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The molecular mechanism of osteosarcoma (OS) based on protein-coding genes has largely been studied in the past decades.
However, much remains to be explored when it comes to the role that long noncoding RNAs (lncRNAs) play in the
pathogenesis and progression of OS and how they are associated with OS metastasis. In the present study, we collected
RNA-seq-based gene expression data of 82 OS samples from the Therapeutically Applicable Research To Generate Effective
Treatments (TARGET) database, along with their clinical information. We found that 50 lncRNAs were significantly
associated with patients’ survival by univariable Cox regression model. Moreover, we built multivariable Cox regression
model based on 7 lncRNAs and successfully stratified patients into two risk groups, which exhibited significantly different
prognostic outcomes. Significantly enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways detected by differential expression analysis on DEGs between the two groups with different prognostic
outcomes were both immune-related, indicating that such GO terms and pathways are critical for OS survival. Among the
seven lncRNA signatures, AC011442.1 was predicted to act as an oncogenic driver in OS by correlation analysis of copy
number alteration (CNA) and lncRNA expression, and it was predicted to regulate AMPK and hedgehog signaling
pathways. In summary, the identification of novel prognostic lncRNAs in OS could not only improved our understanding
of the lncRNAs involved in OS tumorigenesis or progression but also assist the diagnosis and development of molecularly
targeted therapies for OS, which in turn benefit patients’ survival.

1. Introduction

Osteosarcoma (OS) is among the most prevalent malignan-
cies in children and adolescents [1]. According to previous
study, it takes up approximately 20% of all bone cancers,
which also makes it one of the most common primary skele-
tal tumors [2, 3]. For example, according to the American
Cancer Society, the estimated number of newly diagnosed
cases of skeletal malignancies in 2017 would reach 3,260 in
the United States, among them there would be roughly over
600 OS patients [4]. Unfortunately, over one-fifth of osteo-
sarcoma patients exhibit lung metastasis at the time of diag-
nosis, which often results in unsatisfactory prognosis [5]. No
significant improvement in 10-year overall survival of OS

patients has been observed since the 1990s [6]. The magical
effect of traditional tumor resection surgery and chemother-
apy seems to encounter a bottleneck as they had once
improved overall 10-year survival of OS from 30% to about
50% in the 1970s, and with the advances in molecular biology
and related techniques, molecularly targeted therapies have
since emerged as a new option in the management strategy
of various cancers, including OS.

It is crucial for the development of molecularly targeted
therapies to identify metastatic-related biomarkers and
underlying mechanism in OS, in order to deliver a more
accurate prognosis prediction and therapeutic decisions [7].
Long noncoding RNAs (lncRNAs) attract researchers’ keen
attention worldwide as they play a critical role through
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Figure 1: The study design and the expression profiles of the 50 prognostic lncRNAs in OS. (a) The workflow of the present study. (b) The
lncRNAs were clustered by hierarchical clustering algorithm, and the samples were ordered by survival status and survival time.
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epigenetic, transcriptional, and posttranscriptional mecha-
nisms in diverse biological processes, such as tumor initi-
ation, growth, and metastasis [8]. Though lncRNAs are
not to be translated into proteins, they can function as
key regulators through interacting with miRNAs, mRNAs,
and proteins [8]. Many lncRNAs are identified to exert
oncogenic or tumor suppressor functions in OS, such as
ZEB1-AS1 [9], SPRY4-IT1 [10], BCAR4 [11], and MFI2
[12]. For example, previous studies have reported that
lncRNA DANCR could function as a competitive endoge-
nous RNA in OS, thereby promoting ROCK1-mediated
proliferation and metastasis [13]. CEBPA-AS1, an antisense
RNA of CEBPA, has the capability of inhibiting proliferation
and migration and promoting apoptosis in OS via Notch
signaling [14]. These studies demonstrate that lncRNAs
can regulate the progression, metastasis, and prognosis of
OS [15].

In this study, RNA-seq data and clinical information of
patients with osteosarcoma from the TARGET database
were processed with univariable Cox regression and ran-
dom forest algorithm, and we selected seven long noncod-
ing RNAs (lncRNAs); all of them have the potential to
affect the survival of osteosarcoma patients and to construct
a prognosis risk model. Based on the stratification offered
by our model, the corresponding biological differences
among osteosarcoma patients and how these characteristics
would result in varied prognostic outcomes were further
explored and explained.

