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Abstract

The decreasing cost of sequencing is leading to a growing repertoire of personal genomes. However, we are lagging behind
in understanding the functional consequences of the millions of variants obtained from sequencing. Global system-wide
effects of variants in coding genes are particularly poorly understood. It is known that while variants in some genes can lead
to diseases, complete disruption of other genes, called ‘loss-of-function tolerant’, is possible with no obvious effect. Here,
we build a systems-based classifier to quantitatively estimate the global perturbation caused by deleterious mutations in
each gene. We first survey the degree to which gene centrality in various individual networks and a unified ‘Multinet’
correlates with the tolerance to loss-of-function mutations and evolutionary conservation. We find that functionally
significant and highly conserved genes tend to be more central in physical protein-protein and regulatory networks.
However, this is not the case for metabolic pathways, where the highly central genes have more duplicated copies and are
more tolerant to loss-of-function mutations. Integration of three-dimensional protein structures reveals that the correlation
with centrality in the protein-protein interaction network is also seen in terms of the number of interaction interfaces used.
Finally, combining all the network and evolutionary properties allows us to build a classifier distinguishing functionally
essential and loss-of-function tolerant genes with higher accuracy (AUC = 0.91) than any individual property. Application of
the classifier to the whole genome shows its strong potential for interpretation of variants involved in Mendelian diseases
and in complex disorders probed by genome-wide association studies.
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Introduction

Advances in next-generation sequencing technologies have

considerably reduced the cost of genome sequencing. As a result,

there has been an avalanche of personal genomic data with

numerous individual genomes sequenced in the last few years [1–

4]. Variants in protein-coding genes are of special interest due to

their stronger likelihood of functional effects. A comprehensive

understanding of the functional impact of variants in coding genes

requires their integration with various levels of annotations, such

as primary sequence of the gene, three-dimensional structures of

its protein products and biological networks where genes interact

with each other. Functional annotation of single nucleotide

variants (SNVs) at genomic sequence level results in their

classification as nonsynonymous (which includes missense and

nonsense), splice site disrupting or synonymous. Similarly, small

insertions and deletions (indels) in coding genes can be classified as

frame-shift or in-frame. Nonsense and splice site disrupting SNVs

as well as frame-shift indels are mostly assumed to lead to loss-of-

function (LoF) of genes [5]. On the other hand, missense SNVs

and in-frame indels may or may not be damaging [6].

It is well understood that genes and their protein products rarely

act in isolation but rather work closely with other genes and/or

their products to form various networks and pathways which

accomplish specific goals, for example, signal transduction,

metabolism etc. Thus, a comprehensive understanding of the

functional impact of variants necessitates the inclusion of these

interactions between genes. Network-based approaches are thus

often used to study human disease [7]. One feature that has

emerged from past studies of disease genes and networks is that

protein products of genes associated with similar disorders have a

higher likelihood of physical interaction with each other [8]. It has

also been noted in many studies that functionally essential genes

are more likely to encode for hub (i.e. highly connected) proteins in

the physical protein-protein interaction (PPI) network in both yeast

[9] and humans [8]. Moreover, hub proteins are likely to be under

stronger negative selection constraints in humans and positive

selection tends to occur on network periphery [10]. Similar studies

on signaling pathways have revealed that as one goes from

extracellular space to the nucleus in the cell, negative selection

constraints on genes encoding corresponding proteins tend to

increase [11]. Selection studies have also been performed on

metabolic pathways where enzyme connectivity signifies the

number of other metabolic enzymes that produce the enzyme’s

reactants or consume its products. For example, in a yeast network
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of 584 metabolites and comprising about 16% of all yeast genes,

Vitkup et al found that highly connected enzymes evolve slower

than less connected enzymes [12]. Montanucci et al also reported

that genes encoding highly connected enzymes in N-glycosylation

metabolic pathway exhibit stronger purifying selection constraints

and tend to evolve slowly in primates [13].

In order to obtain a higher resolution understanding of the

relationship between selection constraints and networks, some

studies have also integrated three-dimensional protein structures

with PPI network to obtain structural interaction network (SIN).

