaide,

protection occurred at the time of its sinking. Protective legislation

for Cook Island was gazetted in 1998 and while 2 pieces of fishing

line were observed with a substantial coating of encrusting

coralline algae, we are confident that by far the majority of items

were deposited since 1998.

Unfortunately, non-compliance with fishing closures appears to

be an ubiquitous issue both within this study and elsewhere: most

of the sites surveyed within sanctuary zones in the Solitary Islands

Marine Park contained fishing-related debris; fishing-related

debris in the Florida Keys has been found to be as prevalent in

areas closed to fishing as in unrestricted areas [24]. At Cook

Island, the majority of fishing line was found entangling colonies of

scleractinian coral, which is a dominant feature of benthic

communities at many sites in northern NSW [27,49,50]. Given

the demonstrated association between monofilament entangle-

ment and the morbidity and mortality of coral and other sessile

invertebrates [23,24,27,51], this observation warrants further

investigation by the managing authority.

Figure 3. Non-metric multidimensional scaling ordination of debris items recorded from 120 sites. Data points represent averages of
transects deployed at each site. Vectors are displayed for debris items that were consistently ranked highly in SIMPER analyses of differences among
habitats. The vector line indicates the plane of increasing abundance, and the length relative to the circle indicates the strength of the correlation
(Spearman).
doi:10.1371/journal.pone.0094593.g003
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One other site to single out is the Pipeline, Port Stephens. This

site is within the Port Stephens Great-Lakes Marine Park

(PSGLMP), but in a zone where fishing is permitted. The close

proximity to a car park and breakwater make it a very popular site

for fishing: consequently, fishing-related items comprised 228 of

the 329 items recorded from the 2 sites surveyed at this location.

This site was recently identified as having very high conservation

value [52] as it contains one of only a few populations of a

geographically restricted, habitat-forming soft coral (Dendronephthya

australis). These soft corals provide habitat for a high diversity of

biota including juveniles of commercially important fish and a

wide range of invertebrate species, including species at the

southern limits of their distribution range [52,53]. Consequently,

this habitat is important for regional biodiversity conservation

[54], and may become more so in the near future as a refuge for

taxa driven poleward by a changing climate [55]. Observations

made during surveys at this site unambiguously demonstrate direct

impacts of fishing line (Fig. 4) and strongly support the need for

immediate improvement in protective measures.

This broad assessment of marine debris loads across NSW has

provided data that will help to set priorities for resourcing clean-up

and other mitigation strategies, by habitat type, across the state,

whilst identifying pressing management issues that need to be

addressed at local scales. The data collected to date also provide an

important baseline against which accumulation rates, and the

success of mitigation measures, can be objectively assessed.

Importantly, the study also highlights the very valuable role of

citizen scientists in the provision of data to promote sustainable

management of coastal habitats and resources: consequently, we

strongly advocate the continued engagement of researchers and

managers with suitably motivated volunteers. Debris surveys

represent an ideal choice of topic given, for example, the restricted

scope for issues such as mistaken identity. However, provided that

adequate training is given, appropriate quality assurance/quality

control procedures are rigorously enforced, and broader programs

are designed appropriately, there is ample evidence that volunteers

can provide highly relevant data that facilitate high-end scientific

outcomes [56].
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