2. Materials and Methods

2.1. Data Resources. We downloaded RNA-seq-based gene
expression data (TPM, transcript per million), somatic
copy number alteration (SCNA) data, and clinical data of
82 corresponding osteosarcoma patients from the TAR-
GET (Therapeutically Applicable Research to Generate
Effective Treatments) database [16]. The segmented SCNA
was annotated by Ensembl gene annotation v37.75 [17].
The SCNA status for each was called as gain or loss only
if the log2 ratio (tumor/normal copy numbers) was more
than 0.6 or less than -0.6. To meet the requirement for
data analysis, we only collected 82 osteosarcoma samples
with matched SCNA, gene expression, and clinical data.

2.2. Selection of lncRNAs in OS for Prognostic Risk Model
Construction. First, based on 9 biotypes for lncRNAs (which
were 3prime_overlapping_ncRNA, antisense, lincRNA,
macro_lncRNA, non_coding, sense_intronic, sense_overlap-
ping, bidirectional_promoter_lncRNA, and retained intron)
in Ensembl, we obtained a total of 3,159 lncRNAs that exhib-
ited TPM ðtranscript permillionÞ > 0:1 in more than half of
the samples. The expression status of lncRNAs were firstly
classified into high and low expression, respectively, based
on the median of the expression levels. Combined with the
clinical information, univariable Cox regression analysis
was then performed with package Survival v3.1-11 in R
v3.6.3 to pick up lncRNAs significantly related to the survival
of the patients (log-rank test, P < 0:05). Utilizing the random
forest algorithm in R package randomForestSRC with default
options, we evaluated ranked those lncRNAs and built a mul-
tivariable Cox model based on the top 20 prognostic
lncRNAs. Subsequently, we only retained the prognostically
insignificant lncRNAs in the initial multivariable Cox model
(P > 0:05) and built the optimal multivariable Cox model
based on these prognostic lncRNAs.

2.3. Model Construction for Evaluating Osteosarcoma
Prognostic Risk. Taking into consideration the expression of
qualified lncRNAs in each patient and the patient’s survival
status, we applied multivariable Cox regression with survival
package in R v3.6.3 to build our osteosarcoma prognosis risk
model, and lncRNAs with significant contribution to the
model were selected. These lncRNAs were used to construct
a risk-scoring method, which assigned a score that reflected
the risk of death to each osteosarcoma patient. The patients
were then divided by the median score into the high-risk
and low-risk groups, accordingly. We visualized the survival
curves of the two groups of patients by the Kaplan-Meier
method and assessed the differences between the two groups
by log-rank test.

2.4. Functional Enrichment Analysis of the Dysregulated
Genes in the Two Risk Groups.As osteosarcoma patients were
categorized, their gene expression profiles fell into two
groups, accordingly. Utilizing the screening criteria of ∣log2
ðfold changeÞ ∣ >1 and P value < 0.05, genes with significant
differential expression between the two groups were selected.
Subsequently, Gene Ontology (GO) [18] and Kyoto

Table 1: The summary for seven prognostic lncRNAs in univariable and multivariable Cox regression model.

Features
Univariable Cox regression Multivariable Cox regression

Coefficient Hazard ratio P value Coefficient Hazard ratio P value

USP30-AS1 -1.25 0.29 1:95E − 06 -2.10 0.122 4:22E − 03

AC113383.1 -0.09 0.91 8:34E − 03 -0.11 0.89 4:47E − 03

LINC01549 0.02 1.02 1:38E − 04 0.02 1.02 5:08E − 03

AC093627.3 0.12 1.13 2:66E − 04 0.16 1.18 1:35E − 05

DDN-AS1 0.35 1.42 1:95E − 06 0.22 1.25 4:22E − 03

GNAS-AS1 0.46 1.58 7:49E − 03 0.68 1.98 7:02E − 04

AC011442.1 0.39 1.48 1:54E − 02 0.72 2.06 3:22E − 03
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Figure 2: Continued.
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Encyclopedia of Genes and Genomes (KEGG) pathway
[19] enrichment analysis were performed on identified dif-
ferentially expressed genes with the package clusterProfiler
v3.12.0 in R v3.6.3.