Kim et al showed that in yeast, hubs in PPI with more than two

interaction interfaces are more likely to be essential than those

with two or less interfaces [14]. Using structurally resolved human

PPI network, Wang et al showed that disease-causing missense

SNVs and in-frame insertions and deletions tend to be enriched at

the interaction interfaces of proteins associated with corresponding

disorders [15]. They also showed that the disease specificity of

different mutations of the same gene can be explained by their

location on the interaction interfaces. Another important feature

that has emerged from studies of genomic variants on protein

structure (without consideration of network interactions) is that

benign missense polymorphisms tend to occur at solvent exposed

sites on protein structure, while disease-causing missense SNVs

tend to be more buried [16].

Previous studies examining the relationship of functional

significance and selection properties of genes with network

topology have mostly focused on networks with a singular mode

of interactions between genes or their protein products, for

example physical protein-protein interactions. However, a gene

and its protein products can be involved in various biological

networks and its role and consequently its centrality can vary

across these networks. For example, SIX5 is a transcription factor

gene that targets 360 genes in the human regulatory network but

interacts with only one protein in the physical PPI network

[17,18]. This gene is of high functional significance since its

disruption causes Branchio-oto-renal syndrome, a developmental

disorder characterized by the association of branchial arch defects,

hearing loss and renal anomalies [19]. In this study we examine

the relationship of functional essentiality and selection with various

biological networks – protein-protein interaction (PPI), phosphor-

ylation, signaling, metabolic, genetic and regulatory. This enables

us to understand the functional importance and selection

constraints on genes in a global systemic approach. Moreover,

although it has been shown that low evolutionary conservation of

LoF- tolerant genes and their large distance from recessive disease

genes in PPI network can be used to predict disease causation of

variants [5], their unique properties in diverse biological networks

have not been exploited before. Here, we use the distinguishing

network and evolutionary properties of functionally essential and

LoF-tolerant genes to build a predictive model for global damage

caused by novel variants. Using this model, we are able to

compute functional indispensability scores for all protein-coding

genes.

Results

Building the Multinet
The biological networks studied in this work include – PPI,

phosphorylation, metabolic, signaling, genetic and regulatory

(Materials and Methods). Some of these networks represent direct

physical interactions between proteins, for example, PPI. On the

other hand, genetic and regulatory networks contain indirect

interactions between gene pairs. Additionally, some networks such

as phosphorylation, metabolic, signaling and regulatory are

directional with an upstream and downstream gene, whereas

PPI and genetic interactions are undirected. While a gene can

have a vital role in one pathway or network, it might not be as

crucial in another network. Therefore, we pool together data

from all the above-mentioned biological networks to construct

a unified global network, which we term Multinet (Materials

and Methods). The Multinet enables the analyses of the genes

via their roles in the individual networks and the combined

network.

We note that some interactions between two different networks

can be shared. For example, an interaction in which gene A

phosphorylates gene B can occur in both phosphorylation and PPI

networks. However, we find that out of ,110,000 interactions in

our data set, only 881 interactions occur in more than one

network. Thus the vast majority of interactions in our data are

unique or non-redundant. This observation reiterates the fact that

interactions of genes vary across different networks and it is crucial

to include all the networks while analyzing the relationship

between functional importance and selection constraints with

global network centrality. The distribution of 881 interactions

which occur in more than one network is shown in Supporting

Figure S1. The numbers of genes and unique interactions in each

network are shown in Supporting Table S1.

Functional essentiality and network properties of genes
In this section we investigate the relationship between functional

