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Sex differences in gene expression have been extensively documented, but little is
known about these differences in parasitoid species that are widely applied to control
pests. Brachymeria lasus is a solitary parasitoid species and has been evaluated as
a potential candidate for release to control Lymantria dispar. In this study, gender
differences in B. lasus were investigated using Illumina-based transcriptomic analysis.
The resulting 37,453 unigene annotations provided a large amount of useful data for
molecular studies of B. lasus. A total of 1416 differentially expressed genes were
identified between females and males, and the majority of the sex-biased genes were
female biased. Gene Ontology (GO) and Pathway enrichment analyses showed that
(1) the functional categories DNA replication, fatty acid biosynthesis, and metabolism
were enhanced in females and that (2) the only pathway enriched in males was
phototransduction, while the GO subcategories enriched in males were those involved
in membrane and ion transport. In addition, thirteen genes involving transient receptor
potential (TRP) channels were annotated in B. lasus. We further explored and discussed
the functions of TRPs in sensory signaling of light and temperature. In general, this
study provides new molecular insights into the biological and sexually dimorphic traits
of parasitoids, which may improve the application of these insects to the biological
control of pests.

Keywords: sexually dimorphic, Brachymeria lasus, transcriptomic analysis, sex determination, venom protein,
transient receptor potential channels

INTRODUCTION

Parasitoids are animals that parasitize other organisms (Godfray, 1994). All invertebrate life stages,
such as egg, larva or nymph, pupa and adult, can be attacked by oviposition on or in the host or by
depositing a larva on or near a host (Boulton et al., 2015). Based on the number of offspring reared
in a host, parasitoid wasps are classified as solitary (one parasitoid per host), quasi-gregarious (one
parasitoid per host, but hosts are spatially clumped, such as a clutch of eggs on a leaf), or gregarious
(multiple parasitoids per host). The vast majority of parasitoids are solitary wasps (Mayhew, 1998).
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Parasitoids can also be classified as koinobionts (in which hosts
continue to develop and grow to some extent) or idiobionts
(in which hosts do not grow further). Parasitoid wasps are
haplodiploid: males develop from unfertilized eggs and are
haploid, while females develop from fertilized eggs and are
diploid (Cook, 1993; Heimpel and de Boer, 2008). Parasitoid
species (e.g., Sclerodermus harmandi, Trichogramma) are
important insects and have been extensively applied to reduce the
population size of pest species (Hassan, 1993; Li, 1994; Terayama,
1999; Zhishan et al., 2003; Parra and Zucchi, 2004; Lim et al.,
2006). In addition to having important applications, parasitoid
and mutualistic Chalcidoidea, such as jewel (Nasonia vitripennis)
and fig (Pleistodontes froggatti) wasps, have been important
study models of behavioral ecology and evolutionary biology for
such traits as their sexual dimorphism in longevity, body size,
and dispersal (Hamilton, 1967; Charnov, 1982; Yan et al., 1989;
Godfray, 1994).

Animals from a broad range of taxa show sex differences,
which include behavioral (Breedlove, 1992), physiological
(Bardin and Catterall, 1981), and morphological dimorphisms
(Darwin, 1871). It is often assumed that the majority of sexually
dimorphic traits arise from differences in the expression of genes
present in both sexes (Connallon and Knowles, 2005; Rinn and
Snyder, 2005). Sex-biased gene expression has been documented
in brown algae (Lipinska et al., 2015), birds (Pointer et al., 2013),
nematodes (Albritton et al., 2014), Daphnia pulex (Eads et al.,
2007), and multiple insect species, including Drosophila (Jin et al.,
2001; Arbeitman et al., 2002; Ranz et al., 2003; Chang et al.,
2011), Anopheles gambiae (Hahn and Lanzaro, 2005; Marinotti
et al., 2006; Baker et al., 2011), Tribolium castaneum (Prince
et al., 2010), vespid wasps (Hunt and Goodisman, 2010), and
Bemisia tabaci (Wen et al., 2014). However, few studies of sex
differences in gene expression have been done in Hymenoptera
insects, and these studies have focussed mainly on social species
(e.g., honeybee; Cameron et al., 2013) and model organisms of
parasitoids, e.g., jewel wasp N. vitripennis (Wang et al., 2015),
which is a classic gregarious species. Most species of parasitoid
wasps are thought of as solitary species (Mayhew, 1998), but their
sexual transcription differences have not been addressed.