2.5. Estimation of Immune Cell Infiltrating Levels. The infil-
trating levels of immune cells were estimated based on the
gene expression profiles and marker genes of immune cells.
Single-sample gene set enrichment analysis (ssGSEA) was
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Figure 2: The performance of the seven lncRNAs in OS survival prediction. (a) Risk scores for each patient in different groups, where the blue
points represent low-risk patients, and red points represent high-risk patients at the top panel. In the middle panel, the distribution of survival
time and survival status of two groups of patients, of which the y-axis stands for survival time, blue points represent living patients, and red
dots represent the dead patients. The expression patterns of the selected lncRNAs in each OS patient were displayed at the bottom. The
Kaplan-Meier curves for survival of patients stratified by the seven lncRNAs were displayed in (b)–(h), respectively. (i) The Kaplan-Meier
curve for the samples stratified by the risk score of multivariable Cox regression model.
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employed in this study. This analysis was implemented in R
GSVA v1.32.0 package [20].

3. Results

3.1. Identification of Prognostic lncRNAs in OS. As shown
in Figure 1(a), the present study conducted a series of data
analysis to build a predictive model for OS risk. The gene
expression and clinical information of 84 osteosarcoma
patients were obtained using the TARGET database,
among which, two samples were excluded due to a lack
of overall survival time. Based on the gene annotation
from the Ensembl database and criteria regarding TPM,
we selected 3,159 long noncoding RNA for later establish-
ment of the prognostic risk model (see Materials and
Methods). Among these 3,159 lncRNAs, we identified 50
lncRNAs significantly associated with patients’ overall sur-
vival by univariable Cox regression model (log-rank test, P
values < 0.05, Supplementary Table S1). As illustrated in
Figure 1(b), the expression of the prognostic lncRNAs
were significantly differentially expressed between the
alive and deceased OS patients. These results indicated
that the prognostic lncRNAs identified by the univariable
Cox regression model may be essential for OS
tumorigenesis and/or progression.

3.2. Construction of lncRNA-Based Multivariable Cox Model
for Risk Prediction in OS Patients. To build a lncRNA-based
Cox regression model for OS risk prediction, we first ranked
the prognostic lncRNAs by random forest algorithm, and the
top 20 lncRNAs were considered candidates for the construc-
tion of an OS prognostic risk model. We then built our model
with multivariable Cox regression on the samples with clinic
information and expression data of these lncRNAs and
obtained seven lncRNAs that significantly contributed to
the model (Table 1). Based on the multivariable Cox model,
the OS patients were divided into two risk groups using the
median risk score. As shown in Figure 2(a), the proportion
of deceased samples in the high-risk group (high-risk) was
much greater than that in the low-risk group (low-risk)
(25/41 vs. 4/41, test of proportion, P < 0:05). Moreover, com-
pared with the low-risk group, patients in the high-risk group
exhibited significantly lower overall survival time (33.6 vs.
68.7, log-rank test, P = 1:54E − 5). Furthermore, patients
were then divided into the high-/low-expression groups
based on the expression profiles of these seven lncRNAs,
respectively. The Kaplan-Meier curves showed a significant
association of the seven lncRNAs with overall survival of
patients with OS (Figures 2(b)–2(h)). Consistently, the risk

score was observed to have a higher statistical significance
than any of the seven prognostic lncRNAs (Figure 2(i)).

In addition, to assess the independence of this scoring in
predicting patients’ prognosis, we performed both univari-
able and multivariable Cox regression for samples using the
precalculated risk scores and their clinical information such
as gender, race, and age. We found that this risk score was
an independent indicator for OS patients’ survival
(Table 2), further suggesting that the risk score by the
seven-lncRNA-based Cox model had the potential to predict
the risk of OS patients.