significance of genes and their properties in various biological

networks. All human protein-coding genes are divided into four

categories based on their known disease susceptibilities and

functional impact. A ‘gene significance score’ ranging from 3 to

0 is assigned to each gene: 3 for essential genes, 2 for all genes with

disease-causing mutations in HGMD, 0 for LoF-tolerant genes

and 1 for all the remaining genes that do not fit into any of the

above categories (Materials and Methods). We then correlate these

significance scores with the degree centralities of the genes in all

networks. Degree centrality of a gene in any network is defined as

Author Summary

The number of personal genomes sequenced has grown
rapidly over the last few years and is likely to grow further.
In order to use the DNA sequence variants amongst
individuals for personalized medicine, we need to under-
stand the functional impact of these variants. Deleterious
variants in genes can have a wide spectrum of global
effects, ranging from fatal for essential genes to no
obvious damaging effect for loss-of-function tolerant
genes. The global effect of a gene mutation is largely
governed by the diverse biological networks in which the
gene participates. Since genes participate in many
networks, no singular network captures the global picture
of gene interactions. Here we integrate the diverse modes
of gene interactions (regulatory, genetic, phosphorylation,
signaling, metabolic and physical protein-protein interac-
tions) to create a unified biological network. We then
exploit the unique properties of loss-of-function tolerant
and essential genes in this unified network to build a
computational model that can predict global perturbation
caused by deleterious mutations in all genes. Our model
can distinguish between these two gene sets with high
accuracy and we further show that it can be used for
interpretation of variants involved in Mendelian diseases
and in complex disorders probed by genome-wide
association studies.

Impact of Genomic Variants in a Unified Network
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the number of its interacting partners in that network. In order to

estimate the total number of interacting partners of a gene, we use

its connectivity (number of interactions) in the Multinet (Materials

and Methods).

We find that gene significance scores show positive correlation

with degree centralities in most networks, though it is statistically

significant only in PPI and signaling network and Multinet

(Figures 1 and 2A; Supporting Table S2). Thus, in general,

essential genes tend to be more connected in biological systems

consistent with previous findings [8]. Surprisingly, we find a small

but significant negative correlation between gene significance

score and metabolic degree (Spearman correlation coefficient or

SCC = 20.07, pvalue = 0.028). We also find that, unlike most

other degree centralities, the metabolic degree centrality of genes

shows a significant positive correlation with the number of

paralogs (duplicated copies) (SCC = 0.15; pvalue = 8.26e-07)

(Supporting Table S3; Materials and Methods). Thus, it is possible

that in case of a LoF mutation in a participating enzyme, the

metabolic pathway can be re-routed to an alternate path, possibly

involving a duplicated gene of the disabled enzyme. Our

observation in the human metabolic network is in agreement

with a previous study by Vitkup et al, in which they found that

highly connected enzymes are no more likely to be essential than

less connected enzymes in yeast metabolic network [12]. In this

study we find that not only are essential genes unlikely to be highly

connected in human metabolic network, LoF-tolerant genes

(whenever present in metabolic network) are indeed more

connected than essential genes (Supporting Table S7). This result

demonstrates a major contrast between the structure of the

metabolic network and other networks. In most biological

networks, highly connected genes tend to have fewer duplicated

copies; hence LoF mutations in them can have serious phenotypic

consequences. Since this distinct trend of high degeneracy at hub

proteins is observed only in the metabolic network, we further

posit that this might be an evolutionary mechanism to increase

tolerance towards damaging mutations. The uniqueness of such a

‘protective’ effect somewhat suggests an implicit level of greater

functional importance of metabolic pathways as compared to

other networks of gene interactions.

Interestingly, we find that gene significance scores are positively

correlated with the number of networks the gene is involved in

(Figures 1 and 2B). This indicates that genes involved in many

networks can act as information bottlenecks between different

systems and thus tend to be more essential.

Selection constraints and network properties of genes
We next examine the relationship between selection constraints

on genes and their network properties. We estimate evolutionary

constraints over long time-scale by dN/dS (ratio of missense to

synonymous substitution rates) computed from human-chimp

ortholog alignments (Materials and Methods). dN/dS,1

indicates purifying selection while values close to 1 indicate

neutral selection and dN/dS.1 indicates positive selection. We

find that dN/dS values of genes are negatively correlated with

their degree centralities in all networks, though they reach

significance in PPI, phosphorylation, regulatory and Multinet

networks (Supporting Table S4). This shows that highly connected

genes tend to be under stronger purifying selection constraints

over long evolutionary time-scale, in agreement with previous

studies [10].

Furthermore, we analyze patterns of genetic variation in

modern-day humans in relation to biological networks. We

compute average heterozygosity of each gene to estimate its

genetic variability using missense SNPs (single nucleotide poly-

morphisms) and their corresponding allele frequencies in three sets

of populations from 1000 Genomes Pilot data (Materials and

Methods) [4]. We find that there is a significant negative

correlation between Multinet degree and heterozygosity of

missense SNPs for all three populations, indicating more genetic

variation at the periphery of networks (the correlation is also

significant for some populations in PPI, phosphorylation and

regulatory networks) (Supporting Table S5). Interestingly, we do

not find a significant correlation of heterozygosity of synonymous

SNPs with Multinet degree (Supporting Table S6; Materials and

Methods). Putting together, these results suggest that reduced

genetic variability of highly connected genes with respect to

missense SNPs is indeed due to selection constraints.

