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Sensibly used, mathematical models are no more, and no less, than tools for thinking about things
in a precise way. (Anderson and May 1991) [1]

This chapter is divided into five sections. Section 15.1 discusses the rationale for
using mathematical models. Section 15.2 considers the specific areas where
models may be useful in studying Crimean-Congo hemorrhagic fever (CCHF).
Section 15.3 reviews work on modeling the dynamics of tick-borne diseases and
considers the relevance of this work for CCHF. Section 15.4 considers the prob-
lem of modeling the nosocomial transmission of CCHF. Section 15.5, lastly,
suggests future directions for CCHF modeling work.

15.1. WHY USE MATHEMATICAL MODELS?

Mathematical models of infectious diseases represent simplified representations
of known processes and their interactions. Typically these processes are trans-
mission, disease progression, birth, death and recovery, acquisition and loss of
immunity, and immigration or emigration. Other processes appropriate for cer-
tain applications include boosting of immunity, vector dynamics, vaccination,
and other control measures. By using these models we hope to capture impor-
tant aspects of the behavior of the whole system and gain a full understanding
of the role of the individual processes and their interactions in determining this
behavior. The properties of these models and their predicted behavior under dif-
ferent scenarios are usually investigated either by solving the equations (in the
case of deterministic models, where chance is assumed to play no part, and
which can often be considered to model the average behavior of the system), or
by simulating many epidemics from stochastic models (an approach known as
Monte Carlo simulation because the role of chance in determining the course of
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the epidemic is explicitly accounted for). In both cases, the analysis usually
makes use of a computer (though the original work with both types of models
was done without one). This in silico modeling approach is directly comparable
with the use of in vitro or in vivo models in the laboratory; all three approaches
work by choosing model systems that are, it is hoped, in some important sense
analogous to the system we really want to find out about. We may hope that
the model is sufficiently similar to the real system in the ways that matter to
give the same answers to the questions we ask, but we can seldom be sure.
A cautious and critical approach to interpreting results from all models is there-
fore needed. Mathematical models are no exception to this rule. Nonetheless, as
with other models, their use has the potential to lead to important advances in
our understanding.

At the simplest level, mathematical models are just translations of reasoning
from natural language into a precise mathematical formulation. The translation
process has the virtue of forcing (or at least encouraging) us to think clearly, and
tends to makes hidden assumptions explicit. Flaws in the reasoning of simple ver-
bal arguments often become apparent once the models have been constructed.
Models also allow the intuition that the verbal arguments rest on to be thor-
oughly tested. In this sense, models can be thought as formal encapsulations of
hypotheses. Sometimes the resulting models support the verbal arguments and
we may be encouraged that our intuition was correct, but frequently models show
that our loose verbal reasoning is wrong. These models produce counterintuitive
results. However, even when model results confirm our intuition, by allowing a
fuller and more rigorous analysis of the consequences of the assumptions that
make up the model they can broaden our understanding of the system. Often
models will make new predictions that can be directly tested. If they pass the test,
our confidence in the truth of the hypothesized mechanism the model represents
will be strengthened. There is also a danger that new hidden assumptions are
made in constructing the model. Careful modeling work should aim to highlight
these assumptions and ideally to explore the sensitivity of the results to structural
uncertainties in the model as well as to uncertainty in parameter values.

Models are not, as has been suggested, simply substitutes for experiments
[13]. Instead, a primary use of models is to broaden our understanding, synthe-
size information, and to show how diverse outcomes can be understood as the
result of similar underlying processes. In this way mathematical models are fre-
quently used to help interpret experimental findings. Models themselves often
suggest certain experiments or observations, and such experiments may in turn
lead to revisions to the models. Nonetheless, it is true that in all the sciences
where experimental manipulation is either difficult or impossible – astrophysics,
economics, climatology, geology, ecology (of which infectious disease epidemiology
can be considered to be one branch) – mathematical models play a prominent
and sometimes central role.

The modern use of models in infectious disease epidemiology dates to the pio-
neering work of Ronald Ross (though the mathematical study of epidemics can
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in fact be traced back to work on smallpox by the great French mathematician
Daniel Bernoulli [2]). Ross’ work on the biomathematics of malaria originally
led him to the conclusion that control of the vector would be the most efficient
means of fighting malaria [18]. By the 1970s the use of mathematical models to
study infectious diseases was increasing faster than exponentially, and substan-
tial growth continues today. The range of analytical tools available to modelers
has also increased considerably. In particular, the ready availability of ever-
faster computers have made new types of models possible, and in the last few
years new developments in statistics coupled with increased computational
power have enabled more detailed and more accurate model-based analysis of
epidemiological data.

