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Abstract

Biological networks inherently have uncertain topologies. This arises from many factors. For instance, interactions
between molecules may or may not take place under varying conditions. Genetic or epigenetic mutations may also
alter biological processes like transcription or translation. This uncertainty is often modeled by associating each
interaction with a probability value. Studying biological networks under this probabilistic model has already been
shown to yield accurate and insightful analysis of interaction data. However, the problem of assigning accurate
probability values to interactions remains unresolved. In this paper, we present a novel method for computing
interaction probabilities in signaling networks based on transcription levels of genes. The transcription levels define
the signal reachability probability between membrane receptors and transcription factors. Our method computes the
interaction probabilities that minimize the gap between the observed and the computed signal reachability
probabilities. We evaluate our method on four signaling networks from the Kyoto Encyclopedia of Genes and
Genomes (KEGG). For each network, we compute its edge probabilities using the gene expression profiles for seven
major leukemia subtypes. We use these values to analyze how the stress induced by different leukemia subtypes
affects signaling interactions.
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1 Introduction
Biological networks describe how different molecules,
such as proteins, interact with each other to carry out var-
ious cellular functions. Studying biological networks gives
us deep insight into cellular mechanics and allows us to
understand how biological processes are governed. Dis-
covering signaling pathways [1], mapping transcription
regulation [2], and identifying the reasons behind and the
consequences of various disorders [3, 4] are only a few
examples to many applications which are possible through
studying biological networks.
Biological networks are often modeled as graphs, where

each node denotes a molecule and each edge denotes an
interaction. One of the critical factors that affects our
analysis of biological networks is that their topologies are
often uncertain. This uncertainty follows from the fact
that key biological processes governing these interactions,
like DNA replication, gene transcription, and epigenetic
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mutations, are themselves inherently uncertain events.
For instance, in higher eukaryotes, DNA replication can
start at different chromosome locations with different
probabilities [5]. Also, different biological processes like
replication timing, gene expression, and transcription reg-
ulation vary across different cell types [6–9], and also from
healthy cases to different disorders [10, 11]. Probabilis-
tic networks model this uncertainty in a mathematically
sound manner. Briefly, a probabilistic biological network
associates each edge of the underlying network with a
probability value indicating the chance that the corre-
sponding interaction takes place.
Taking the edge probabilities into account is extremely

important in studying biological networks as they improve
the accuracy of analysis of these networks and can lead
to biologically significant observations that are impossi-
ble to achieve otherwise. Signaling pathway detection [1],
network topology characterization [12], signal reachabil-
ity [13], node centrality, and network stability [14] are
just a few examples to the applications that have already
been benefiting from this knowledge. Therefore, having
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accurate knowledge of edge probabilities is of utmost
importance.
In the literature, interaction probabilities are com-

puted in several ways. MINT [15] and STRING [16], for
instance, provide a confidence value for each interaction.
Confidence value of an interaction represents the level of
certainty in observing that interaction. This way of prob-
ability assignment compensates for the level of noise in
the experiment used to observe the interaction. How-
ever, it does not account for the inherent stochasticity of
the interaction events. Sharan et al. [17] addressed this
problem by utilizing features like the volume of evidence
present for the interaction, gene expression correlation,
and network topology to learn the edge probabilities.
This strategy however accounts only for the correlation
between the interacting gene products, ignoring their
relations with the rest of the network. Thus, new methods
which can compute edge probabilities by taking the entire
network into consideration are direly needed.

Contributions In this paper, we present a novel method
for computing edge probabilities for a given signaling
network topology. We use end-to-end signal reachability
probabilities between pairs of genes to guide our compu-
tation. While it is hard to observe the probability of each
individual interaction, target reachability values are much
easier to observe experimentally. Moreover, they can be
observed in different cell types or under different disor-
ders, paving way for computing phenotype-specific edge
probabilities.
Correlation between the transcription levels of genes

has been widely used as the primary evidence for sig-
naling and regulation [18–22]. Here, we also use gene
expression correlation as the guide for signal reachability
between gene pairs. For each pair of source (i.e., mem-
brane receptor) and target (reporter, i.e., transcription
factor) genes, we compute the normalized Pearson corre-
lation value between their gene expression levels as the
empirical signal reachability between that pair of genes.
Our method computes the probability values for all the
edges so that the resulting computed signal reachabil-
ity probabilities for all source-target pairs are as close as
possible to the input empirical reachability values. Given
a network with n edges, reachability probability can be
expressed as an nth degree function of n variables [23].
Optimizing this function in an exact manner requires
solving a system of n simultaneous derivative equations.
The key challenge arises from the fact that computing the
function itself has an exponential time complexity, equiv-
alent to computing all combinations of n objects. This
makes exact optimization impossible even for medium-
sized networks. To address this challenge, we develop a
two-phase strategy. The first phase is global optimiza-
tion using a genetic algorithm, where we search the entire

