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Détente: A Practical Understanding of P values 
and Bayesian Posterior Probabilities
Stephen J. Ruberg1,*

Null hypothesis significance testing (NHST) with its benchmark P value < 0.05 has long been a stalwart of scientific 
reporting and such statistically significant findings have been used to imply scientifically or clinically significant 
findings. Challenges to this approach have arisen over the past 6 decades, but they have largely been unheeded. 
There is a growing movement for using Bayesian statistical inference to quantify the probability that a scientific 
finding is credible. There have been differences of opinion between the frequentist (i.e., NHST) and Bayesian schools 
of inference, and warnings about the use or misuse of P values have come from both schools of thought spanning 
many decades. Controversies in this arena have been heightened by the American Statistical Association statement 
on P values and the further denouncement of the term “statistical significance” by others. My experience has 
been that many scientists, including many statisticians, do not have a sound conceptual grasp of the fundamental 
differences in these approaches, thereby creating even greater confusion and acrimony. If we let A represent the 
observed data, and B represent the hypothesis of interest, then the fundamental distinction between these two 
approaches can be described as the frequentist approach using the conditional probability pr(A | B) (i.e., the   
P value), and the Bayesian approach using pr(B | A) (the posterior probability). This paper will further explain the 
fundamental differences in NHST and Bayesian approaches and demonstrate how they can co-exist harmoniously to 
guide clinical trial design and inference.

We are now approaching a “100-year war” on the proper approach 
for analyzing and interpreting the results of an experiment to test 
a scientific hypothesis.1–10 The centerpiece of scientific inference 
for nearly a century has been the development of null hypothesis 
significance testing (NHST) and its ultimate output, the P value. 
The emergence of P < 0.05 appears to have come as a matter of 
convenience as Sir Ronald Fisher noted, “The value for which 
P = 0.05 is 1.96 or nearly 2; it is convenient to take this point as 
a limit in judging whether a deviation is to be considered signif-
icant or not.”11 He reiterated this idea when he made statements 
about what he thought might be considered “statistically signifi-
cant” evidence.12 Further advances in inferential reasoning were 
developed by Jerzy Neyman and Egon Pearson as they established 
the theory for deciding whether to “accept” or reject the null hy-
pothesis—H0.13 These developments are known as the frequentist 
school of statistical inference because they rely on the frequency 
(or probability) with which one might observe data (denoted A) 
under the assumption that H0 is true (i.e., no treatment effect; de-
noted B). If that probability, the P value, is small, then the data 
is considered incompatible with H0, and H0 is rejected in favor 
of the alternative hypothesis (i.e., there is a treatment effect). 
Throughout this paper it will be denoted generally as pr(A | B)—
pr(the data given a hypothesis).

The Bayesian approach derives its name from the ideas de-
veloped by Reverend Thomas Bayes in 1763.14 He was inter-
ested in the inverse probability, denoted pr(B | A); that is, given 
the data that has been observed from an experiment (A), what 
probability might be assigned to the truth of a hypothesis (B) 

or its alternative hypothesis, denoted BC or the complement of 
B. Bayes formula describes the relationship between pr(BC | A) 
and pr(A | B):

I present the formula in the context of the alternative hypothesis 
BC for reasons that will become clear in the subsequent exposition.

The history of the philosophical skirmishes between Fisher, 
Neyman, and Pearson and their followers are well-documented 
and have been recounted elsewhere.15 Perhaps even more notable 
are the clashes between the frequentist and Bayesian schools of in-
ference.1 What is noteworthy is that warnings about the use or mis-
use of P values come from both frequentist and Bayesian schools of 
thought and span many decades.

Discussions in this arena have been heightened by the American 
Statistical Association statement on P values16 and the further de-
nouncement of the term “statistical significance”17,18 as well as its 
rebuttal.19 Many alternative ideas are contained in a Special Issue 
of The American Statistician (volume 73:supplement 1, 2019), in-
cluding many authors urging that inference move away from fre-
quentist approaches toward Bayesian approaches. My experience 
has been that many scientists, including many statisticians, do not 
have a sound conceptual grasp of the fundamental differences in 
these approaches, thereby creating even greater confusion and ac-
rimony. Furthermore, only modest progress has been made over 
the past decades to resolve these schools of inferential thought. 

pr
(
BC |A

)
= pr

(
A |BC

)
pr
(
BC

)
∕
[
pr
(
A |BC

)
pr
(
BC

)

+pr (A |B) pr (B)
]
.

Received April 21, 2020; accepted June 27, 2020. doi:10.1002/cpt.2004

1Analytix Thinking, LLC, Indianapolis, Indiana, USA. *Correspondence: Stephen J. Ruberg (analytixthinking@gmail.com)

TUTORIAL

mailto:
mailto:analytixthinking@gmail.com


VOLUME 109 NUMBER 6 | June 2021 | www.cpt-journal.com1490

Hopefully, this paper will help solidify concepts and understand-
ing as well as propose a path forward for improving statistical 
AND thereby scientific inference.

Section “Frequentist and Bayesian Inference Made Simple” pro-
vides a simple illustrative example that, in my experience, has been 
very enlightening for distinguishing the fundamental differences 
between frequentist and Bayesian inference. A novel explanation 
of the P value is presented to extend the notion of the P value fal-
lacy.6 Section “Clinical Trials as Diagnostic Tests” describes a com-
mon, well-accepted, real-world application of Bayesian thinking 
and generalizes to clinical trials and more broadly research exper-
iments. Section “Détente: The Peaceful Co-Existence of P-values 
and Bayesian Probabilities” describes how to integrate frequentist 
and Bayesian thinking. Section “A Path Forward” recommends a 
path forward, and section “Summary” is a summary and call for 
change.