Such approaches have only been applied to hemorrhagic fevers very recently
[4, 9], however, and these methods have not so far been applied to CCHF. The
aim of this chapter is to review the potential value of mathematical models for
studying CCHF, describe the basic theory and key predictions from simple mod-
els, and to highlight some of the most important analytical techniques likely to
be of value in studying CCHF. Here, we are exclusively concerned with under-
standing the system at the population level. Mathematical models also have
a central role to play in understanding within-host progression of infectious
diseases [15], but this is beyond the scope of this chapter.

15.2. THE USE OF MODELING APPROACHES FOR CCHF

There are at least four reasons why we might want to use mathematical models
to study CCHF. First and foremost, they can help us to gain a qualitative under-
standing of the dynamics of the disease and, in this way, help us to improve our
intuition. This is likely to be particularly important for studying nosocomial
outbreaks where stochastic (chance) effects will be important. As casino owners
know well, most people have rather poor intuition about chance, and the impor-
tance of such effects in epidemics in small populations comes as a surprise to
many. Second, by highlighting key uncertainties and gaps in our knowledge
models may suggest observational or experimental studies that would improve
our understanding of key aspects of the whole system. This is likely to be par-
ticular important in the area of understanding the vector dynamics where major
uncertainties exist for CCHF. Since models can also be considered to be
hypotheses about the systems, by confronting models with data we can effec-
tively choose between competing hypotheses. Third, models can help in the
selection and evaluation of control policies. This can be done by employing
models as statistical tools used to estimate the effect of interventions that have
been made (and, equally importantly, to quantify the uncertainty in these esti-
mates). Having quantified the effect of individual interventions, we can then go
on to use models to ask “what-if” questions, using models predictively to deter-
mine the expected effect of hypothetical combinations of interventions. More
generally, by enabling us to identify the most critical parameters affecting the
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behavior of the system, models can help us in setting priorities and identifying
the most cost-effective control policies. Indeed, the use of dynamic models is
essential for accurate economic analyses of control measures for infectious dis-
eases [3]. Fourth, there is the potential to use models for forecasting the future
of epidemics. Though popularly imagined as one of the main uses of models
(perhaps by analogy to the models used to derive weather forecasts) this is one
of the least developed areas in the infectious disease modeling literature,
although there is increasing interest in this application.

15.3. MATHEMATICAL MODELS OF TICK-BORNE 
DISEASE TRANSMISSION

In this section we describe a basic framework for modeling tick-borne infections.
This is adapted from the seminal work on the transmission dynamics of tick-
borne infections by Medley et al. [12]. We show how this approach enables us to
assess the magnitude of interventions needed to control CCHF in different
regions and how interventions aimed at controlling the tick population could
increase as well as decrease the risk to workers exposed to potentially infected
animals. We also describe how this basic framework can be extended to address
a wider class of questions.

The model presented by Medley et al. related specifically to the tick-borne
transmission of Theileria parva in eastern Africa. The modeling framework
described was, however, quite general, and with only minor modifications we
can apply it to the study of CCHF. We begin by showing how seroprevalence
data can be used to estimate the rate at which animals become infected with
the CCHF virus. We assume that the rate at which an animal of age a is
infected with the virus is b(a) (mathematically this means that the chance an
uninfected animal of age a is infected in a short time interval dt is approxi-
mately b(a)dt, the approximation becoming exact in the limit as dt approaches
zero. The (a) following the b indicates that this rate is a function of age, and
not necessarily constant). From this we can immediately write down a differ-
ential equation describing how the number of susceptible animals (those
which have never been infected) changes with the age of the animals:

(1)
( )

( ) ( )a
X a

a X ad
d

= -b

Here we use X(a) to represent the proportion of animals of age a who have not
been infected with the virus and who are therefore seronegative. dX(a)/da is the
rate at which X(a) changes with age, so the equation specifies the slope of the
graph plotting numbers seronegative (X(a)) against age. To obtain the model
predictions for the actual relationship between X(a) and a we solve Equation (1)
by integration. This gives