space of possible edge probability assignments to obtain a
good initial probability assignment. The second phase is
local optimization using hill climbing technique. Here, we
optimize the initial solution we found in the first phase
by gradually improving the edge probabilities one edge at
a time, until no further improvement is possible. More
specifically, instead of optimizing all n variables simulta-
neously, we seek to optimize the value of one variable at
a time. That is, at each step, we consider only one edge
probability for optimization, fixing the probability values
of all other edges. We show that our method produces a
result that is very close to the objective. Our experiments
demonstrate that our method can compute edge prob-
abilities with high accuracy. They also show that these
probability values help in identifying specific genes and
interactions that characterize major leukemia subtypes.
The rest of this paper is organized as follows. Section 2

describes the method in detail. Section 3 discusses our
results. Section 4 concludes the paper.

2 Method
In this section, we explain our method for computing
edge probability values of a given probabilistic signaling
network. Our method consists of two phases: global opti-
mization and local optimization. Section 2.1 describes the
key notation needed to understand our method and for-
mally defines the problem. Sections 2.2 and 2.3 discuss the
global and local optimization phases respectively.

2.1 Preliminaries
Throughout the rest of this paper, we denote a probabilis-
tic signaling network as a graph G = (V ,E,P), where V
denotes the set of nodes (i.e., genes), E denotes the set of
directed edges (i.e., interactions), and P : E → R∩ [0, 1]
denotes the function that returns the existence probabil-
ity of each edge in E. We also define the two sets S ⊆ V
and T ⊆ V as the sets of source nodes (i.e., receptor
genes) and target nodes (i.e., reporter genes). We define
the |S| × |T | matrix C as the gene coexpression matrix,
such that C[s, t] is the absolute value of the Pearson
correlation coefficient between the expressions of genes s
and t, for all s ∈ S and t ∈ T . Given a probability function
P : E → R∩ [0, 1], we define the |S| × |T | matrix RP
as the signal reachability matrix, such that RP[s, t] is the
probability of a signal propagating successfully from s to
t, for all s ∈ S and t ∈ t using P. In these definitions, C
represents the empirical reachability probability between
receptor and reporter genes based on their transcriptional
activities. This is motivated by evidence of a strong link
between gene coexpression and signaling and regulation
[18–22]. On the other hand, RP denotes the computed
reachability probability between the same gene pairs,
having P as the probability function. Thus, the Euclidean
L2 norm ‖C − RP‖2 is the error introduced by the
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function P. Since we are only interested in the magnitude
of the difference between C and RP, we used L2 norm to
disregard the sign of this difference. Following from this
observation, next we mathematically define the problem
considered in this paper.

Problem definition. Given V, E, S, T, and C, find the
function P : E → R∩ [0, 1] such that ‖C − RP‖2 is
minimum.
Notice that the problem above differs from the classi-

cal reachability problem. In the reachability problem, P is
known and the goal is to find RP [23]. On the other hand,
in the problem considered in this paper, P is not known. In
fact, the goal is to compute P with the guidance of C. That
said, in order to understand our method in this paper, it
is essential to know the original reachability problem well.
In the following, we take a brief detour to summarize the
PReach method that solves the reachability problem. For
further details, we refer the reader to Gabr et al. [23].
Let U = {1, . . . , n}, where n = |E|. Let X and Y be

two sets of n variables, where X = {x1, . . . , xn} and Y =
{y1, . . . , yn}. Let � be a subset of U. Let S1, . . . , Sk be k dif-
ferent subsets of �. Let xSi = ∏

j∈Si xj and ySi = ∏
j∈Si yj,

where i ∈ {1, . . . , k}. Let x∗ and y∗ be two free variables.
Let a1, . . . , ak , b and c be real numbers. PReach defines an
xy-polynomial over � as F = ∑k

i=1 aixSiy�\Si + bx∗ + cy∗.
Except for the free variables, each term in the above sum-
mation contains each of the indices j ∈ � either as a
product term xj or yj.
PReach associates every edge ej ∈ E with a variable

xj ∈ X and a variable yj ∈ Y , where j ∈ U . In this nota-
tion, xj and yj represent the cases where ej is present and
absent, respectively. In the above summation, each of the
non-free terms aixSiy�\Si corresponds to a combination
where ej is present ∀j ∈ Si and absent ∀j ∈ � \ Si, and ai
is the probability of observing this specific combination.
The free variable x∗ represents the case where T is reach-
able from S, and b designates its probability. Inversely, the
free variable y∗ represents the case whereT is unreachable
from S, and c designates its probability.
Let pi = P(ei) and qi = 1− pi, ∀ei ∈ E. PReach starts by