Gypsy moth, Lymantria dispar is a worldwide pest, and its
pupal stage can be parasitized by Brachymeria lasus. B. lasus
is a solitary parasitoid species and has been evaluated as a
potential candidate for release to control L. dispar (Simser and
Coppel, 1980), Homona magnanima (Mao and Kunimi, 1991)
and Sylepta derogate (Kang et al., 2006). In addition, B. lasus
has a wide host range, including many Lepidoptera species
(e.g., Mythimna separata, Hyphantria cunea, and Cnaphalocrocis
medinalis) (Habu, 1960). Male and female B. lasus differ in
many important biological traits, including longevity (Mao and
Kunimi, 1994b); development time in the egg, larval and pupal
stages (Mao and Kunimi, 1994a); secondary symbionts; and body
size (Yan et al., 1989). As B. lasus is a classic solitary species with
many documented sex differences, though not yet at the gene
expression level, it was used as the experimental material in this
study. To reveal B. lasus sex differences at the transcriptional
level, we carried out an Illumina-based transcriptomic analysis.
This study attempted to provide comprehensive insight into the

sexually dimorphic traits of parasitoid wasps at the transcriptome
level to improve our understanding of other biological traits
with the aim of improving the application of parasitoids to the
biological control of pest species.

MATERIALS AND METHODS

Insect Cultures
In northern China, in addition to L. dispar, B. lasus is also an
important pupal parasitoid of H. cunea, for which the parasitism
ratio is approximately 1.06–3.39% in the field (Yang et al., 2001).
To acquire B. lasus adults, we collected the pupae of H. cunea,
which may be parasitized by B. lasus and other parasitoid
species (e.g., Coccygomimus disparis Viereck; Chouioia cunea
Yang) from a field in Xuzhou City, Jiangsu Province, China, in
March 2016. After collection, we isolated the pupae individually
in polyethylene tubes (height: 7.5 cm; diameter: 1 cm) whose
openings were covered by a cotton ball and incubated them at a
temperature of 28 ± 0.5◦C, a relative humidity (RH) of 70 ± 5%
and a photoperiod of 14 L:10 D. We observed and selected B. lasus
after adult eclosion.

Transcriptomic Analyses
For the transcriptomic experiment, only 1-day-old B. lasus
adults were selected, and the sex was determined under a
microscope (Leica M205A, Germany). Then, five adults of
the same sex were pooled into a plastic tube (1.5 ml),
snap-frozen in liquid nitrogen, and transferred to a –80◦C
freezer for long-term storage. RNA from each sample group
(whole bodies of female and male adults) was extracted with
TRIzol reagent (Invitrogen; United States). Each group had
three replicates. The quality of the isolated RNA was assessed
using a NanoDrop (Thermo Fisher Scientific NanoDrop 2000,
United States), and the A260/280 values were all above 2.0.
A total of 3 µg total RNA from each sample was converted
into cDNA using the NEBNext R© UltraTM RNA Library Prep
Kit for Illumina R© (NEB, United States). In total, six cDNA
libraries were constructed and subsequently sequenced with the
Illumina HiSeq 2000 platform by Beijing Biomarker Technologies
Co., Ltd, resulting in raw reads. Raw sequence data generated
were deposited into Sequence Read Archive (SRA) database of
NCBI with the accession no. PRJNA513855. Clean reads were
obtained by removing reads containing adapter, poly-N reads
and low-quality reads from the raw data using FASTX-Toolkit1,
and these clean reads were used for further analysis. Then,
transcriptome assembly was performed using Trinity (v2.5.1)
with the default parameters (Grabherr et al., 2011). For functional
annotation, pooled assembled unigenes were searched using
BLASTX (v2.2.31) against five public databases, Clusters of
Orthologous Groups (COG), Swiss-Prot, NCBI non-redundant
protein sequences (nr), KEGG Ortholog database (KO) and
GO, with an E-value cutoff of 10−5. Using our assembled
transcriptome as a reference, we identified putative genes
expressed in males and females by RSEM (Li and Dewey, 2011),