Molecular level insights from Structural Interaction
Network

When network edges between two genes correspond to physical

interactions between their protein products, molecular level details

of the interaction can be obtained by integrating three-dimen-

sional protein structures with the underlying network data.

Therefore, in order to understand the reasons for selection

constraints in PPI network at higher resolution, we integrated

three-dimensional protein structures with network interaction

data to create structural interaction network (SIN) (Figure 3A;

Materials and Methods) [14,15,20]. SIN is a subset of the

larger PPI network and consists of 2,102 genes and 11,433

interactions.

SIN construction allows us to estimate the number of interfaces

used by a protein to interact with other proteins (Figure 3A;

Materials and Methods). We find that there is a significant positive

correlation between gene significance scores and the number of

interfaces used by their protein products in SIN (Figure 1). Thus,

protein products of essential genes tend to use more interaction

interfaces than those of LoF-tolerant genes. We also find that the

number of interfaces used by the protein to interact with other

proteins in SIN is positively correlated with their degree centrality

in PPI network (SCC = 0.18, pvalue = 1.06e-09). This shows that

hub proteins tend to have more interaction interfaces. Thus, it is

likely that higher number of interfaces possessed by protein

products of essential genes could partly be a result of their higher

degree centrality in PPI network.

We next examine the impact of missense SNVs on protein

structure in relation to SIN. We find that, in general, residues with

disease-causing missense SNVs tend to be more buried inside

protein structure than polymorphic residues (Figure 3B). Our

observation is consistent with previous findings which have

reported that missense mutations buried inside protein structure

tend to be more deleterious than those on surface [16]. However,

these previous studies treated all proteins equally and did not

differentiate between hub and non-hub proteins in PPI network.

When we treat hub (degree centrality. = 50) and non-hub

proteins separately, we find that accessible surface area for

residues with missense disease mutations is higher for hub proteins

(Wilcoxon rank sum pvalue = 0.014; Supporting Figure S2). We

also observe a significant positive correlation between the degree

centrality of protein and the accessible surface area of their

residues undergoing disease mutations (SCC = 0.028, pva-

lue = 3.12e-03). These results show that hub proteins tend to have

a higher fraction of missense disease mutations on their exposed

surface. This result is very reasonable in light of our observation

that hub proteins tend to have more interaction interfaces (see

preceding paragraph), thereby having a higher fraction of their

exposed surface under selection constraints.

Impact of Genomic Variants in a Unified Network
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Predicting probable functional indispensability of genes
using selection and network properties

In order to further examine the close correlation of network and

evolutionary properties with gene essentiality we use a logistic

regression model to differentiate essential genes from LoF-tolerant

genes (Materials and Methods). Network features used to train the

logistic regression model include degree centralities in Multinet

and all networks separately (PPI, phosphorylation, signaling,

metabolic, genetic and regulatory), number of networks the gene

is involved in and number of interfaces used in SIN. Selection

properties used in the model include human-chimp dN/dS ratios

and average heterozygosities of both synonymous and missense

SNPs in modern human populations. The average values of these

features for LoF-tolerant and essential genes along with correspond-

ing Wilcoxon rank sum pvalues are provided in Supporting Table S7

(see also Figure 1). Using these features we obtain an excellent

classification accuracy for 140 LoF-tolerant and 115 essential genes

with AUC = 0.914 (Figure 4A; Materials and Methods).