FREQUENTIST AND BAYESIAN INFERENCE MADE SIMPLE
A thought experiment
Suppose a bag of 10,000 coins contains 9,999 coins balanced for 
heads (H) and tails (T) and 1 biased coin with H on both sides. An 
experimenter will draw one coin at random from the well-mixed 
bag of coins but does not show the coin to an observer. The experi-
menter flips the selected coin repeatedly and tells the observer the 
result, H or T. The observer is to declare when s/he is willing to bet 
that the experimenter drew the biased coin. Of course, if the result 
of any flip is T, then the observer would immediately know that a 
fair coin was drawn. So, the intriguing thought experiment is to 
suppose there is a sequence of H ’s. Stated simply, the question is 
“How many consecutive H ’s are needed before one should be will-
ing to bet that the biased coin was selected?” When I have posed 
this thought experiment to clinicians, scientists, and statisticians 
(henceforth called my students), most of them answer in the range 
of 6–10 H ’s being sufficient to make the bet.

There are two perspectives for answering the question. The 
first perspective is the NHST or frequentist approach, which de-
fines a simple null hypothesis H0: pr(H) = 0.50 (i.e., a fair coin) 
and a simple alternative Ha: pr(H)  =  1.0 (i.e., the biased coin). 
Suppose the observer’s prespecified decision rule for this NHST 
is to reject H0 when N consecutive H’s are observed, where N is 
the observer’s choice. In this case, the probability of a type 1 error 
(probability of rejecting H0 if indeed H0 is true) for such a deci-
sion rule is simply:

Note that N is a fixed value that defines the decision rule, and 
the choice of N can be made based on how small the observer 
wants to make the type 1 error (uniformly denoted as α). Once 
again, if A represents the observed data and B represents H0, then 
the above can be written as pr(A | B). This is a conditional prob-
ability because the probability of A is computed under the condi-
tion or assumption that B has occurred or that B is true.

Once the experiment proceeds, this same calculation can be 
done for any observed value n and is known as the P value, which 
is presented in Table 1 for various values of n. Of course, small P 

values are interpreted as evidence against the null hypothesis (i.e., 
Fisher’s notion of “significant” used in a colloquial sense) or lead 
to a decision to reject H0 whenever n ≥ N (i.e., Neyman–Pearson 
decision theory).

The second perspective follows a Bayesian approach. Some 
have argued that scientists are more interested in the likelihood of 
whether a hypothesis is true or false given the results of an experi-
ment (i.e., the observed data).20 In particular, the greatest interest 
is in pr(H0 is false | data) or pr(BC | A). Equivalently, this is the 
pr(Ha is true | data). As noted previously, this inverse probability 
calculation requires the use of Bayes formula (see Supplementary 
Materials for calculations pertinent to this example). For this 
thought experiment, Bayesian inference calculates:

which is also displayed in Table 1 for values of n  =  1, 20. This 
probability is directly related to the question at hand for making 
a bet.

If we were to repeat the thought experiment with a bag of 100 
coins, with 99 fair coins and 1 biased coin, the same betting ques-
tion can be asked. Most of my students rightly guess that fewer 
consecutive H’s are needed to make the bet. The precise Bayesian 
probabilities are also presented in Table 1.

pr (N consecutiveH’s |H0 is true)=0. 5N.

pr(the biased coinwas drawn |n consecutive heads are observed)

Table 1 P values and Bayesian probabilities for the coin 
toss thought experiment

Number of 
consecutive 
Heads (n) P valuea

Prior = 1/10,000  
pr(biased coin)b

Prior = 1/100  
pr(biased 

coin)b

1 0.5 0.000200 0.019802

2 0.25 0.000400 0.038835

3 0.125 0.000799 0.074766

4 0.0625 0.001598 0.139130

5 0.03125 0.003190 0.244275

6 0.015625 0.006360 0.392638

7 0.0078125 0.012639 0.563877

8 0.0039063 0.024963 0.721127

9 0.0019531 0.048711 0.837971

10 0.0009766 0.092897 0.911843

11 0.0004882 0.170001 0.953889

12 0.0002441 0.290600 0.976400

13 0.0001220 0.450333 0.988059

14 0.0000610 0.621006 0.993994

15 0.0000305 0.766198 0.996988

16 0.0000153 0.867624 0.998492

17 0.0000076 0.929121 0.999245

18 0.0000038 0.963258 0.999622

19 0.0000019 0.981285 0.999811

20 0.0000010 0.990554 0.999906
aThe P value is calculated as pr(n consecutive H’s | H0 is true) = 0.5n. bThe 
pr(biased coin) is calculated using Bayes formula (see Supplementary 
Information) with the stated prior in each column.
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Several observations in Table 1 are warranted to understand 
the fundamental differences in these two perspectives and to assess 
when it is appropriate to bet that the experimenter selected the bi-
ased coin.

1. Many “P value minded” students intuitively know that a 
large string of consecutive H ’s is unlikely using a fair coin. 
Although they may not make the 0.5n calculation in their 
minds, they have a sense that the P value is rapidly getting 
small as n gets large. Interestingly, for 6–10 consecutive H ’s 
(the common range of answers), the P values range from 0.016 
to 0.001. Many students find this gratifying or confirmation 
of their sense of “statistically significant.”

2. The P values in Table 1 remain the same, regardless of which 
bag of coins is used in the thought experiment. This is because 
the calculation is based on a conditional probability assuming 
the truth is known (i.e., H0 is true) or said differently, is inde-
pendent of the prior probability of selecting the biased coin.