(2) ( ) ( ) .X a a aexp di

a

0

i

= - b#e o
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Two possible functional forms for b(a) are b(a) = b, i.e. the infection rate is constant
with age; and b(a) = ba + c, i.e. the infection rate starts from some baseline c and
increases linearly with age. Substituting these into Equation (2) and solving gives
X(ai) = exp(−bai) and X(ai) = exp(−cai − b2 ai / 2), respectively. Equivalently these
models predict that the numbers seropositive by a given age, which we call S(a), are
given by S(a) = 1− exp(−ba) and S(a) = 1− exp(−ca −ba2/2), respectively. Many
other functional forms for b(a) are possible (e.g. the infection rate might saturate
with increasing age), but these two are the simplest and have found to be adequate
for explaining many age-seroprevalence profiles. Using these expressions for S(a)
we can estimate the infection rate by fitting the curves to age-seroprevalence pro-
files. Such profiles could be obtained by a longitudinal study, repeatedly sampling
from the same animals over time, or – providing it was reasonable to assume
the system was in equilibrium – by using data from a cross-sectional, age-stratified
survey of animals.

Figure 15-1 below illustrates how the seroprevalence would be expected to
change with age for both functional forms of b(a). It also shows simulated data
from a hypothetical cross-sectional study. In practice b(a) would be estimated
from such data by fitting curves for S(a) corresponding to different functional
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Fig. 15-1. Seroprevalence with age from a hypothetical cross-sectional study with 20 animals in each
age group (0, 10, 20, . . ., 300 days). Solid line shows expected seroprevalence assuming S(age) =
1 − exp(−b × age) where b = 0.02. Dashed line shows expected seroprevalence when S(age) = 1 − exp
(−c × age − b × age2 / 2), with b = 0.0002 and c = 0.004. Dots illustrate how typical data from such
a study might look when seroprevalence increases with age according to the first functional form
(solid line) and is generated from this model assuming binomially distributed errors.



forms of b(a) to the data. This can be done using standard maximum likelihood
methods assuming binomially distributed data, allowing model parameters and
their confidence intervals to be estimated. The best-fitting functional form of
b(a) can be selected with a likelihood ratio test.

The rate of infection, b(a), is equal to the product of the rate of tick attach-
ment as a function of age, T(a), the probability of a tick being infected with the
virus in an endemically stable environment, r*, and the probability of transfer
of infection from an infected tick to a host it is attached to, q. Rearranging this
gives T(a) = b(a) / (qr*), so once estimates of b(a) have been obtained using the
method described above, if we also have estimates of q and r* (which should be
relatively easy to obtain), it becomes possible to derive estimates of the tick
attachment rate as a function of host age.

When we also know the latent and infectious periods of the virus in a partic-
ular animal host, we can construct a dynamic transmission model of the course
of infection in the population. Figure 15-2 gives a schematic illustration of the
structure of such a model, which forms the basis of many disease transmission
models. Each host is assumed to belong to one of four compartments: suscepti-
ble to infection (S), latently infected with the organisms (i.e. exposed) but not yet
infectious (E), infectious (I), and recovered and immune (R).