Figure 1. Distributions of various network and evolutionary properties for the four gene categories: LoF-tolerant (blue); neutral
(cyan); with known disease-causing mutations (pink) and essential (red). Spearman correlation coefficients (C) between the corresponding
property values of all genes with the gene significance scores are shown at the top right of each boxplot. Corresponding pvalues (P) are also shown.
doi:10.1371/journal.pcbi.1002886.g001

Impact of Genomic Variants in a Unified Network
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Figure 2. This figure shows the edges (grey) of the Multinet, which correspond to interactions between genes. Only the interactions of
genes that are involved in more than one network are shown for clarity. (A) Nodes corresponding to LoF-tolerant and essential genes are shown in
blue and red respectively. Size of the nodes is scaled based on the degree centrality of the gene in Multinet. Essential genes tend to be bigger and in
the center while LoF-tolerant genes tend to be smaller and on the periphery. (B) Nodes corresponding to LoF-tolerant and essential genes are shown
in orange and green respectively. Size of the nodes is scaled based on the number of networks the gene is involved in. Essential genes tend to be
involved in more networks and hence are bigger while LoF-tolerant genes are smaller. Most LoF-tolerant genes are not involved in any network and
are not present in the Multinet.
doi:10.1371/journal.pcbi.1002886.g002

Figure 3. Structural Interaction Network (SIN). (A) Schematic of SIN construction shown by combining three-dimensional protein structural
information from ipfam with PPI network. Nodes in resulting SIN are shown in red with color intensity indicating the number of interaction interfaces
used by the protein. Closer look is provided for four nodes in SIN. While the surface of proteins is generally shown by circular lines, an interface is
depicted using a straight line. Rectangle 1 shows a protein using one interaction interface to interact with one protein; rectangle 2 shows a protein
with two simultaneously possible interactions and consequently two interaction interfaces; rectangle 3 shows a protein with three mutually exclusive
and one simultaneously possible interactions resulting in two interaction interfaces; rectangle 4 shows four simultaneously possible interactions
resulting in four interfaces. (B) Distributions of accessible surface areas of missense SNPs (cyan) and disease-causing missense SNVs (pink).
doi:10.1371/journal.pcbi.1002886.g003

Impact of Genomic Variants in a Unified Network
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Network properties that contribute significantly to the model

include degree centralities in regulatory, genetic and metabolic

networks as well as number of networks the gene is involved in

(Materials and Methods). On further examination of network

participation of LoF-tolerant and essential genes, we find that most

LoF-tolerant genes are not involved in any network and some of

them are involved in a very small number of networks (Figure 4B).

On the other hand, most essential genes are involved in many

networks (Figure 4C). Genes involved in a variety of networks

serve as information bottlenecks between different systems and

hence are more likely to be essential. We note that absence in

some networks could partially be due to missing network data in

our study and/or a bias in existing databases. Essential genes are

more likely to have been the focus of previous research studies, for

example PPI studies, and hence more likely to be present in our

PPI network. They also tend to have more regulatory interactions

and thus are more likely to be present in our regulatory network

(which consists of 118 transcription factors and their target genes:

the most comprehensive human regulatory network available to

our knowledge) [17]. However, the strength of our model lies in its

use of many different network properties to minimize the biases

resulting from the use of a single network property or data

resource. Furthermore, to test the robustness of our model, we

computed the AUC for separation of LoF-tolerant and essential

Figure 4. Prediction of functional indispensability scores. (A) ROC curve resulting from cross-validation of the logistic regression model to
distinguish LoF-tolerant and essential genes. Participation of (B) LoF-tolerant and (C) essential genes in various networks. Rows correspond to gene
names while columns correspond to networks. Presence of a gene in a network is shown by red while its absence is shown by yellow. (D) Distribution
of predicted functional indispensability scores for five gene categories: LoF-tolerant (blue); neutral (cyan); identified in GWA studies (light blue); with
known disease-causing mutations (pink) and essential (red).
doi:10.1371/journal.pcbi.1002886.g004

Impact of Genomic Variants in a Unified Network
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genes multiple times – each time randomly removing 10% of the

edges from a network and rebuilding the Multinet. After repeating

this for all the networks, we find minimal change in the AUC

(ranging from 0.914 to 0.912), which shows that our model is quite

robust to changing some edges in individual networks.

We next perform an independent validation of our model by

applying it on all genes that are neither LoF-tolerant nor essential.