3. Using the Bayesian calculations for the bag with 10,000 coins, 
several remarks are noteworthy.
a. Before the coin is ever flipped (i.e., generate any data), the 

probability that the biased coin was selected is 1 in 10,000 or 
0.0001. As seen in Table 1, when one H is observed, there is 
one small piece of evidence that the coin may be biased, and 
the probability is now 0.0002 (i.e., 2/10,000). With each 
consecutive head, or piece of data, that probability is getting 
larger, but even at 10 consecutive H ’s, the probability that 
the biased coin was selected is < 0.10, which appears to be 
greatly at odds with any interpretation based on the P value.

b. Note that with 13 consecutive H ’s, the probability that the 
biased coin was selected is 0.45, and with 14 consecutive H ’s 
that probability is 0.62. Thus, with 14 consecutive H ’s, the 
observer would calculate that the odds are in his/her favor 
that the experimenter has the biased coin, and s/he would 
make the bet.

c. Now note that the P value for 13 consecutive H ’s is 
0.0001220, which is slightly larger than 1 in 10,000. The P 
value for 14 consecutive H ’s is 0.0000610, which is slightly 
smaller than 1 in 10,000. That is, if the observer were to 
think rightly about this evidence, the observer would real-
ize that 13 consecutive H ’s using a fair coin is more likely 
to occur than the experimenter pulling the one biased coin 
from the bag of 10,000 coins. Furthermore, 14 consecutive 
H ’s is less likely to occur with a fair coin than for the exper-
imenter to pull the one biased coin from the bag of 10,000 
coins. Again, this is the point at which the observer should 
make the bet. This demonstrates that the P value can only 
be rightly interpreted in the context of our prior knowledge 
(i.e., the prior probability of pulling the biased coin from the 
bag).

4. In the experiment with the bag of 100 coins, the same observa-
tions can be made. At the outset, the probability of pulling the 
biased coin is 0.01, and with the first flip of the coin being H, 
that probability increases slightly to about 0.02. Furthermore, 
with 6 consecutive H ’s, the P value is slightly greater than 1 
in 100 (0.016) and the Bayesian probability is 0.393 (i.e., 

< 0.50). With 7 consecutive H ’s, the P value is slightly < 1 in 
100 (0.008) and the Bayesian probability is 0.564. Thus, in the 
context of this bag of coins, 7 consecutive heads are more likely 
to occur under Ha than H0, representing sufficient evidence to 
bet that the biased coin was drawn from the bag of 100 coins.

This example illustrates the relationship between the Bayesian 
probability, the prior used for that Bayesian calculation and the 
P value. Observing a rare event, such as 10 consecutive heads, 
must only be evaluated in the context of prior knowledge, in this 
case, how many coins are in the bag. Although observing 10 con-
secutive heads with a fair coin is quite unusual (P value about 
1/1,000), it is not nearly as unusual as the experimenter pulling 
THE one biased coin from a bag having 9,999 other fair coins 
(1/10,000). Although the relationships between the Bayesian 
probability, the prior and the P value for this example do not 
necessarily carry over precisely to more complex hypotheses and 
experimental data, the concepts do. One should only consider 
how extreme an observed set of data are in the context of prior 
knowledge or belief.

As noted previously, the P values remain the same, regardless of 
which bag of coins is used in the thought experiment. However, 
as demonstrated in Table 1, its proper interpretation depends on 
the experimental setting and is conditional on the prior. P values 
and Bayesian posterior probabilities give the same insight provided 
the calculations are seen in the context of the specific experiment 
(i.e., the size of the bag of coins and the prior probability it con-
fers). Because the P value calculations are the same irrespective of 
the prior, their interpretation must be done a posteriori, whereas 
the Bayesian posterior probabilities explicitly incorporate prior 
knowledge.

Too often, the debate about the veracity of H0 vs. Ha is con-
ducted after the experiment is completed based on the P value, 
but its interpretation requires consideration of the experimental 
setting and how a finding compares to the extant body of scien-
tific knowledge. Was the experiment well-designed? Does the 
laboratory or clinic have credibility? Are the findings a surprise or 
consistent with other studies? In contrast, the Bayesian approach 
forces such considerations prior (I use this term intentionally) to 
the conduct of the study and requires thoughtful assimilation of 
information and quantification of belief. Both paradigms require 
subjective judgments, but the difficult work is done a priori in the 
Bayesian framework and a posteriori (or post hoc) in the frequentist 
approach.

Last, prespecification is an important principle in scientific 
research (e.g., prespecification of the study design, the patient 
population, the data collection, and the analysis approach). This 
is critical in confirmatory research but also valuable in early clin-
ical development or exploratory research. Greater credibility of 
findings is achieved when prespecified research protocols and 
analyses are executed as planned. In this way, the Bayesian ap-
proach has an epistemological advantage over the frequentist ap-
proach in that (i) it forces prespecification of a prior that is used 
directly in the analysis and subsequent interpretation of results, 
and (ii) the resulting posterior probability statement is directly 
related to the question at hand: “Given an observed number of 
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consecutive H’s, what is the probability that the biased coin was 
drawn?”

P values: A closer look
NHST is so strongly embedded in the process of scientific re-
search that it is worth reviewing the basic elements in its con-
struction. First, one must declare a hypothesis of interest, most 
often “no effect.” Second, an alternative hypothesis is declared and 
usually captures what a scientist wants to prove—that there is a 
difference in experimental groups. Third, a test statistic is defined 
that measures the difference in response between the experimen-
tal and control groups relative to the underlying variability in 
the data. Fourth, a clear definition of the magnitude of the type 
1 error probability that is allowable is defined, that is the maxi-
mum probability of rejecting H0 when, in fact, it is true (α). This 
is also known as controlling the probability of a false-positive (FP) 
finding or the significance level of the test. The key is that this 
statistical machinery must be prespecified; statistical principles 
and scientific validity for producing credible findings do not allow 
for one to observe data and then decide what hypotheses or test 
statistics or α-level to use.