As discussed above, the rate at which hosts become infected, b(a), can be
assumed to increase linearly with the proportion of ticks that are infected, and
that proportion in turn would be expected to increase as the proportion of
infected hosts increased. A full dynamic model of the system is needed to
account for this feedback and a model incorporating both the tick and host
dynamics would therefore allow b(a) to change over time. However, when the
system is in equilibrium (i.e. when the size of the host population and the
amount of infection in that population is neither increasing nor decreasing with
time, apart from small chance fluctuations) the proportion of ticks infected will
not change over time and b(a) will also not change over time. Under these cir-
cumstances it is possible to write down a system of ordinary differential equa-
tions that describes how the proportion of hosts in each compartment changes
with the age of the hosts:
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Here q is that rate of progression from the latent to infectious compartment (1/q
gives the mean latent period) and g is the rate of recovery from infection (the mean
infectious period is then 1/g ), and m is the all-cause mortality rate (in general, this
will be a function of age, but for simplicity we take it as a constant here implying
that life expectancy is 1/m days). Essentially, these equations describe the flows
between the compartments in Fig. 15-2: hosts leave the S compartment at rate
b(a)S(a) due to infection, and at rate mS(a) due to death. Those becoming infected
first flow into the E compartment at the same rate they leave the S compartment.
They can leave the E compartment due to death (at rate mE(a)) or by progressing
from the latently infected stage to the infectious stage (at rate qE(a)). Other terms
in the above equations can be explained in a similar manner. Typical output 
for such a model when b(a) is taken as a constant b is illustrated in Fig. 15-3.
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This shows the proportion of animals that are expected to be susceptible, latently
infected, infectious, and immune under representative parameter values. It is note-
worthy that with the relatively short infectious period assumed here (10 days),
only a very small proportion of animals in most age groups are infected. This
is despite the fact that infection rate, b, is high enough in this scenario
to ensure that almost all animals surviving for a year or more will have been
infected. Thus, despite the fact that the infection is highly endemic and would
be hard to eradicate, the very low prevalence in all but the youngest age groups
implies that the risk to workers handling potentially infected animals will be
small provided that contacts are with animals more than about 150 days old. In
general, the age profile of infectiousness will depend on all the model parameters
(those used here are entirely arbitrary). Knowledge of the pattern of infection
with age in different settings, however, could inform risk assessments and control
policies aimed at minimizing exposures to infected animals.

A corollary of this observation is that control policies that aim to reduce the
total tick population and hence the infection rate b(a) (taken to be a constant,
b, here) could, under some circumstances, increase the risk to humans. Such a
perverse outcome could arise if people in high-risk occupations (veterinarians,
slaughterhouse workers, etc.) were preferentially exposed to animals above the
age at which most animals became infected in the absence of interventions.
If the infection rate, b, was initially high, even large reductions in the tick popula-
tion could have little effect on the total number of animals escaping infection,
but could dramatically affect the ages at which animals became infected (Fig.
15-4). Progressive reductions in b have the effect of substantially increasing the
likelihood that older animals are infected. Thus, for the highest value of b in this
scenario, there are almost no infected animals which are older than 200 days.
As b is reduced there becomes an appreciable chance that animals in these age
groups will be infectious, putting those who have contact with them at risk. Such
risks should be considered when evaluating the likely benefits of any control
measure that aims to reduce infection but that is unlikely to lead to overall 
control of the disease.

The above equations provide a simple but general description of the infection
process in an endemically stable environment (i.e. when disease incidence is neither
increasing nor decreasing, and the infection rate b(a) does not change with time).
If we are interested in studying the temporal evolution of a system that is chang-
ing over time (perhaps due to the implementation of a control measure) we need
to modify the approach. Most importantly, we expect the probability that a tick is
infected, r, to change with the number of animal hosts infected. A simple and bio-
logically plausible assumption is that r will increase linearly with the prevalence of
infected hosts. This can be represented mathematically as r(t) = cY(t)/N where
c represents the probability that infection passes from an infectious hosts to an
uninfected tick and N is the total number of hosts. The infection rate can then be
expressed as a function of time (rather than age) as b(t) = qTr(t – j), where j is
the time a newly infected tick takes to develop and become infectious. If we
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replace b(a) in Equations (3) above with this expression for b(t), add a term mN
to right-hand side of the Equation (1) to represent births (assumed to balance
deaths from all compartments), and replacing a with t, we will have a model suitable
for studying the nonequilibrium situation.

One of the most useful concepts in infectious disease epidemiology is the case
reproduction number: the average number of secondary cases caused by a pri-
mary case. It is useful to distinguish between two reproduction numbers: the
basic reproduction number (R0) and the effective reproduction number (Rt).
R0 is defined as the average number of secondary cases produced by a typical
primary case in an otherwise fully susceptible population in the absence of con-
trol measures. Rt is defined similarly, except that the population is not required
to be fully susceptible and there may be control measures in place. In the absence
of control measures Rt can be calculated as the product of R0 and the propor-
tion of the population that is susceptible. The value of Rt is therefore always less
than or equal to R0.

R0 is of central importance because its value determines whether or not an
epidemic is possible; only when it takes a value greater than one, so that each
primary cases generates on average more than one secondary case, can the chain
reaction that constitutes an epidemic proceed. When R0 is less than 1 there may
still be chains of disease transmission, and occasionally these may even be quite
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long, but these will be self-limiting and have no chances of leading to the 
self-sustaining chain reaction of a full-blown epidemic that affects thousands.