1http://hannonlab.cshl.edu/fastx_toolkit/
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using the reads per kb per million reads (RPKM) method. Genes
with at least 2-fold changes (i.e., log2|FC| ≥ 1) and a false
discovery rate [FDR] < 0.01 as found by DESeq R package
(1.10.1) were considered differentially expressed. The GOseq R
package (Young et al., 2010) and KOBAS software (Mao et al.,
2005) were used to implement the statistical enrichment of
differentially expressed genes (DEGs) in the GO and KEGG
pathways, respectively, and an adjusted Q-value <0.05 was
chosen as the significance cutoff.

Validation by mRNA Expression
and Behavior
Based on transcriptomic data, a gene of transient receptor
potential (trp) involved in the phototransduction pathway
enriched only in males (ko: 04745; Supplementary Figure S1-d),
trp (Leung et al., 2000), was down-regulated in females, which
may lead to a reduction in light response (Leung et al., 2000;
Popescu et al., 2006). Therefore, we checked this result at the
mRNA expression and behavioral levels.

Quantitative Real-Time PCR (qRT-PCR) Analysis
Total RNA was extracted from the whole bodies of five female or
five male adults reared on the pupae of H. cunea using TRIzol
(Invitrogen; United States) according to the manufacturer’s
protocols, then resuspended in nuclease-free water. Finally, the
RNA concentration was measured using a NanoDrop (Thermo
Fisher Scientific NanoDrop 2000; United States). Each group
have four replicates. Approximately 0.5 mg of total RNA was
used as template to synthesize the first-strand cDNA using
a PrimeScript RT Reagent Kit (TaKaRa; Japan) following the
manufacturer’s protocols. The resultant cDNA was diluted to
0.1 mg/ml for further qRT-PCR analysis (ABI StepOne Plus;
United States) using SYBR Green Real-Time PCR Master Mix
(TaKaRa; Japan). Primers (Supplementary Table S1) for trp gene
were designed using Primer Express 2.0 software. The cycling
parameters were 95◦C for 30 s followed by 40 cycles of 95◦C for
5 s and 62◦C for 34 s, ending with a melting curve analysis (65 to
95◦C in increments of 0.5◦C every 5 s) to check for nonspecific
product amplification. Relative gene expression was calculated
by the 2−11Ct method using the housekeeping gene GAPDH
as a reference to eliminate sample-to-sample variations in the
initial cDNA samples.

Phototaxis Assays
A glass Y-maze (main arm: 12 cm; two side arms: 5 cm; inner
diameter: 1.5 cm; angle between two side arms: 75◦) was used for
phototaxis assays in a completely dark room (<10 lux, measured
by illuminometer, LX-9621, China) at a temperature of 22–26◦C.
One 1-day-old B. lasus adult (female or male) began the trial in
a tube at the base of the apparatus and faced a choice between
two tubes, one of which was dark and the other of which was
lighted with a 40-watt bulb (approximately 600 lux). After 1 min,
the choice was recorded. The sample sizes of the male and female
groups were 18 and 24, respectively. After each test, the Y-maze
was washed and dried, and the two side arms were changed
for the new test.