Interestingly, we find that predicted functional indispensability

scores are in the following order: genes with known disease-

causing mutations have significantly higher scores than genes

identified in genome-wide association (GWA) studies (Wilcoxon

rank sum pvalue = 7.62e-05), which are in turn significantly higher

than all the remaining neutral genes (Wilcoxon rank sum

pvalue,2.2e-16) (Figure 4D). Genes identified in GWA studies

are associated with phenotypic consequences, while they are not

necessarily the causal genes. Hence it is reassuring that genes with

known disease-causing mutations in HGMD receive significantly

higher scores than those identified in GWA studies. This validation

exercise demonstrates that our model can help researchers pick

candidate disease genes in clinical sequencing studies. We have

provided the predicted scores for all the genes in Supporting Table

S8. We note that the predicted functional indispensability scores

are continuous scores unlike the discrete gene significance scores

used to compute correlations in an earlier section.

Discussion

Genes and their protein products work in collaboration with

other genes to form biological systems that perform specific tasks.

For a systemic understanding of the role a gene plays, there is a

need to integrate different modes of gene interactions. In this work

we pool together interaction data from various biological systems

(PPI, phosphorylation, signaling, metabolic, genetic and regulato-

ry) to create a unified Multinet, enabling the computation of

degree centrality of the genes in their individual networks and in

the context of the entire Multinet (Supporting Table S8).

Subsequent analysis of functional significance and evolutionary

properties of genes allows us to relate genomic sequence variants

in individual genes to their functional effects in individual and

global networks. We find that highly connected genes in the

Multinet and genes that participate in many biological systems

tend to be more functionally significant, have fewer paralogs and

resist mutations in healthy humans. While we also observe similar

trends in most of the constituent networks of the Multinet, the

metabolic network seems to be an exception. Highly connected

genes in the metabolic network tend to have more paralogs and

are more tolerant to LoF mutations.

Next, we combine three-dimensional protein structural infor-

mation with PPI network to create structural interaction network

(SIN) and understand selection on protein structure at molecular

level detail. We find that functionally essential genes (which are

more likely to encode for hub proteins) tend to use more interfaces

to interact with other proteins. We also observe that hub proteins

in PPI network contain a higher fraction of disease-causing

mutations on their solvent exposed surface, as compared to non-

hub proteins. Thus, although generally missense SNVs on exposed

protein surface are more likely to be benign, our results show that

those on the surface of hub proteins are more likely to be

deleterious [21].

Finally, we integrate network and selection properties of genes

to build a logistic regression model which can separate LoF-

tolerant and essential genes with high accuracy (AUC = 0.91).

Application of the model on all genes shows that it predicts higher

functional indispensability scores for genes with known disease-

causing mutations than genes identified in GWA studies, which

themselves have higher scores than remaining neutral genes. The

predicted functional indispensability scores for all genes are made

publicly available and can be used to predict candidate disease

genes in future clinical studies. These scores are indicators of

global damage caused by deleterious mutations in coding genes –

including nonsense and missense SNVs and in-frame and frame-

shift indels. As mentioned above, nonsense SNVs and frame-shift

indels are mostly assumed to disable gene function. However,

missense SNVs and in-frame indels are more complex since they

may or may not have a deleterious impact. Various methods exist

to predict the functional effects of missense SNVs, for example,

SIFT and PolyPhen [21,22]. While these methods examine the

tolerance of individual sites in genes to missense mutations, they

do not take into account the functional significance of the entire

gene. For example, a moderately deleterious missense SNV in a

highly significant gene can be equally or more damaging than a

strongly deleterious missense SNV in a less significant gene. Our

method to compute functional indispensability scores for entire

genes can be combined with scores predicted by SIFT and

PolyPhen to obtain a more comprehensive view of the functional

effects of genomic variation.

We note that even though our model is very robust to the

removal of some edges in individual networks, the incomplete and

biased nature of existing biological networks data may constitute a

caveat in our study. However, to our knowledge, this is the first

comprehensive genome-wide study linking genetic variants at

population scale as well as disease variants with a vast body of

available network resources. Models developed and applied in this

study can be further expanded as more interaction data is obtained

and further population genetics projects are undertaken, partic-

ularly with the future phases of the 1000 Genomes project.

Materials and Methods

Networks data and building Multinet
Human protein-protein interaction and genetic interaction

networks were extracted from BIOGRID (release 3.1.83) [18]

containing 43,722 and 263 interactions, respectively. Regulatory

network (relationship between transcription factors and target

genes) was from ENCODE data [17]. Metabolic enzyme network

contained directed linkages from upstream enzymes to down-

stream enzymes, based on compound reactions in KEGG [23].