Rt is important since it determines the rate of epidemic growth at a given
point in time. During the course of an epidemic Rt will decline from its initial
value of R0 as the number of susceptibles decreases. It may also decline as result
of interventions designed to control the disease. When Rt is equal to 1 the epi-
demic is neither growing nor falling. If there is no supply of new susceptibles,
Rt will proceed to fall below 1 as the pool of susceptibles decreases further.
If there is a sufficient supply of new susceptibles (through birth, loss of immunity,
or immigration) it is possible to reach an endemic equilibrium state where the gen-
eration of new susceptibles matches the loss of susceptibles due to infection. In
this case Rt is maintained at a value of 1, and the amount of infection neither
increases nor decreases over time. Cyclic behavior can occur when the epidemic
causes Rt to fall well below 1, and a longer-term increase in susceptibles due to
births eventually restores Rt to a value above 1 permitting another epidemic. This
is the cause of the cyclic pattern of childhood diseases such as measles [8].

For a tick-borne disease, we can define R0 as the average number of second-
ary infections in hosts from one primary infected host (when all hosts and ticks
are susceptible) or, equivalently, as the average number of infectious ticks that
arise from a single infected tick in a susceptible population. This definition
immediately leads to an expression for R0 in terms of parameters we have
already introduced:

(4) ( ) ( )R
qTc

0=
+ +c n i n

i

This can be derived by multiplying the probability that the first tick infects its
host, q, the probability that the host survives to the infectious state, q/(q + m),
the mean number of ticks attaching to the infectious host (which is equal to
product of the average duration of the host’s infectious period, 1/(g + m),
and the mean rate of tick attachment, T ), and the probability that each tick
that attaches becomes infected, c. Using this formula (and estimates for the
parameters) the impact of interventions on R0 can be derived in terms of
expected impacts of intervention on different aspects of the system. In partic-
ular, it is possible to calculate the reduction of the tick attachment rate, T, that
would be needed to reduce R0 to below 1, resulting in local eradication of the
disease. An alternative formulation expresses R0 in terms of the equilibrium
infection rate b*: R0 = 1 + b*/m. This holds only when b* is greater than zero
and, therefore, when R0 is greater than 1. It is useful because an estimate of b*
is relatively easily obtained from age-stratified seroprevalence data as described
above, and enables a simple assessment of the likely effort needed to eradicate
the virus in a given population.

The above notes provide only a very broad outline of a framework for mod-
eling tick-borne infections, but one that could easily be applied to CCHF if sup-
ported by appropriate field research. Such an approach can, and – in the context
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of other pathogens – has been extended in a variety of ways; for example, to
address the particular biological details of different pathogens, to more fully
describe the dynamics of the tick population [16], and to provide economic
analyses of control policies [14]. In particular, when modeling interventions that
are likely to affect the tick population, models that describe details of the tick
life cycle (and how these are affected by the intervention) will usually be
required. One interesting recent example of this is due to Ogden et al. [17], who
developed a dynamic population model of the tick Ixodes scapularis, dividing
the tick population into 12 developmental stages, with the aim of investigating
the effects of climate (and predicting the effects of climate change) on the range
and seasonality of the tick.

Though such complex models are becoming quite common and are, in many
cases, entirely appropriate, the degree of detail that should be included in a
model will vary according to the application. The general question of how com-
plex models should be was succinctly addressed by Albert Einstein, who said
that models should be as simple as possible, but no simpler. This applies as well
to infectious disease epidemiology as it does to astrophysics: models should be
only as complex as is required to address the questions at hand. Many unfamil-
iar with mathematical models naively believe that more complex models will
provide better answers to most questions. In fact, the reverse is usually true, and
for most purposes, including prediction, surprisingly simple models tend to
perform better.

15.4. MODELING THE NOSOCOMIAL TRANSMISSION OF CCHF

The approach described above for modeling the tick-borne transmission of
CCHF virus in animal hosts used a deterministic formulation. When the popu-
lations under investigation are large, this is a reasonable approach: the time evo-
lution of the system is likely to be quite predictable and individual chance events
(e.g. whether or not one animal gets infected, how long it takes another to
recover) are unimportant. Just as casinos may lose on individual bets but are
sure to win in the long run, in a large population when many are infectious there
are so many individual unpredictable events that the eventual outcome becomes
highly predictable. In small populations, such as hospital units, and at the begin-
ning of epidemics in both large and small populations when only small numbers
are infected, this deterministic approach fails badly. The details of the random
events that make up an epidemic become important. For example, if the first
infected person happens to die before he has a chance to infect anyone an epi-
demic will not occur, even if it had the potential to (i.e. even if R0 was greater
than 1). A deterministic model would predict a major epidemic every time,
which is clearly unrealistic.