The P value is the ultimate summary statistic because it is a single 
number distilled from the data (no matter how much) through a 
model (no matter how complex) that includes a probability distri-
bution for capturing the uncertainty in the data. That is, a P value 
contains the same information as the test statistic on which it is 
based because there is a 1-to-1 mapping of the test statistic to the 
(0,1) scale through an inverse probability function.21 Many forget 
this. I suspect we gravitate to P values because they exist on this 
common scale, and it is much easier to quickly judge the impor-
tance of P = 0.03, for example, than reporting a χ2 statistic with 6 
degrees of freedom equaling 13.97.

The problem with interpreting P values arises when they are 
construed as the smallest significance level for which H0 could 
have been rejected,22 as is often done in practice. However, this 
is a post hoc assessment that uses the observed data to define the 
significance level of the hypothesis test the researcher wishes 
they would have used. The scientific community would never 
allow a researcher to change their hypothesis or test statistic or 
the critical value for that test statistic based on observed data, 
and yet this is done routinely when interpreting the P value 
statistic. The researcher can use the P value to decide to reject 
H0 whenever the observed P-value is less than the predefined 
α-level, but one should not make the post hoc interpretation that 
the observed P value is the type 1 error rate for the prespecified 
hypothesis test. It may seem to be a subtle distinction in infer-
ence and interpretation, but when the P value is seen for what it 
is—the transformation of a test statistic based on observed data 
to the interval (0,1)—then it is easy to appreciate the readily 
accepted principle that the hypothesis testing procedure should 
not be changed based on observed data.

Confusion arises when the α-level of the test used for setting 
a decision rule (N in the thought experiment) and the observed 
P value statistic (based on the observed n in the thought exper-
iment) are both called the “significance level.” Informally, the 
term “significance” has been used in a colloquial sense, following 

Fisher’s original statements and his view that a P value may be 
indicative of an important finding. However, formally, the term 
“significance level” should only be used to describe the probabil-
ity of making a FP decision (i.e., the α-level) using the NHST 
procedure chosen for the analysis. The conflating of the prespec-
ified α-level, which is a characteristic of the hypothesis test, and 
the observed P value, which is a characteristic of the data, has 
been called the “silent hybrid solution.”23–25 It stems, in part, 
from the notion that evidence is assessed on a continuous scale, 
or gradations of probability, but decision making is discrete (i.e., 
false/true). In that sense, evidence is judged on the continuous 
interval (0, 1), and decision-making is judged on the set {0, 1}, 
but they both use the same P value.26 In section “Détente: The 
Peaceful Co-Existence of P values and Bayesian Probabilities,” 
the relationship between a P value and a posterior probability 
will be explored in more detail to understand the degree of evi-
dence against H0.

CLINICAL TRIALS AS DIAGNOSTIC TESTS
The Merriam–Webster definition of a bioassay is the “determi-
nation of the relative strength of a substance (such as a drug) by 
comparing its effect on a test organism with that of a standard 
preparation.” In this regard, a clinical trial is nothing more than a 
very sophisticated bioassay, and, indeed, any research experiment 
may be considered as an assay. It is the attempt to quantify an un-
known characteristic of a substance or organism through chemical 
or biological analysis.

More specifically, a clinical trial is a diagnostic. Diagnostic tests 
are often based on a biochemical assay. Even those that are not, 
such as electrocardiograms, are still identical in structure to a bio-
chemical diagnostic test—there is some “machinery” for making 
measurements that is calibrated to distinguish a patient with or 
without an unknown characteristic. When decision making is in-
volved, that calibration includes some cutoff value that determines 
the operating characteristics (i.e., sensitivity and specificity) of 
the diagnostic test. The design, operating characteristics, and in-
terpretation of a diagnostic test are well-known and serve as an 
excellent analogy for clinical trials27 and experimental research in 
general. This is clearly depicted in the familiar 2 × 2 table shown 
in Table 2.

In diagnostic testing and clinical research, the goal is to make 
inference about an unknown characteristic of the patient (i.e., Is 
the patient pregnant?) or an unknown truth about the state of 
nature (i.e., Does this drug work?), respectively. The diagnostic 
test is designed to have suitable sensitivity (i.e., ability to iden-
tify patients with the characteristic) and specificity (i.e., abil-
ity to identify those without the characteristic). In the NHST 
paradigm, a statistical test is designed to have adequate power 
(i.e., ability to detect an effect if it exists) while controlling the 
type 1 error (i.e., limit FP findings). The probability of a type 
2 error (denoted β) is (1-power) and such an error in decision 
making is referred to as a false–negative finding. The sensitivity 
and specificity that constitutes an acceptable diagnostic test de-
pends on the costs or consequences of the probability of FP and 
false–negative (FN) findings. At its inception, NHST was also 
to “decide about α, β, and sample size before the experiment, 
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based on subjective cost-benefit considerations”28 (my emphasis 
added). This seems to have been lost in the modern rote ap-
plication of NHST whereby α = 0.05 and β = (0.80, 0.90) for 
confirmatory clinical trials, regardless of the medical context or 
societal circumstance.

In both diagnostic testing and NHST, the design of the tests 
depends on the conditional existence or nonexistence of the char-
acteristic or truth. Sensitivity, specificity, type 1 error, power (and 
equivalently type 2 error) are conditional probabilities that operate 
in the “vertical direction” of Table 2. That is, sensitivity and power 
start with an assumption of the characteristic being present or a pos-
itive treatment effect, whereas specificity and type 1 error start with 
the assumption of the characteristic being absent or a null effect.