Phosphorylation network in human contains 28,637 directed

kinase-substrate interactions between 2,392 genes [24]. The

signaling network in this study is constructed based on 1,011

interactions and 527 proteins (downloaded July 2011) from human

signaling pathways obtained from the SignaLink database (http://

www.signalink.org/) [25]. SignaLink offers an easily-downloadable

and well-curated set of interactions from eight major signaling

pathways found in humans that are not tissue-specific, namely

EGF/MAPK, Ins/IGF, TGF-b, Wnt, Hedgehog, JAK/STAT,

Notch and NHR (Nuclear Hormone Receptors). Manual data

curation was performed in SignaLink by extensive literature

survey of primary experimental evidence of these interactions,

resulting in expansion of verified interaction data for the

corresponding signaling pathways in protein interaction databases

such as the KEGG [26], Reactome [27] and NetPath [28], while

maintaining substantial overlaps with these databases. A detailed

description of the curation process and comparisons between these

databases and SignaLink can be found in [25]. Throughout the

article, connectivity of the gene in PPI, phosphorylation, signaling

and metabolic networks refers to connectivity of the protein

product of the gene.

Impact of Genomic Variants in a Unified Network
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Interactions from all the above networks were combined to

create Multinet. If a gene pair interacts in multiple networks or

shows both upstream and downstream connection in a directional

network, the interaction is counted once in Multinet.

Gene categories
The list of 140 LoF-tolerant genes was obtained from

MacArthur et al [5]. This list contains genes that show

homozygous LoF mutations in at least one individual in 1000

Genomes pilot data [4]. The list of 115 essential genes was

obtained from Liao et al [29]. These genes exhibit clinical features

of death before puberty or infertility when LoF mutations occur.

The list of 2,451 disease genes was obtained from HGMD

(Human Gene Mutation Database) [30]. All the genes with any

disease-causing mutation (DM tag in HGMD) were used. If any

gene occurred in more than one category, its category was decided

in a hierarchical fashion as follows: essential, followed by disease

followed by LoF-tolerant. The remaining 19,267 genes were

assigned the category of neutral. The list of genes identified in

GWA studies was obtained from the NHGRI GWAS catalogue

(https://www.genome.gov/26525384#download).

Obtaining paralogs and dN/dS values for human-chimp
orthologs

Number of paralogs for each gene and dN/dS values for

human-chimp orthologs were obtained from Ensembl using

BioMart [31].

Source of 1000 Genomes data and calculation of average
heterozygosity

SNPs in modern-day humans and their allele frequencies

were obtained from the low-coverage pilot phase of the 1000

Genomes Project [4]. This phase consisted of 60 individuals of

CEU (Utah residents with Northern and Western European

Ancestry), 59 individuals of YRI (Yoruba in Ibadan, Nigeria) and

60 individuals of CHB+JPT (Han Chinese in Beijing, China and

Japanese in Tokyo, Japan) populations. Heterozygosity value is

calculated as 2pq, where p and q correspond to the frequencies of

the two alleles. Average heterozygosity for a gene is defined as the

average heterozygosity of the SNPs in that gene, where

heterozygosities of missense and synonymous SNPs are computed

separately.

Structural Interaction Network (SIN)
Data. Protein-protein interaction (PPI) network is curated and

filtered from HPRD (Human Protein Reference Database) and

MIPS database, containing 39,849 interactions between 7,432

proteins [32]. For each protein, the domain information is

obtained from Pfam. Pfam domain-domain interactions (DDI)

and residue level interactions between protein domains in PDB are

obtained from iPfam (release 20.0) [33].

SIN construction. Domain-domain interactions are mapped

onto protein-protein interaction network through the protein-

domain relationships. Interactions that are supported by both DDI

and PPI are included in the SIN. Generally speaking, SIN has the

interacting domain information in corresponding protein-protein

interactions. SIN contains 11,433 domain interactions between

2,262 proteins.