The importance of such chance events is illustrated in Figs. 15-5–15-7. These
show results from Monte Carlo simulations from a stochastic susceptible-
exposed-infectious-recovered (SEIR) model which has a structure similar to that
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shown in Fig. 15-2 (except that births and nondisease-related deaths can be
ignored because we are interested in short timescales over which it is reasonable to
assume a fixed population size). This simple model could be considered to provide
an approximate description of transmission in a small population such as a hos-
pital unit that has stopped admitted new patients (when new patients continue to
be admitted the constant supply of susceptibles leads to rather different dynamics
[5]). The model assumes that each day each infectious person has some fixed
chance of infecting each susceptible person and some fixed probability, g, of ceas-
ing to be infectious. When infected, individuals enter a latent compartment, with
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Fig. 15-5. Incident cases (solid lines) and number of susceptibles (broken lines) from stochastic sim-
ulations of an SEIR epidemic model when there is no intervention (row A), an intervention to
reduce the probability of transmission from each case by 50% after 20 days (row B), and an inter-
vention to reduce this probability by 90% (row C). Columns (left to right) show results for initial
R0 values of 1.1, 2, and 5. Three runs from each scenario are shown, except when R0 is 1.1, when
10 runs are shown (since in this case in most simulations the epidemic does not take off). A mean
incubation period of 5 days is assumed (daily probability of progressing from latent to infectious is
0.2) and a mean infectious period of 3.3 days (daily probability of ceasing to be infectious is 0.3),
and at day 0 there are 200 susceptibles and one latent case.



a daily probability, q, of progressing to the infectious compartment. The basic
reproduction number, R0, in this model is equal to the mean infectious period
(1/g) multiplied by the probability that a given susceptible person is infected by
one infectious case on a given day, multiplied by the initial number of suscepti-
bles. Figure 15-5 (top row) indicates typical model outcomes in a population of
200 initially susceptible people when no intervention to control the epidemic is
made. When R0 is greater than 1 there is a chance of an epidemic. This chance
increases with R0 (Fig. 15-6). In contrast to the deterministic model, there is also
a real chance that that the epidemic dies out almost immediately. This can be
seen in Fig. 15-5, where even though R0 is greater than 1 in some of the simula-
tion runs the epidemic fails to take off and the susceptible population stays near
to its initial value of 200. Figure 15-6 shows that even when R0 = 2, there is no
secondary transmission at all in about one third of the simulations. As R0
increases above 1 there is an increasing chance that if there is any secondary
transmission a large number of infections will result. This gives rise to bimodal
distribution when R0 is above 1 (Fig. 15-6). It is also noticeable that as R0 increases,
when the epidemic does take off it tends to peak earlier and affects more peo-
ple, though the precise course of the epidemic is not predictable (Fig. 15-5).

If an intervention is able to reduce the effective reproduction number, Rt,
below 1 by reducing the probability of transmission from each case then the
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Fig. 15-6. Distributions of outbreak sizes for different values of the basic reproduction number,
R0. Results from 1,000 simulation runs are shown for each value of R0. Model parameters as in
Fig. 15-5.
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epidemic will be controlled. This is shown in rows B and C of Fig. 15-5. When
transmission probability is reduced by 50% after 20 days (row B) Rt is reduced
to approximately half the initial R0 value. In the first column this is sufficient to
control the epidemic (because Rt ≈0.55 at day 20), and though some transmis-
sion persists the epidemic comes to an end soon. When R0 is 2 a 50% reduction
in transmission gives an Rt ≈1 at day 20, which is enough to permit prolonged
transmission at a low level, but not to allow a large epidemic. In contrast, when
R0 is 5 a 50% transmission reduction brings Rt down to about 2.5. This is not
enough to control the epidemic and most of the susceptibles go on to be infected
(though fewer than would have been without the intervention). In contrast, the
90% reduction in transmission in row C is sufficient to reduce Rt below 1 in all
cases, and in all simulations runs the epidemics are quickly brought under con-
trol. Nevertheless, the large number of infected cases by day 20 when R0 is 5 is
sufficient to ensure continued transmission for some time after the intervention.