Statistical Analysis
Prior to analysis, the raw data were tested for normality and
homogeneity of variances with the Kolmogorov-Smirnov test and
Levene’s test, respectively, and the data were log-transformed
if necessary. The qRT-PCR data comparing gene expression
in females and males were analyzed with the independent
t-test. In phototaxis assays, the preferences for light and dark
were analyzed using sign tests, and the differences in female
and male phototaxis were analyzed by the chi-square test. All
analyses were performed using SPSS v.20 (IBM SPSS, Armonk,
NY, United States).

RESULTS AND DISCUSSION

Sexual dimorphism is the condition where the two sexes of
the same species exhibit different characteristics (e.g., size,
color, behavior) beyond the differences in their sexual organs
(Bonduriansky, 2007). Most sexually dimorphic traits are often
assumed to arise from differences in the expression of genes
present in both sexes (Connallon and Knowles, 2005; Rinn
and Snyder, 2005). To reveal B. lasus sex differences at
the transcriptional level, we carried out an Illumina-based
transcriptomic analysis.

Transcriptome Sequencing, Read
Assembly and Annotation
All high-quality reads (101,945,678) from the six samples
were pooled and assembled by using Trinity with the default
parameters, and a total of 254,656 transcripts with lengths longer
than 200 bp were generated. The N50 size was 2706 bp with
57,605 sequences longer than 1 kb. We chose the longest isoform
of each gene to construct the unigene set. After isoforms were
considered, these assembled transcripts were predicted to be
produced from a total of 164,709 unigenes. The N50 size of
the unigenes was approximately 814 bp, and their mean length
was 572.08 bp (Supplementary Table S2). For annotation, the
pooled assembled unigenes were searched using blastx against
five public databases with an E-value cutoff of 10−5. A total of
37,453 unigenes were successfully annotated, as shown in Table 1,
including 17,248 genes in GO, 13,491 genes in COG, 35,427 genes
in nr, 18,195 genes in Swiss-Prot, and 15,133 genes in KEGG.

In the GO analysis, 17,248 unigenes were successfully
annotated and classified into three major GO categories:
molecular function (MF), cell component (CC), and biological

TABLE 1 | Annotation of a pooled assembly including both male and female
B. lasus transcriptomes.

Annotation database Annotated unigenes Number of DEGs

COG 13,491 420

GO 17,248 442

KEGG 15,133 396

Swiss-Prot 18,195 613

nr 35,427 1024

Total 37,453 1416
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processes (BP), then assigned to 56 subcategories based on
GO level 2. The dominant subcategories for the classified
genes were catalytic activity and binding for the MF category;
cell and cell part for the CC category; and metabolic
process, cellular process, and single-organism process for the
BP category (Supplementary Table S3). A total of 15,133
KEGG-annotated unigenes were classified into 190 pathways
(>10 associated unigenes). Among these pathways, the ten most
highly represented were ribosome, carbon metabolism, protein
processing in endoplasmic reticulum, oxidative phosphorylation,
biosynthesis of amino acids, spliceosome, RNA transport, purine
metabolism, peroxisome, and ubiquitin mediated proteolysis
(Supplementary Table S4).

Sex-Biased Genes
Although in most species the male and female genomes differ
by a few genes located on sex-specific chromosomes (such
as the Y chromosome of mammals), the vast majority of
sexually dimorphic traits result from the differential expression
of genes that are present in both sexes (Connallon and Knowles,
2005; Rinn and Snyder, 2005; Ellegren and Parsch, 2007), and
this is especially true in hymenopteran insects. Because sex
determination in hymenopteran species is haplodiploid, females
and males are nearly identical genetically (Ellegren and Parsch,
2007). Such DEGs include those that are expressed exclusively in
one sex (sex-specific expression) and those that are expressed in
both sexes but at a higher level in one sex (sex-biased expression).
These sex-biased genes can be further separated into male-biased
and female-biased genes, depending on which sex shows higher
expression. Genes with equal expression in the two sexes are
referred to as unbiased (Ellegren and Parsch, 2007).