3.3. Functional Characterization of Dysregulated Genes in
High-Risk and Low-Risk Groups. To investigate dysregulated
genes in the two risk groups, we compared the gene expres-
sions of these two risk groups. With thresholds at |log2 (fold
change)| >1 and P value < 0.05, we identified 864 significant
differentially expressed genes (DEGs), and when compared
with the low-risk group, the expression of 728 gene was sig-
nificantly upregulated in the high-risk group, and the expres-
sion of another 136 genes was downregulated (Figure 3(a)).

The GO and KEGG pathway enrichment analyses proved
that the immune microenvironment of osteosarcoma
patients played a crucial role in OS progression. It can be
learned that the top 10 GO terms exhibited close association
with immunity, including inflammatory responsive response
T cell activation, humoral immune response, lymphocyte-
mediated immunity, axonemal dynein complex assembly,
positive regulation of T cell activation, and regulation of
leukocyte cell-cell adhesion (Figure 3(b)), suggesting that
the varied immune environment between the high- and
low-risk groups may result in their prognostic differences.
What is more, from the KEGG pathway enrichment anal-
ysis, we observed that a majority of the pathways, where
these differentially expressed genes were significantly
enriched, consisted of immune-related ones, such as NK
cell-mediated cytotoxicity, staphylococcus aureus infection,
Th1 and Th2 cell differentiation, antigen processing, and
presentation (Figure 3(c)). The consistence between the
GO and KEGG enrichment analyses further demonstrated
the immune-related biological process may play a key role
in OS progression.

3.4. AC011442.1 May Act as an Oncogenic Driver lncRNA in
OS. As lncRNAs upregulated or downregulated by copy
number alterations (CNA) probably acted as driver lncRNAs
in cancer, we performed correlation analysis of the expres-
sion level and the corresponding copy number status for
the seven prognostic lncRNAs in the multivariable Cox

Table 2: The comparative analysis of the risk score with other clinical factors in univariable and multivariable Cox regression models.

Features
Univariable Cox regression Multivariable Cox regression

P value HR Lower 95% CI Upper 95% CI P value HR Lower 95% CI Upper 95% CI

Risk score 6:82E − 12 19.7 8.41 46.2 7:33E − 12 19.7 8.41 46.4

Gender (female/male) 0.30 0.68 0.33 1.41 0.22 0.60 0.27 1.35

Race (white/other) 0.23 0.64 0.30 1.34 0.47 0.75 0.35 1.64

Age 0.82 1 1 1 0.72 1 1 1
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model. We observed thatAC011442.1was highly upregulated
in samples with CNA as compared with wild-type samples
(P < 0:001, Figure 4(a)). Notably, the copy numbers of the
four genes were frequently gained in OS samples
(frequency > 10%).

To further investigate the biological function of the four
lncRNAs, we conducted gene set enrichment analysis on
protein-coding genes that highly correlated with identified
lncRNAs. We found that AC011442.1 was significantly and
positively correlated with genes involved in the AMPK
signaling pathway and hedgehog signaling pathway, respec-
tively (Figures 4(b) and 4(c), P value < 0.05). These results
indicated that AC011442.1 may enhance the activities of the
AMPK signaling pathway and hedgehog signaling pathway.

3.5. The Immune Markers Associated with OS Prognosis. To
further explore the immune cells and related markers associ-
ated with OS prognosis, we first examined the expression pat-
terns of the immune markers. Specifically, the immune
inhibitory genes such as BTN3A1, CD48, HAVCR2, LAG3,
and TIGIT were significantly upregulated in the low-risk
group (Figure 5(a), P < 0:01), suggesting that the anticancer

activity of the immune cells might be suppressed by these
inhibitory genes. Furthermore, we also observed that the rel-
ative infiltrating levels of CD8 T cells and activated natural
killer cells were attenuated in the high-risk group
(Figure 5(b), P < 0:01), suggesting that the worse survival in
the high-risk group of OS may be caused by the lack of
CD8 and NK cells. Consistently, the marker genes of CD8
and NK cells, CD8A, CD8B, GZMA, and NCR3 were also
downregulated in the high-risk group. These findings indi-
cated that the immune cells and related markers were highly
associated with OS prognosis.