Figure 15-7 shows the effect of delays in an intervention that is able to bring
about control of the epidemic but unable to prevent all transmission. In this
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Fig. 15-7. Effect of delays in making an intervention that reduces transmission by 90%, assuming
R0 = 2. Twenty simulations were performed for each delay (measured in days since the first infec-
tious case). Where two or more simulation runs have given the same result, the number of “petals”
on each point of the sunflower plot indicates the number of simulation runs represented.
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scenario if an intervention able to reduce the probability of transmission by
90% is made as soon as the first case is detected there is a high probability that
there almost all secondary spread can be eliminated. Delays of 5 days or more
lead to significant chances that much larger numbers will be affected, though
there remains a substantial chance that the epidemic will die out of its own
accord and affect few people. This accounts for the bimodal distribution in the
number of cases that starts to become apparent when interventions are delayed
by 20 days or more.

15.5. FUTURE DIRECTIONS FOR USING MODELS 
TO HELP UNDERSTAND CCHF

Future work modeling the spread of CCHF, whether tick-borne or nosocomial,
will depend on good quality field data to enable necessary parameter estimates
to be obtained and an appropriate model structure selected. Precise details of
models will depend to a large extent on the questions that are being asked.

The simple SEIR modeling framework illustrated here can readily be
extended to account for the fact that not all individuals infected will themselves
become infectious. This can be done by constructing models that allow people
to move with some probability straight from the exposed to the recovered com-
partment. It is also relatively easy to further modify this basic model structure
to better capture observed distributions of the latent and infectious periods
and to account for variable infectivity with time since infection. Appropriate
modifications can also be made to account for more complex mixing patterns
(e.g. probabilities of patients infecting health-care workers and other patients
may differ).

Models have also proved to be useful for evaluating the role of contact tracing,
quarantine, and isolation in the control of infectious diseases. This work has
shown how the epidemiological characteristics of different diseases (the basic
reproduction number, the length of the latent and infectious periods, and the
amount of transmission that occurs prior to the onset of symptoms) largely deter-
mine the likely success of control using these measures [7]. As one might expect,
the properties of CCHF put it well within the region where these measures can be
expected to be effective. The severe acute respiratory syndrome (SARS) epidemic
also highlighted the high degree of variability in the number of secondary cases
produced by each primary case [10]. When detailed contact tracing data are exam-
ined it turns out that this pattern is seen in many infectious diseases [11]. This vari-
ability may greatly exceed that assumed in the simple stochastic models presented
here. It is, nevertheless, a simple matter to account for such variability in models.
Its main impact would be to make major epidemics rather less likely for a given
R0, and to make the role of chance even more dominant.

In many cases it is useful to estimate R0. The estimate will tell us how close we
are to a risking a major epidemic (if R0 is currently below 1) and allow precau-
tionary measure to be taken. If R0 is greater than 1 the estimate tells us how
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much an intervention would have to do to bring about control or eliminate the
chance of a major epidemic. An approach that has proved useful for other dis-
eases is to estimate R0 from the distribution of the number of cases from clusters
of transmission [6]. This is possible because the probability of 0, 1, 2, . . .
secondary cases varies with the value R0 (Fig. 15-6), so the likelihood of different
R0 values can be derived from the distribution of the number of cases.

When more detailed surveillance data are available other approaches can be
used to provide much better estimates of R0 and to assess the impact of interven-
tions. The best of these uses computationally intensive Markov chain Monte
Carlo algorithms to estimate the basic reproduction number and other model
parameters and quantify the uncertainty in these estimates. Such an approach has
recently been used to estimate the basic reproduction number for Ebola and to
evaluate the role of interventions in reducing transmission [9]. This method could
be adapted relatively easily to study CCHF transmission, and detailed data from
outbreaks used to evaluate the evidence of effectiveness for different interventions.
Much simpler approaches based on deterministic approximations are also possi-
ble [4], but these methods appear not to accurately characterize the uncertainty
and may therefore be inappropriate for assessing the evidence of effectiveness of
different interventions [9].
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