In diagnostic testing, the sensitivity and specificity can be tuned 
by changing the cutoff value of the biochemical assay for defining 
a positive/negative test result, and most often various cutoffs are 
evaluated to optimize sensitivity and specificity appropriately for 
a medical condition. For example, if human chorionic gonadotro-
phin exceeds 50 milli-international units per milliliter of urine 
in a urine sample from the patient, then it is predicted with 99% 
probability that she is pregnant. That 50 milli-international units 
per milliliter of urine can be changed to alter the operating char-
acteristics (i.e., sensitivity and specificity) of the diagnostic test.

In NHST, the sample size may be calculated to meet α = 0.05 
and β = (0.80, 0.90), but rarely are α and β changed. Furthermore, 
α is used solely to define the critical value (i.e., cutoff ) that de-
marcates the rejection region for the hypothesis test (e.g., 1.96 for 
α = 0.05). Thus, the concepts underlying the design of a diagnostic 
test are identical to those for designing a clinical trial or research 
experiment under the NHST paradigm.

So, how should one interpret the outcome of a single experiment 
or clinical trial? Let’s continue with the diagnostic testing analogy. 
The important quantity is the positive predictive value (PPV), 
which is the conditional probability of the patient having the char-
acteristic given (i.e., assuming) the test result is positive. This condi-
tional probability operates in the “horizontal direction” of Table 2 
and is computed by evaluating the fraction true positives (TPs) rel-
ative to all positive findings (i.e. TPs and FPs). Using Table 2, if A 
represents “the diagnostic test is positive,” and BC represents “the 
patient characteristic is present,” then sensitivity is the following.

pr(A | BC) = pr(the diagnostic test is positive | the patient has 
the characteristic), and PPV is the inverse probability

pr(BC | A) = pr(the patient has the characteristic | the diagnostic 
test is positive).

Similar statements can be written for negative predictive value 
(NPV). Algebraically, the PPV is written as

This is precisely Bayes formula presented previously!
A key element of the PPV formula is pr(BC), which is known as 

the prevalence. One way to conceptualize the prevalence of a patient 
characteristic in a population of interest is to think of it as the prob-
ability of a randomly selected patient from that population having 
the characteristic. In a very real sense, it is the likelihood or belief 
that a patient has the characteristic of interest prior to performing 
the diagnostic test. It is well known in the diagnostic testing arena 
that the PPV decreases as the prevalence decreases. For example, for 
a diagnostic test with 95% sensitivity and 95% specificity, the PPV 
is given in Table 3 for various levels of prevalence (i.e., prior proba-
bility that a patient has the characteristic of interest).

Neither the physician nor the patient knows with certainty whether 
the patient has the characteristic or not. The only evidence they have 
is a diagnostic test result. Thus, when interpreting the diagnostic test 
result for an individual patient, sensitivity and specificity have little 
meaning, and the PPV and NPV are the only meaningful probabil-
ities to the physician and the patient. Sensitivity and specificity are 
pertinent when designing a diagnostic test, but PPV or NPV are the 
quantities of primary interest when interpreting a diagnostic result 
for an individual patient. As in the pregnancy test example, the 99% 
probability that the woman is pregnant is the PPV, not the sensitivity 
or specificity of the diagnostic test.

The analogy with NHST is quite direct for interpretation of clin-
ical trial results as well. In NHST, prevalence is directly analogous 
to the likelihood that H0 is false—or equivalently Ha is true—in a 

PPV =pr(BC |A)=TP∕ (TP+FP)

=pr(A | BC)pr(BC)∕
[
pr(A | BC)pr(BC)+pr

(
A |B

)
pr (B)

]
.

Table 2 The analogy of diagnostic testing (bold font) and NHST (italicized font)

Unknown characteristic/truth  
Hypothesis

Present (BC)  
Alternative (Ha)

Absent (B)  
Null (H0)

Diagnostic  
Statistical  
Test  
Result

Positive (A)  
Significant

Sensitivity  
Power – true positive Type 1 error (α)

PPV

Negative  
Not significant Type 2 error (β)

Specificity  
True negative

NPV

NHST, null hypothesis significance testing; NPV, negative predictive value; PPV, positive predictive value.

Table 3 PPV as a function of prevalence for a diagnostic 
test with 95% sensitivity and 95% specificity

Prevalence PPV

0.50 95%

0.20 90%

0.10 68%

0.05 50%

0.01 16%

PPV, positive predictive value.
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clinical trial (i.e., the prior). Furthermore, at the end of a clinical 
trial, the researcher can only observe whether the statistical test re-
jects H0 or not, and the analogous question to diagnostic testing 
must be asked: “Given that H0 has been rejected by a suitable statis-
tical test for a given clinical trial design, what is the probability that, 
in truth, H0 is false?” The answer is, of course, the Bayesian poste-
rior probability, analogous to PPV and NPV. However, Bayesian 
posterior probabilities are rarely considered in the inferential par-
adigm for interpreting clinical trial results. Yet, no one with any 
understanding of diagnostic testing would ever conclude that there 
is a 95% probability that a patient has a characteristic of interest if 
they tested positive when using a diagnostic test with 95% sensitiv-
ity. They would use the PPV, which is dependent on the prevalence 
(Table 3). Why then, when we do a sophisticated “diagnostic test,” 
such as a clinical trial, do we conclude we have a positive finding if 
the observed result from a single clinical trial is a P value < 0.05 just 
because we designed the statistical test with a significance level of 
0.05? Although the design of a clinical trial uses α and power (1−β) 
analogous to sensitivity and specificity, the interpretation of an in-
dividual clinical trial must be based on the posterior probability of 
H0 being false (alternatively Ha being true) in the same way that 
the interpretation of any individual result from a diagnostic test can 
only be interpreted using PPV or NPV.