associating every edge ei ∈ E with a binomial pixi + qiyi.
It then proceeds by multiplying these binomials together
into a growing xy-polynomial. After each multiplication
step, PReach checks the polynomial for the non-free terms
that can be collapsed into one of the two free terms as fol-
lows. For any of the non-free terms aixSiy�\Si , if the edges
associated with Si form at least one path from S to T, it
replaces those terms with aix∗. Inversely, if the edges asso-
ciated with � \ Si form at least one cut between S and T,
it replaces those terms with aiy∗. Any further multiplica-
tion of a new term pixi with bx∗ results in bpix∗. Similarly,
(pixi)(cy∗) = cpiy∗, (qiyi)(bx∗) = bqix∗, and (qiyi)(cy∗) =
cqiy∗. The reachability problem is a computationally hard

problem; it belongs to the #P-complete class [24]. How-
ever, thanks to the repeated application of the collapsing
operation, PReach tries to avoid exponential growth of the
size of the xy-polynomial.

2.2 Phase 1: global optimization
We are now ready to describe the method developed in
this paper. The first phase of our method is a genetic algo-
rithm to find a population of probability functions as an
initial candidate solution. Note that this is a best-faith
solution that will be further optimized in the second phase
of our method.
We represent a candidate solution as a vector with |E|

entries and denote it with ψ , where the ith entry ψ[i] is
the probability assigned to edge ei ∈ E. Let us denote the
computed reachability matrix obtained using the solution
ψ as Rψ . That is, ∀s ∈ S, ∀t ∈ T , Rψ [s, t] is the signal
reachability probability between s and t, computed based
on edge probabilities in ψ (see Section 2.1). We define the
fitness Fψ of a candidate solution ψ as 1 − ‖C−Rψ‖2

|S×T | . In
this formulation, the fitness Fψ takes a value in the [0, 1]
interval. A larger value indicates a better solution. In the
extreme case when the empirical and computed reacha-
bility probabilities are identical (i.e., C = Rψ ), Fψ is equal
to 1, indicating that the solution is 100 % accurate.
Our genetic algorithm consists of four steps: initializa-

tion, crossover, mutation, and selection. We elaborate on
these steps next.

1. InitializationWe start by generating a set � of
random candidate solutions. These solutions serve as
the seed population of solutions. We generate each
seed candidate solution ψ ∈ � by assigning a
random number between 0 and 1 to each entry in ψ .
We then compute the fitness values Fψ , ∀ψ ∈ � . In
our experiments, we set the population size to
|�| = 50, thus generate 50 random seeds.

2. Crossover This step improves the solutions in the set
� by combining pairs of existing solutions, also
known as the crossover operation. To do that, We
define a gap value gψ for every ψ ∈ � as
gψ = ∑|S|

i=1
∑|T |

j=1 C[i, j]−Rψ [i, j]. The value of gψ
shows how much the reachability Rψ , computed
based on the solution ψ , deviates from the target C
in total. A positive gap value indicates that the
solution ψ underestimates the probability of some of
the edges. Inversely, a negative gap value indicates
that the solution ψ overestimates the probability of
some of the edges. We then randomly select two
solutions ψ1 and ψ2 from � using biased sampling,
where the chance of selecting a sample ψi is directly
proportional to its fitness Fψi . We use ψ1 and ψ2 to
generate a new candidate solution as follows. For
each entry i ∈ {1, .., |E|}, we choose either entry ψ1[i]
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or ψ2[i] based on which is more likely to produce a
candidate solution with a higher fitness. There are
three possible scenarios: if both gψ1 and gψ2 are
positive, both ψ1[i] and ψ2[i] are possibly
underestimated, so we choose the higher. Inversely, if
both gψ1 and gψ2 are negative, both ψ1[i] and ψ2[i]
are possibly overestimated, so we choose the lower. If
one of gψ1 and gψ2 is positive and the other is negative,
then we randomly select between ψ1[i] and ψ2[i],
where the chance of each is proportional to the fitness
of its corresponding solution. We expect this strategy
to produce a new solution that is better than both ψ1
and ψ2, as we reduce the gap value while constructing
it. We repeat the crossover step 50 times (i.e., |�|
times) and include the resulting solutions to � .

3. Mutation In this step, our genetic algorithm aims to
avoid local minima by adding a small amount of
random diversity to the existing set of solutions.
More specifically, for each solution ψ ∈ � , we iterate
over all entries ψ[i]. For each entry ψ[i], we perform
a Bernoulli trial with probability of 0.01. If the trial
yields success, the entry value is replaced with a new
value drawn uniformly at random from the range
[0, 1].