4. Discussion

The molecular mechanism of OS based on protein-coding
genes has largely been studied in the past decades. Despite
extensive researches about the molecular mechanism of OS,
there is still a lack of understanding of the lncRNAs’ role in
OS tumorigenesis, progression, and metastasis. Meanwhile,
the identification of the prognostic lncRNAs involved in OS
can facilitate the development of new diagnostic or therapeu-
tic biomarkers.
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Figure 3: The biological differences between the high-risk and low-risk groups stratified by the multivariable Cox regression model. (a) The
overview of the differentially expressed genes between the two risk groups. The red and blue points represent the upregulated and
downregulated genes in the high-risk group compared with low-risk group. The differentially expressed genes were significantly enriched
in GO terms (b) and KEGG pathways (c).
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Figure 4: The oncogenic driver lncRNA AC011442.1 and its functionality. (a) The expression patterns of AC011442.1 in OS patients with
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In the present study, we collected 82 OS samples with
RNA-seq-based gene expression data and their clinical infor-
mation from the TARGET database. We found that 50
lncRNAs were significantly associated with patients’ survival
by a univariable Cox regression model (P values < 0.05).
Through the selection of prognostic lncRNAs, we identified
7 lncRNAs with significant performance in OS survival pre-
diction, built multivariable Cox regression model under the
7 lncRNAs, and successfully stratified patients into different
risk groups with distinctive survival outcomes. Notably,
DDN-AS1, one of the seven lncRNAs used by the multivari-
able Cox regression model, has been reported to act as
competing endogenous RNA (ceRNA) that promoted the
expression of TCF3 through competitively binding miR-15a
and miR-16 [21], suggesting that DDN-AS1 may promote
OS progression in a similar manner. We further analyzed
gene expression profiles of patients in different risk groups
and obtained a list of DEGs. Functional enrichment analysis
revealed that significantly enriched GO terms and pathways
were associated with many aspects of immunity, indicating
that immune-related functions are critical for OS survival,
which is consistent with previous studies [22].

As dysregulated lncRNAs caused by copy number alter-
ations (CNA) may act as driver lncRNAs in cancer, correla-
tion analysis of the expression level and the corresponding
copy number status for the seven prognostic lncRNAs was
performed to identify the driver lncRNAs. Notably,
AC011442.1 was also predicted as one of the four-driver
lncRNA (P < 0:001). Interestingly, AC011442.1 was pre-
dicted to participate in cancer-related pathways [23–25],
including the AMPK signaling pathway and hedgehog
signaling pathway. Hedgehog signaling pathways have been
frequently observed to drive tumorigenesis and metastasis
of OS [26]. These results further demonstrated that the driver
lncRNAs played a key role in OS, which could be used for
further research of molecular mechanism.

As the exploration into varied molecular patterns
between the two risk groups revealed that the immune-
related pathways were enriched by DEGs in OS, we then
examined whether the abundance of immune cells and
markers were associated with OS prognosis. Specifically, the
immune inhibitors such as BTN3A1, CD48, HAVCR2,

LAG3, and TIGIT; CD8 T and activated NK cells; and related
markers were significantly downregulated in the high-risk
group. Particularly, CD48, HAVCR2, LAG3, and TIGIT were
identified as novel immunotherapeutic targets of several
cancers [27–30], suggesting that the low-risk OS patients
might benefit from their candidate inhibitors.

In addition, the limitations of this study should be
pointed out. Firstly, the multivariable Cox regression model
needs an independent gene expression data for the validation
of its robustness. Secondly, though a list of dysregulated
lncRNAs associated with OS survival was identified, but
future experimental verification is still needed. Moreover,
detailed molecular functions of identified dysregulated
lncRNAs had not been thoroughly discussed in this study.
We hope that, when validation datasets become available in
the near future, we can further confirm our findings and per-
form experimental validation. In summary, the identification
of novel prognostic lncRNAs in OS would not only improve
our understanding of the lncRNAs involved in OS tumori-
genesis or progression but also assist the prediction of OS
survival and development of molecularly targeted therapies
to some extent, which in turn benefit patients’ survival.

Data Availability

Previously reported gene expression and clinical data were
used to support this study and are available at TARGET
(Therapeutically Applicable Research To Generate Effective
Treatments) database (https://ocg.cancer.gov/programs/
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cited at relevant places within the text as references [14].
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