DÉTENTE: THE PEACEFUL CO-EXISTENCE OF P VALUES 
AND BAYESIAN PROBABILITIES
As noted in the above, there have been long-standing debates on 
the use of frequentist and Bayesian approaches to inference. At 
times, the arguments on both sides have been quite philosophical 
or abstract or mathematical, leaving many practitioners and con-
sumers of statistical information confused and alienated, even to 
the point of abandoning their use.29

In fact, the frequentist and Bayesian approaches could be har-
monized by taking a diagnostic testing mindset. The design of a 
clinical trial can be done using the interplay between the α-level 
and power of the statistical test with resulting sample size and crit-
ical value to optimize the performance of the trial. However, when 
interpreting the results of the trial, a Bayesian evaluation is most 
appropriate. The additional requirements and complexity of the 
Bayesian approach lies in the quantification of a prior for H0 being 
false, or equivalently Ha being true.

In its simplest form, the prior could be stated as a point prob-
ability—a single number in the interval (0,1). For example, for a 
phase II clinical trial of a new treatment, one may argue the prob-
ability that the new treatment works is 0.30. This may be derived 
from historical data on such treatments in the therapeutic class,30,31 
preclinical models of disease, pharmacokinetic/pharmacodynamic 
models, the success/failure of other treatments in the same mech-
anistic class, or other sources of scientific knowledge.32 There is a 
full literature on rigorous, scientific elicitation and construction of 
a prior for a hypothesis of interest.33

Using a point prior, there is a simple approximation for com-
puting the probability of H0 being false using the Bayes Factor 
Bound (BFB), which is based on reasonable, practical assump-
tions.20,34 Let p0 be the prior probability that H0 is false and let 

p  =  P value from the test of H0 from the current experiment. 
Then the BFB is

and the upper bound on the posterior probability that H0 is false 
(p1) given the observed data is

In words, this formula contains the prior probability that H0 is 
false and the current level of evidence against H0 to update the prob-
ability of H0 being false after the experiment. This posterior proba-
bility is directly related to our belief against H0, which is decidedly 
NOT what a P value is, and is more understandable and interpreta-
ble. The significance level and the posterior probability are as dis-
tinct from each other as sensitivity and PPV. Finally, note that this 
posterior can be used in constructing a prior for subsequent experi-
ments/trials for hypotheses of the same or similar nature.

To complete the example, with a prior probability of 0.30 that 
an experimental drug works in a clinical trial (i.e., H0 is false), 
suppose our hypothetical phase II clinical trial produces a P 
value of 0.05. Using Eq. 1, the posterior probability that H0 is 
false is ≤ 0.513, perhaps surprisingly less certainty than might be 
conveyed by a significant P value. This also illustrates why some 
have noted that a P value of 0.05 is not very strong evidence 
against H0.4 In this case, the increase in probability against H0 
has moved from a prior of 0.30 to a posterior of about 0.50 or 
0.20 increase. Thus, there is some modest movement of the ev-
identiary needle against H0, but I suspect many would a see a 
significant phase II result as a reason to believe that a phase III 
study would quite likely be successful when that simply is not 
supported by the evidence.

There are more sophisticated approaches that use a full prob-
ability distribution of effect size rather than a point probability 
as a prior, but that is beyond this tutorial. However, the concepts 
and principles are identical. Equation 1 may serve as a quick or 
approximate assessment of the likelihood of H0 being false, but 
my experience has indicated that it is a particularly good guide-
post. Individual scientists may have different priors based on their 
knowledge, experience, or even bias, leading to different levels of 
posterior belief. That is OK. What is important is to discuss the 
sources of prior data and information rather than fixate solely on a 
single P value from the current clinical trial.

A PATH FORWARD
A logical paradigm for making inference that integrates statisti-
cal and scientific thinking can be summarized in three successive 
questions,35 each one building on the previous:

1. What do the data say?
2. What do we believe about a hypothesis based on that data?
3. What should we decide?

This section will follow this line of inquiry considering the pre-
vious sections.

BFB=1∕
[
−e∗p∗ ln

(
p
)]

,

(1)p1≤ p0 ∗BFB∕
(
1−p0+p0 ∗BFB

)
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What do the data say?
In many situations, a P value is a reasonable summary measure of 
evidence from data collected in a single experiment about a specific 
null hypothesis. As a piece of evidence, it should be reported as a con-
tinuous measure, not dichotomized and declared significant or non-
significant with the implication that a hypothesis is true or false.17 
Hiding behind labels, such as “P < 0.05,” or terms, such as “signifi-
cant,” obscures the level of evidence conveyed by the data. Certainly, 
a P value = 0.001 is greater evidence against H0 than a P value = 0.04, 
although both could be reported as “P < 0.05” or “statistically signif-
icant.” The key is that they need to be calibrated using a posterior 
probability, or at least its upper bound using Eq. 1.

The misinterpretation of P values, which is exacerbated by the 
dichotomization findings as significant/nonsignificant around 
P = 0.05, has been documented almost since their inception and 
continues today.36 They are the probability of observing the data 
given H0, rather than what scientists are most interested in under-
standing—the likelihood of H0 or Ha given the data.20 When de-
scribed in these terms, one can plainly see that when a P value is the 
final arbiter for making inference and decisions, it is a precise an-
swer to the wrong question. Such over-reliance on P values has been 
suggested as a contributor to lack of reproducibility of research.9

Recommendation 1: Do not abandon P values; 
abandon dichotomous labels and conclusions or de-
cisions based solely on P values.