4. Selection After crossover and mutation, the size of
� doubles to 100. This step ensures the set of
solutions in � does not grow. To do this, from the
100 solutions in � , we select five which have the
highest fitness values. Additionally, we randomly
select another 45 solutions from the remaining 95,
where every solution has a chance of selection that is
proportional to its fitness. We remove the
non-selected 50 solutions from � .

We repeat the crossover, mutation, and selection steps
for a large number of iterations, updating the population
� each time. The number of iterations needed for con-
vergence depends on the size and properties of the target
network and is a matter of trial and error. We then select
the solution which has the highest fitness in the final pop-
ulation as the output of this phase. We use it as an input
to our next local optimization phase.

2.3 Phase 2: local optimization
At the end of the first phase, we have a solution ψ that
has the highest fitness value in the entire population � .
Although ψ is expected to yield small errors in signal
reachability, it is not necessarily optimal. In this phase, we
develop a hill climbing algorithm, which gradually alters
the probability assignment of each edge in the solution,
one edge at a time. At each step, it ensures that the proba-
bility assignmentψ[e] of the edge e being altered becomes
optimal (i.e., yields the highest possible fitness value) given
the probability assignment of all other edges. We continue

altering the solution until no edge probability value can
be altered without increasing ‖C − Rψ‖2. In the follow-
ing, we describe in detail how at a given step we alter
one probability assignment ψ[e], given all other values
in ψ .

Optimizing a single edge probability Assume that for
only one edge e ∈ E, the probability pe of this edge
is unknown. Also, assume that the probability values of
all the remaining edges in E − {e} are known. Here, we
compute the value of pe that guarantees to minimize the
reachability error ‖C−Rψ‖2. For this purpose, we develop
a new method which is built on the PReach method [23].
Unlike PReach, our method allows one of the edge prob-

abilities pe to be a variable. This additional unknown alters
the form of the xy-polynomial constructed by PReach (see
Section 2.1) as the unknown pe can get multiplied by all
the terms of the original xy-polynomial. This new variable
can increase the polynomial size dramatically, depending
on the combination of the terms in the polynomial. We
avoid this problem through a simple observation that the
final xy-polynomial is independent of the order in which
we multiply individual edge binomials. Following from
this observation, we defer the multiplication of the edge
binomial corresponding to e until all other edge binomi-
als are multiplied. Thus, until before the edge binomial of
e is multiplied, our method yields the same intermediate
xy-polynomial as PReach. After multiplying the final bino-
mial by the intermediate xy-polynomial, the coefficient of
x∗ in the final xy-polynomial has the form α + βpe, where
α and β are real numbers. We mathematically deduce the
values of α and β in the following theorem.

Theorem 1. Assume the binomials of all edges except
that of e has been already multiplied into the xy-
polynomial F = ∑l

i=1 aixSiy�\Si + bx∗ + cy∗, where the
terms aixSiy�\Si ∀i ∈ {1, . . . , l} are l terms that are not yet
collapsed into either x∗ or y∗. The reachability probabil-
ity, which is the final coefficient of x∗ after multiplying the
binomial of e, is α + βpe, where α = b and β = ∑l

i=1 ai.

Proof. Multiplying the e binomial (pexe + (1 − pe)ye) by
F, the final xy-polynomial Ffinal has the following form.

Ffinal =

(pexe + (1 − pe)ye)

⎛
⎝

l∑
i=1

aixSiy�\Si + bx∗ + cy∗
⎞
⎠

= pexe
l∑

i=1
aixSiy�\Si + (1 − pe)ye

l∑
i=1

aixSiy�\Si

+ pebxex∗ + (1 − pe)byex∗

+ pecxey∗ + (1 − pe)cyey∗
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Since e is the last edge to multiply in the network, it is
guaranteed that xexSi and yey�\Si will collapse to x∗ and
y∗, respectively, for all i ∈ {1, . . . , l} [23]. Also, we already
know that xex∗ = x∗ and yey∗ = y∗ for any edge e. Thus,
we have

Ffinal =

pe
l∑

i=1
aix∗ + (1 − pe)

l∑
i=1

aiy∗

+ pebx∗ + (1 − pe)bx∗ + pecy∗ + (1 − pe)cy∗

=
⎛
⎝pe

l∑
i=1

ai + peb + (1 − pe)b

⎞
⎠ x∗

+
⎛
⎝(1 − pe)

l∑
i=1

ai + pec + (1 − pe)c

⎞
⎠ y∗

=
⎛
⎝pe

l∑
i=1

ai+b

⎞
⎠ x∗ +

⎛
⎝(1 − pe)

l∑
i=1

ai + c

⎞
⎠ y∗

The reachability probability is the final coefficient of x∗.
Therefore its value is pe

∑l
i=1 ai + b. i.e., α = b and β =∑l

i=1 ai. This means that after multiplying the binomials
of all the edges except e, α is the coefficient of x∗, and β is
the sum of the coefficients of all non-free terms.