Determining interaction types and number of interaction

interfaces. Some interactions in SIN are mutually exclusive as

they compete for same interaction interface while some of them

could occur at the same time, as they use different interfaces

(called simultaneously possible interactions). Types of interactions

are determined by overlaps in interacting residues. For example, if

most residues (.20%) used by protein A to interact with protein B

are also used by protein A to interact with protein C, these two

interactions of protein A are mutually exclusive and correspond to

the same interaction interface. If protein A also interacts with

protein D using a completely different set of residues, its

interaction with protein D is possible simultaneously to its

interactions with protein B or protein C. Thus, for each protein,

the interactions it is involved in can be classified into mutually

exclusive and simultaneously possible based on the residues used

for those interactions. Number of interaction interfaces of a

protein is then defined as the number of simultaneously possible

interactions involving that protein.

Solvent accessible surface area. In order to match the

genomic coordinates for 1000 Genomes SNPs and disease-causing

SNVs with PDB residue numbers, we first obtained Uniprot/

Swissprot accession ids for gene IDs using BioMart [31]. Pairwise

alignments of Uniprot sequences and Ensembl sequences gave the

matching residue number. Then we found the corresponding PDB

id, residue number and its solvent accessible surface area using the

data resource provided at http://genetics.bwh.harvard.edu/

pph2/dokuwiki/downloads.

Calculation of functional indispensability scores
Logistic regression model. Logistic regression was em-

ployed to separate essential genes from LoF-tolerant genes, based

on their network and evolutionary properties. We decided to train

the model on extremes of gene categories, i.e, LoF-tolerant and

essential genes since we have relatively higher confidence in these

gene sets. Missing values of a feature for any gene were replaced

by the average value of that feature. To improve fitness of model,

optimal features were selected using forward feature selection

procedure conducted using AIC (Akaike information criterion).

This resulted in the addition of the following set of features to the

model sequentially: number of networks, dN/dS, regulatory

degree, genetic degree, CEU synonymous heterozygosity and

metabolic degree.

Cross-validation. To evaluate prediction accuracy and

minimize over-fitting problems, 10-fold cross-validation was

performed and corresponding AUC (area under curve) scores

were calculated. AUC scores correspond to areas under the ROC

(receiver operating characteristic) curves, which depict the

relationship between sensitivity and specificity. The average

AUC score from 10-fold cross-validation is reported. Model

obtained from training data was then applied to disease genes and

non-disease causing (neutral) genes to assess their functional

indispensability. A probable functional indispensability score is

assigned to each gene, with high score suggesting more likely to be

essential.
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Figure S1 Number of pair-wise gene interactions shared

between different networks.

(PDF)

Figure S2 (A) Accessible surface area of sites with missense

disease-causing SNVs in hubs is significantly greater than for sites

with missense disease-causing SNVs in non-hubs (B) Distribution

of gene degree centralities in SIN (structural interaction network).

(PDF)

Table S1 Number of genes and unique interactions in each

network.

(PDF)

Impact of Genomic Variants in a Unified Network

PLOS Computational Biology | www.ploscompbiol.org 8 March 2013 | Volume 9 | Issue 3 | e1002886



Table S2 Spearman correlation coefficient (SCC) of gene

significance scores with degree centralities in various networks.

Pvalues,0.05 denote significant correlations and are shaded in

grey.

(PDF)

Table S3 Spearman correlation coefficient (SCC) of number of

gene paralogs with degree centralities in various networks.

Pvalues,0.05 denote significant correlations and are shaded in

grey.

(PDF)

Table S4 Spearman correlation coefficient (SCC) of gene dN/

dS values with degree centralities in various networks. Pva-

lues,0.05 denote significant correlations and are shaded in grey.

(PDF)

Table S5 Spearman correlation coefficient (SCC) of average

heterozygosity of missense SNPs for each gene with degree

centralities in various networks. Values for each population are

shown separately. Pvalues,0.05 denote significant correlations

and are shaded in grey.

(PDF)

Table S6 Spearman correlation coefficient (SCC) of average

heterozygosity of synonymous SNPs for each gene with degree

centralities in various networks. Values for each population are

shown separately.

(PDF)

Table S7 Average values of different properties for LoF-tolerant

and Essential genes. Wilcoxon rank sum pvalues,0.05 are shaded

in grey and denote significantly different distributions of the

corresponding property for the two gene categories.

(PDF)

Table S8 Network properties and functional indispensability

scores for all genes.

(TXT)
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