What do we believe?
In the thought experiment, the probability of the biased coin being 
selected depends on the “prevalence” of biased coins in the bag. 
Observing 10 consecutive H ’s results in a probability of having the 
biased coin of 0.093 and 0.912, depending on whether the prior 
probability is 1 in 10,000 or 1 in 100, respectively. Thus, for the 
same observed data or level of evidence (P = 0.00098), the observer 
can have quite different degrees of certainty about whether to 
make a bet that the biased coin was selected from the bag of coins.

This is not a radical notion. All scientists read new research 
findings and put them in the context of what they already know. 
For example, when reading about a new potential treatment for 
Alzheimer’s disease being successful in an animal study or even an 
early phase human trial, do we not apply some subjective discount-
ing of the results and have lower expectations for success in a large-
scale phase III trial? Experience and data tell us that the probability 
of success in Alzheimer’s disease is low from the outset, and, there-
fore, “significant” findings must always be weighed in that context.

A simple, small step forward in formally calculating our belief 
in a hypothesis can be achieved using the upper bound on the 
posterior probability of H0 being false, given in (Eq. 1). Bayarri 
et al. note this upper bound on H0 being false is quite reason-
able in practice.37 Using this approach requires no new software 
or advanced computing but does require the prespecification of 
a prior probability of the null hypothesis being false. Although 
this may seem daunting, Wacholder et al. state, “The practice of 
choosing a prior probability may not be quite as unfamiliar as it 
seems. Investigators already informally use prior probability to de-
cide whether to launch a study, which genes to study, and how 

to interpret the results. We believe that formally developing prior 
probabilities before seeing study results can, in itself, lead to a sub-
stantial improvement in interpreting study findings over current 
scientific practice.”38

Although using Eq. 1 to compute the upper bound on the pos-
terior probability of H0 being false would be extremely useful for 
reporting scientific results (far better than a P value alone), there 
needs to be systematic social change for registering some repre-
sentation of prior belief as well as updating that belief as scientific 
knowledge increases during the course of a long trial. Fortunately, 
clinical trials are registered in clinicatrials.gov, and there should be 
an extra requirement to state a prior for H0 being false quantita-
tively (as a point probability or a full probability distribution) as 
well as its justification.

In the absence of such registries, as is the case in most preclin-
ical research, such a statement should be a necessary part of the 
statistical methods section of a publication. This is another small 
step forward because most research papers have an introduction or 
background section to describe the history and justification for the 
current research work. It may be difficult to certify whether the 
stated priors were done a priori, but this simple step could have 
outsized benefit because editors, reviewers, and the ultimate read-
ership could decide for themselves on the credibility of the stated 
prior in their overall evaluation of the research findings. Finally, 
when post hoc or exploratory analyses are presented in a paper, they 
too should be considered in the context of a formal quantification 
of a prior. Any analyses that are not prespecified would automati-
cally start with an extremely low prior.

As a parallel benefit to stating priors for hypotheses at the outset 
of a study, there would be less debate whether a study or a finding 
within a study is “exploratory” or “confirmatory.”39,40 Many stud-
ies, especially clinical trials, involve both confirmatory and explor-
atory analyses, the former being prespecified and the latter being of 
secondary interest or led by the observed data. In many cases, these 
labels are used to assess whether a “statistically significant” finding 
is credible or not. In some cases, journals even prohibit reporting 
a P value of secondary or exploratory findings,41 implying that 
no inference is possible or reasonable. Certainly, researchers will 
draw conclusions or form some level of belief based on the data, 
even in the absence of a P value. Why not provide some quanti-
tative description, such as the upper bound on the probability of 
H0 being false, as a benchmark for starting the discussion? With a 
stated prior in place, the labels “confirmatory” and “exploratory” 
lose their meaning and utility. Equation 1 contains the elements of 
interest—a synthesis of prior belief and current evidence.

To illustrate further, a so-called confirmatory clinical trial will also 
have exploratory elements within it. Assume that a new treatment in 
drug development has had a successful phase II trial and proceeds to 
phase III with a prior probability of 0.70 that the treatment works, 
a reasonable assumption for many drug-development programs. 
Furthermore, there is some interest in exploring the possibility that 
the treatment effect is more pronounced in a subgroup of patients. 
The prior for an exceptional treatment effect in that subgroup is 
based on literature and biological mechanism but was not studied 
explicitly in phase II. Thus, assume the prior for the hypothesis that 
the treatment works better in the subgroup is 0.20. Now suppose the 
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results from the trial produce a P value = 0.03 for the overall “confir-
matory” treatment effect and a P value = 0.001 for the “exploratory” 
subgroup analysis. Using Eq. 1, the upper bound on the posterior 
probability of H0 being false is 0.89 for the confirmatory analysis and 
is 0.93 for the exploratory analysis. Thus, the so-called “confirma-
tory” result is slightly less convincing than the “exploratory” result, 
and perhaps the result in the overall trial population is driven by a 
large effect size in the “exploratory” subgroup. Traditionally, the ex-
ploratory subgroup would not be given credence, and recommen-
dations would be made for further clinical trials, a time-consuming 
and expensive endeavor. With the elimination of such dichotomous 
labels and the use of quantitative priors at the outset of the trial, in-
terpretation of results can stand on their own based on a meaning-
ful probability assessment of each hypothesis. As noted earlier, the 
difficult work of prespecifying hypotheses and their related priors 
is necessary, but such thoughtful work during the conception of the 
clinical trial can make results more interpretable and potentially save 
substantial time and money thereafter.

Pharmaceutical companies and regulators sometimes debate 
whether a clinical trial is a confirmatory trial or not (perhaps 
based on the strength of phase II data) when, in fact, what is 
needed is an agreement on what prior should be assigned to 
whether a drug works.32 Thus, the practice of stating a prior 
probability related to H0 being false eliminates yet another ar-
bitrary and vague dichotomization - confirmatory versus explor-
atory - that muddles the interpretation of scientific research. 
Stating the implicit priors, which we all have in our minds, ex-
plicitly will make our intentions, beliefs, and subsequent infer-
ences more transparent and perhaps lessen post hoc debate about 
whether a finding is dichotomized as credible or spurious. It is 
preferable to have a quantified level of belief from which deci-
sions can be made.