Notice that the coefficient of x∗ (i.e., α + βpe) is also a
polynomial of first degree in pe. Using this observation, we
solve for the objective of this paper (which is to minimize
‖C − Rψ‖2) by solving for pe as follows. We first compute
Rψ [s, t]= αst + βstpe, ∀(s, t) ∈ S × T . We then derive the
optimal value for pe as:

Minimize ‖C − Rψ‖2
=

∑
(s,t)∈S×T

(
C[s, t]−Rψ [s, t]

)2

=
∑

(s,t)∈S×T
(C[s, t]−αst − βstpe)2

To solve the minimization function above, we equate its
derivative to zero.

d
dpe

∑
(s,t)∈S×T

(C[s, t]−αst − βstpe)2 = 0

∴
∑

(s,t)∈S×T
−2βst (C[s, t]−αst − βstpe) = 0

∴
∑

(s,t)∈S×T
−2βst (C[s, t]−αst) + pe

∑
(s,t)∈S×T

2β2
st

= 0

Thus, we get

pe =
∑

(s,t)∈S×T βst (C[s, t]− αst)∑
(s,t)∈S×T β2

st

The formula above constitutes the optimal value for pe
given all other probability values. However, there is no
guarantee that optimal value of pe falls within the proper
probability range of [0, 1]. This is because the derivation
above gives the optimal result across all real numbers.
However, by taking the second derivative of the objective
function, one can easily see that the objective function is
continuous, convex, and has only one solution to d

dpe = 0.
This implies that the closer the value of pe is to its uncon-
strained optimal value, the smaller the error is in the
objective function. Therefore, if the optimal value of pe is
above 1, we replace it with 1. If it is below 0, we replace it
with 0. This way, we find the best possible value for pe in
[0, 1].

3 Experimental results
In this section, we experimentally evaluate our method on
four major signaling networks from the Kyoto Encyclope-
dia of Genes and Genomes (KEGG), including cell cycle,
programmed cell death, and immune response regulation
pathways (see Table 1 for dataset details). We use the
gene expression samples for the leukemia subtypes from
Zhang et al. [10]. This dataset contains gene expression
values for 413 patients, each having one of seven different
leukemia subtypes (six B-ALL subtypes plus T-ALL). We
use this dataset as it provides a large number of samples
for a wide spectrum of leukemia subtypes. We perform
a comprehensive comparative analysis of how interac-
tion probabilities vary across these leukemia subtypes
(Section 3.2). Using the interaction probability values we
find, we also compute gene centrality values for all net-
work and leukemia subtype combinations (Section 3.3).
We finally extract the genes which behave differently in
specific combinations of network and leukemia subtype,
and analyze the significance of these genes in these com-
binations (Section 3.4).

Table 1 Networks used in our experiments, their sizes (nodes
and edges), running time of our method to compute their
interaction probabilities, and the quality of the resulting
probabilities. For every network, time is the average running time
over the seven leukemia subtypes in seconds, and quality is the
average result quality over the seven leukemia subtypes

Network Nodes Edges Time (s) Quality (%)

Apoptosis 48 58 77.78 95.37

Cell cycle 66 79 274.78 96.08

Complement and coagulation 57 67 126.57 96.88

Chemokine 51 62 302.86 95.4
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3.1 Comparison with logistic regression
In this section, we present comparative analysis of the
results of our method against the logistic regression
method presented by Sharan et al. [17]. Throughout
this section, we refer to our method as PReach, and to
the logistic regression method as LogReg. LogReg learns
interaction probabilities through three features: avail-
able evidence, interactor small-world properties, and their
gene expression. The latter is different across the leukemia
subtypes, therefore LogReg produces different probability
values for each subtype. In addition to the four networks
described in Table 1, we also use four more networks to
obtain more conclusive results. The additional four net-
works are ErbB, Wnt, NF-kappaB, and p53 from KEGG.
First, we compare the edge probability values produced

by both methods. For each network, we run both meth-
ods once for each leukemia subtype. For every pair of
network and subtype, we compute the average edge prob-
ability for both methods. We then compute the log of the
ratio between them for comparison. Figure 1a shows the
results. We observe from the figure that PReach produces
higher probabilities on average for all pairs of network and
subtypes. The biggest gap between PReach and LogReg
occurs in Wnt and complement and coagulation cascades
(ccc).
Next, we compare the quality of the results of PReach

vs LogReg. There exists no ground truth to compare
the edge probability values against. However, we com-
pare the outputs of the two methods with respect to
two measures. First, we inspect how spread is the out-
put probabilities across the [0, 1] spectrum. To do this,
we divide the [0, 1] range into a set of ten bins B =
{[0, 0.1), [0.1, 0.2), . . . , [0.9, 1] }, and count the number of
times a probability appears in each bin. For every pair
of network and subtype, we compute the entropy of the
method as − ∑