Recommendation 2: Prespecify a prior probabil-
ity of H0 being false. State the posterior probabil-
ity of H0 being false using, at a minimum, Eq. 1. 
Replace the dichotomous labels of “confirmatory” 
or “exploratory” with a prior for each prespecified 
hypothesis and use a posterior probability for evalu-
ating the credibility or strength of evidence for each 
hypothesis.

What do we decide?
The thought experiment provides another useful insight into this 
three-question paradigm. When presented with this thought ex-
periment and asked how many H ’s one needs to see before betting 
that the biased coin has been selected, some clever students ask, 
“How much is the bet?”

This is precisely the right question! What we decide depends on 
a utility function—the cost-benefit of our decision. As these clever 
students point out, if there is a $5 bet involved, they are willing to 
make the bet as soon as the Bayesian probability exceeds 50% (i.e., 
the odds are in their favor). If the bet is for a million dollars, even a 
99% Bayesian probability of having drawn the biased coin may not 
be enough. They reason that even a 1% chance of such a devastat-
ing loss is not worth a highly probable windfall.

The same is true in diagnostic testing. What level of cost for FP 
findings and subsequent actions taken for patients are worth the 
cost of FN findings? Answering this question can be exceedingly 
difficult as in the case of screening mammography in asymptom-
atic women. Every patient has a different risk-benefit calculus, 
and the US Preventative Services Task Force, which recommends 
routine mammography screening to begin at age 50, rightly notes, 
“Women who place a higher value on the potential benefit than the 
potential harms may choose to begin biennial screening between 
the ages of 40 and 49 years.”42

This thinking is generally not an explicit element of the medical 
literature. Even in trials where the analytical approach is Bayesian, 
there is rarely formal evaluation of the benefits and harms and their 
associated costs for making treatment decisions. For example, in 
the study of therapeutic hypothermia in newborns with hypox-
ic-ischemic encephalopathy, Bayesian posterior probabilities are 
calculated as to whether hypothermia treatment is superior to 
non-cooling treatment in terms of survival or disability.43 The re-
sults showed that the hypothermia treatment had a 76% posterior 
probability of being superior to non-cooling treatment and a 64% 
posterior probability of having a clinically meaningful 2% absolute 
reduction in mortality or disability. This positive effect is in the 
context of additional adverse events in the hypothermia treatment 
group. The discussion notes, “A decision to use hypothermia … 
will need to consider the probability of benefit, the frequency of 
adverse events, and the availability of evidence-based alternative 
treatments.” If an institution or a healthcare system decided to 
implement hypothermia treatment routinely, they would have to 
calculate the benefits of improved outcomes and the costs of the 
procedure itself with its increased side effects. The probability that 
this is a TP finding (76% or 64% depending on the perspective) 
would then be used to balance this decision against the probability 
that this is a FP finding (i.e., a 24% chance or 36% chance depend-
ing on the perspective) that hypothermia treatment is worse than 
non-cooling treatment, including the cost of doing the hypother-
mia procedure unnecessarily with no benefit and costs related to 
the procedure and its associated adverse events.

In the original design of NHST for use in decision making, α and 
β were to be defined based on the costs of these erroneous deci-
sions. In the quest for simplicity and through sheer force of tradi-
tion, the scientific world has settled on nearly uniform values for α 
and β, regardless of the scientific problem or the societal context in 
which subsequent decisions are made.

Recommendation 3: Instead of a clinical study being 
declared positive/negative based solely on a P value, 
probabilities against H0 should be stated44 with a 
thoughtful quantification and discussion about the 
consequences of such a decision being a FP or FN 
finding.

SUMMARY
One notable dimension of the reproducibility crisis is the confu-
sion and consternation over statistical inference and its impact on 
scientific findings.36,45 This stems from (i) the confounding of 
the significance level of a NHST procedure and the resulting P 
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value, (ii) the unavoidable fact that evidence is continuous whereas 
decisions are dichotomous, and (iii) the lack of understanding of 
conditional probability. As for the latter, one would never con-
fuse pr(rain | cloudy) with pr(cloudy | rain), and yet for nearly a 
century, the scientific community has used the pr(A | B), the P 
value, as a substitute for pr(B | A), the Bayesian posterior proba-
bility, because of the ease and convenience of computing a P value. 
Advances in statistical methodology and computing power now 
make that substitution obsolete.

Appropriate statistical analysis for obtaining an accurate P 
value is critical for answering “What do the data say?” Additional 
scientific knowledge—defining priors as objectively as possible—
is essential for answering “What do we believe?” Any answers to 
these questions should exist on a continuum of probability to 
convey the strength of evidence against H0. Only then, in the 
realm of decision making with an appropriate utility function 
that weighs the cost of FP and FN findings against the benefits 
of TP and true negative findings should the evidence be distilled 
into a dichotomous choice for answering “What do we decide?”

The eminent statistician John Tukey wrote, “Far better an approx-
imate answer to the right question, which is often vague, than an 
exact answer to the wrong question, which can always be made pre-
cise.”46 A Bayesian posterior probability may be viewed as subjective 
or “vague” due to the definition of the prior, but I agree with Tukey 
that a very precise P value, which can also have subjective assump-
tions, models, and interpretations, fundamentally addresses the 
wrong question. If we are to make meaningful improvements in our 
scientific inference, then our statistical inference must be directed at 
the right question and quantified using Bayesian approaches.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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