b∈B p(b)logp(b), where p(b) is the num-
ber of values in the bin b divided by the total number
of values. These entropy values are higher if the values
are more spread across the [0, 1] spectrum, and lower
if they are crowded in a less fraction of the spectrum.
Figure 1b shows the results. We observe that the entropy
in PReach is higher than LogReg in almost all cases. This
means that PReach output probabilities are more spread
across the [0, 1] spectrum, while those of LogReg tend to
be more discrete. More detailed inspection reveals that
this happens because LogReg assigns similar probabil-
ity values to most of the interactions most of the time
(results not shown due to space limit). Thus, it fails to pro-
vide fine-grained distinction between the likelihoods of
interactions, while our method successfully provides such
distinction.
To further investigate the results quality of both meth-

ods, we inspect how much each method differentiates
leukemia subtypes with respect to their edge probability

values. For every pair of network and subtype, we arrange
the edge probability values produced by each method in a
vector with the same ordering. Next, for a given network,
we compute the Euclidean distance between the vectors
of each pair of leukemia subtypes. Then for every sub-
type, we compute the average distance between its vector
and those of all other subtypes. We compare this aver-
age distance when computed using PReach versus LogReg.
Figure 1c shows the results. We observe that the distances
computed based on PReach are higher in the vast major-
ity of network-subtype pairs. This means that our method
can differentiate leukemia subtypes while LogReg fails to
do that.

3.2 Interaction probability in leukemia
In this experiment, we explore the differences on inter-
action probabilities of signaling networks in distinct
leukemia subtypes. Our aim is to identify specific gene
interaction differences between distinct leukemia sub-
types. To achieve this, we use our method to compute
interaction probability values for the KEGG signaling
networks. For each network, we run our method seven
times, once for each leukemia subtype. Before conduct-
ing detailed analysis, however, we first need to validate
that our method is computationally feasible, that it scales
to networks under consideration. To evaluate its perfor-
mance, wemeasure the time ourmethod takes to compute
the probabilities of all the interactions for every network
in every leukemia subtype. Also, based on our original
optimization target (see Section 2.1), we need to know
how accurate our results are (i.e., how close the computed
reachability probability Rψ is to the input C). To do this,
we measure the quality of the resulting interaction proba-
bilities as 1− ‖C−Rψ‖

|S×T | . The closer this value is to 100 %, the
better the quality is.
Table 1 shows the size of each network along with its

average time and quality over the seven leukemia sub-
types. Our results demonstrate that our method easily
scales to the networks under consideration. It computes
the interaction probabilities in about 5 min or less for all
the networks we tested. More importantly, our method is
highly accurate. The computed reachability values deviate
from the empirical reachability values by less than 5 % for
all the networks. These results are highly encouraging as
they show that our method is both accurate and has prac-
tical running time. Thus it can be applied on real datasets
to compute interaction probabilities.
Next, we analyze the differences in interaction proba-

bilities across leukemia subtypes. For each network, we
represent each leukemia subtype by a vector of the edge
probabilities computed for it. We then compute a hier-
archical clustering of these vectors. Figure 2 shows the
results. From the figure, we observe that the probabil-
ity value of some interactions vary significantly across
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Fig. 1 Comparison of PReach vs LogReg for computing edge probabilities in different leukemia subtypes. X-axis: leukemia subtypes. Y-axis: networks.
All values are computed for both methods and compared using logarithm of the ratio (i.e., more than zero means PReach is higher). a Average edge
probability. b Entropy of edge probability distribution. c Average distance between the edge probabilities of a each subtype and other subtypes

different leukemia subtypes. For instance, CASP3 is the
target in three different apoptosis interactions whose
probability in a subtype is at least 2 standard deviations
away from theirmean values among other subtypes. These
interactions are (CASP10 → CASP3) in hyperdiploid,
(CASP12 → CASP3) in T-ALL, and (BIRC8 → CASP3)
in Ph (circled in Fig. 2a). Similarly, CHEK1 is the source
in two different cell cycle interactions whose probability
in a subtype is at least 2 standard deviations away from
their mean values among other subtypes. These interac-
tions are (CHEK1 → CDC25A) in T-ALL, and (CHEK1
→ TP53) in MLL (circled in Fig. 2b). CASP3 is already
linked to B-cell lymphoma [25], lung [26], skin [27], breast
[28], and other cancers. Defects in apoptosis signaling and
cell cycle pathways play an essential role in leukemogene-
sis. CASP3 is an effector caspase that has been associated
with B-cell lymphoma [25], lung [26], skin [27], breast
[28], and other cancers. Moreover, regulation of CASP3

activation has been linked to the prognosis and remission
in B-ALL [29]. Notably, in the three leukemia subtypes
with different apoptotic signals targeting CASP3, the pro-
grammed cell death is inhibited; interactions of CASP3
with its activators are weaker in hyperdiploid and T-ALL
(CASP10→CASP3 and CASP12→CASP3, respectively)
while the interaction with its inhibitor is increased in B-
ALL with Philadelphia chromosome (BIRC8 → CASP3).
CHEK1 is a cell cycle checkpoint response protein that is
linked to oral squamous cell carcinoma [30] and colorec-
tal cancer [31]. Recently, increased levels of CHEK1 have
been associated to B-ALL and T-ALL [32]. Our observa-
tionmakes both CASP3 and CHEK1 strong candidates for
investigation in their respective subtypes of leukemia.
Additionally, the hierarchy of the leukemia subtypes

gives an insight about which subtypes have similar sig-
naling behavior. T-ALL and TCF3-PBX1 are closest to
each other in apoptosis, complement and coagulation, and
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Fig. 2 Interaction probability values of the four KEGG networks in seven leukemia subtypes. a Apoptosis, b cell cycle, c complement and
coagulation, and (d) chemokine. Rows represent leukemia subtypes, and columns represent network interactions. Both rows and columns are
hierarchically clustered

chemokine, noticeably more distant in cell cycle. Hyper-
diploid is very similar to TCF3-PBX1 in cell cycle, but
more distant from it in the other three networks. In fact,
hyperdiploid is the most distant from all other subtypes
in both apoptosis and chemokine. This information can
guide us to build on the existing knowledge about signal-
ing behavior in a certain subtype, using appropriate exper-
iments, to develop new findings about other subtypes with
similar behavior.

3.3 Gene centrality for leukemia subtypes
Next, we use the interaction probability values we com-
puted in Section 3.2 to compute centrality values of the
genes in each network. Briefly, we compute the centrality
of a gene as its contribution to signal reachability proba-
bility between all pairs of genes (see Gabr et al. [14] for
details). We compute centrality values for the genes in
each of the four networks for each of the seven leukemia
subtypes. For each network, we represent each leukemia
subtype by a vector of the node centrality values computed
for it. We then compute a hierarchical clustering of these
vectors. Figure 3 presents the results.
Interestingly, the figure shows variation of centrality

value across different leukemia subtypes for only a small
number of genes. Notice that this variation is not as

diverse as that of interaction probability values (see Fig. 2).
In apoptosis, BID is the top outstanding gene in hyper-
diploid, with centrality values 2.8 standard deviations
higher than their mean centrality in other subtypes (cir-
cled in Fig. 3a). We notice loss of centrality for other
key regulators of apoptosis like RIPK1 and CASP7 in
ETV6_RUNX1 and Ph, respectively (circled in Fig. 3a).
Similarly, cell cycle regulators like CDK1 and PLK1 have
an increased centrality in hypo, with centrality values 2.6
standard deviations higher than their mean centrality in
other subtypes (circled in Fig. 3b). BID remains as key
regulator in hyperdiploid but its centrality is lost in other
samples, suggesting a disruption of the programmed cell
death regulation in most of the leukemia subtypes. RIPK1
and CASP7 are linked to colorectal cancer [33]. CDK1
and PLK1 induce cell cycle progression and have been
associated with distinct types of cancer [34–36] includ-
ing leukemia and lymphoma [37–39]. Our results suggest
that these genes are interesting targets for studying in the
scope of their respective leukemia subtypes.

3.4 Enrichment analysis of outstanding genes
Following from the previous results, we want to know
which network plays a key role in a certain leukemia sub-
type. In other words, we want to know which network’s
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Fig. 3 Gene centrality values of the four KEGG networks in seven leukemia subtypes. a Apoptosis, b cell cycle, c complement and coagulation, and
(d) chemokine. Rows represent leukemia subtypes, and columns represent genes. Both rows and columns are hierarchically clustered

outstanding set of genes is highly enriched in a specific
leukemia subtype. To achieve this, we first extract the set
L of outstanding genes for every network in every sub-
type. For every edge e = (u, v) in a given network, we
compute the mean μe and the standard deviation σe of its

probability values in all leukemia subtypes. Then for every
subtype, for every edge e, we check if the probability of
e in this subtype was at least 2σe away from μe. If it is,
we add u and v to L. We then perform gene set enrich-
ment analysis (GSEA) [40] on L for every network in every

Table 2 Highly enriched gene sets in specific combinations of signaling networks and leukemia subtypes, with the nominal p values
produced by GSEA for these sets in their respective combinations

Subtype Network p value Gene set

Hyperdiploid Apoptosis 0.0083 NFKB1, RELA, BCL2, PPP3CA, PPP3CB, PPP3CC, IL3RA, TNF, BAD,
PPP3R1, AKT3, AKT1, AKT2, CHUK, TNFRSF1A, CASP7, DFFA,
IKBKB, IKBKG, CASP3, IL3, CASP10, CSF2RB

ETV6_RUNX1 Cell cycle 0.0151 TFDP1, TFDP2, E2F1, RBP3, E2F2, E2F3, CCND3, RBL1, PRB1, RBL2,
CCNE1, CCNE2, CDK4, CDK6, CCND1, CCND2, CCNA1, CDK2, CCNA2

T-ALL Apoptosis 0.0162 BIRC2, BIRC3, XIAP, BIRC7, CASP7, NFKB1, IL1RAP, TRADD, FASLG,
RELA, CASP3, DFFA, FADD, CASP8, IL1R1, FAS

TCF3-PBX1 Apoptosis 0.0167 PRKACA, PRKACB, PRKACG, PRKAR1A, PRKAR1B, IL1RAP, FADD,
PRKAR2A, PRKAR2B, PRKX, BAD, IL1A, IL1B, IL1R1, TNFRSF10B,
TNFRSF10C, TNFRSF10D

Hypo Apoptosis 0.0484 CAPN1, CAPN2, IRAK3, IRAK1, IRAK4, MAP3K14, BCL2, TP53,
NGF, NTRK1

Ph Cell cycle 0.088 BUB1, BUB3, CDKN2A, CDK4, CDK6, CCND1, GADD45A, GADD45B
CCND2, CCND3, RB1, CDC45L, MCM7, MCM2, CDC25A, CDKN1A,
MCM6, MCM5, MCM4, MCM3, CCNL1, LAT, CCNE1, CCNE2, CDK2,
ORC3L, ORC5L, ORC4L, ORC2L, ORC1L, ORC6L, TP53, GADD45G,
CDC2, CCNA2, CCNA1, CDKN1B, CDKN1C
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Fig. 4 Gene set enrichment results for the highest two enriched gene sets in their respective leukemia subtypes. a Apoptosis in hyperdiploid and
(b) cell cycle in ETV6_RUNX1

leukemia subtype. For every pair of network and subtype,
we set the phenotype A as the subtype samples, and phe-
notype B as all samples from other subtypes. We then run
GSEA on the network’s outstanding gene set L to mea-
sure its differential significance from A to B. We consider
gene sets whose p value is below 0.1 as highly enriched.
Table 2 lists these gene sets and their p values in their
respective leukemia subtypes. Figure 4 shows the gene set
enrichment plots for the two highest enriched gene sets.
We observe from Table 2 that apoptosis and cell cycle

signaling networks are dominant in all gene sets that are
highly enriched. This implies a fundamental role for these
two networks in the listed subtypes. It also implies that
these subtypes are either caused by or leading to a pertur-
bation in their respective gene sets. Another noteworthy
observation is that, although all the highly enriched gene
sets belong to only two networks, there is little overlap
between them. In apoptosis for instance, PPP3 genes are
dominant in hyperdiploid, while BIRC genes are dominant
in T-ALL, and PRKA genes are dominant in TCF3-PBX1.
Additionally, from Fig. 4, we observe that, although apop-
tosis and cell cycle have the highest enriched gene sets
for hyperdiploid and ETV6_RUNX1, respectively, their
relations to their respective leukemia subtypes are not
the same. All genes in the apoptosis set in hyperdiploid
exhibit higher expression than in other subtypes, which
implies up-regulation of these genes in hyperdiploid. On
the other hand, most of the genes in the cell cycle set in
ETV6_RUNX1 have lower expression than in other sub-
types, which indicates down-regulation of these genes in
ETV6_RUNX1.

4 Conclusions
In this paper, we presented a novel method for computing
edge probability in signaling networks. Our method uses

gene coexpression as input and computes the edge prob-
abilities so that reachability between edge terminals is as
close as possible to their empirical values obtained from
gene transcription levels. We used our method to com-
pute edge probabilities for four KEGG signaling networks,
using gene expression data for seven leukemia subtypes.
We also used the computed edge probabilities to compute
a centrality value for every gene in every leukemia sub-
type. We analyzed the interactions and genes with out-
standing probability and centrality in specific subtypes.
We also analyzed similarities and differences among these
subtypes based on their edge probabilities. We performed
gene set enrichment analysis on the set of edges with
outstanding probabilities in each subtype to study the sig-
nificance of the results. Our analysis provided evidence
that links specific gene sets to specific leukemia subtypes,
which makes them strong candidates for investigation in
the scope of their respective subtypes.
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