Using our assembled transcriptome as a reference,
we identified putative genes expressed in males and females
using the RPKM method, and genes with at least 2-fold changes
and FDR < 0.01 were defined as DEGs. By comparing female and
male transcriptomes, 1416 DEGs were found in B. lasus, of which
442 genes were annotated in GO, 420 in COG, 1024 in nr, 613 in
Swiss-Prot, and 396 in KEGG (Table 1). Among these DEGs, 986
were up-regulated in females and 430 were up-regulated in males
(Supplementary Table S5).

GO Enrichment Analyses
In the GO enrichment analyses, 12 and five subcategories
were enriched in females and males, respectively. In females,
the enriched subcategories were microtubule cytoskeleton,
cytoskeletal part, MCM complex, nucleus, protein complex,
kinesin complex, and nucleosome for the CC category; DNA
replication initiation, cell division and protein phosphorylation
for the BP category; and alpha-1,4-glucosidase activity and zinc
ion binding for the MF category (Figure 1A). These results
showed that, consistent with the results in flies, mosquitoes, and
Daphnia (Ranz et al., 2003; Hahn and Lanzaro, 2005; Eads et al.,
2007), including Hymenoptera insects of Nasonia (Wang et al.,
2015), most categories were related to DNA replication, which are
probably expressed to produce eggs in females (Spradling, 1993;
Parisi et al., 2004). The over-representation of transcripts from
genes required for DNA replication may be required for nurse

cell polyploidization or for the rapid division of embryonic cells,
which rely on maternally deposited gene products (Spradling,
1993; Parisi et al., 2004).

In males, the enriched subcategories were integral component
of membrane, cell junction, and postsynaptic membrane for the
CC category; ion transport for the BP category; and potassium
channel activity for the MF category (Figure 1B), consistent with
a study in D. melanogaster (Parisi et al., 2004), which may be
mainly related to spermatogenesis (Fuller, 1993). For example,
the enriched subcategories associated with membranes were
likely due to the requirements of the sperm axoneme structure
(Parisi et al., 2004). However, in parasitoids of N. vitripennis
species, highly enriched subcategories in males are related to
sex-pheromone synthetic enzymes (Wang et al., 2015). Those
differences might be likely to contribute by their difference in
sexual maturity period. Sexual maturity in many gregarious
and quasi-gregarious males (e.g., N. vitripennis) happens before
eclosion, and these males can immediately mate with females
after eclosion and near the emergence site (Boulton et al., 2015),
while solitary B. lasus have mating ability for some days after
eclosion (Yan et al., 1989).

KEGG Pathway Enrichment Analyses
Consistent with the results of GO enrichment in females, pathway
enrichment tests revealed that DNA replication (ko: 03030;
Supplementary Figure S1-a) was enriched in B. lasus females.
The functional categories enriched in females also included
fatty acid biosynthesis (ko: 00061; Supplementary Figure S1-b)
and metabolism (ko01212; Supplementary Figure S1-c). The
fatty acid synthase gene (FASN), which encoded the enzyme
catalyzing fatty acid synthesis (Jayakumar et al., 1994, 1995;
Persson et al., 2008), was probably crucial for egg yolk production
and thus female fecundity. In some insects, for example yellow
fever mosquito Aedes aegypti, brown planthopper Nilaparvata
lugens) (Alabaster et al., 2011; Li et al., 2016), when FAS
expression decreases in females, the number of oviposited eggs
significantly decreases.

We found that only the phototransduction-fly pathway (ko:
04745; Supplementary Figure S1-d) was enriched in males,
which is associated with perception of light signals (Leung et al.,
2000). Its potential functions are discussed below.

Annotated Genes Involved in
Venom Proteins
In terms of biological control, parasitoid species have been
extensively applied for reducing pest species population sizes
(Hassan, 1993; Li, 1994; Terayama, 1999; Zhishan et al., 2003;
Parra and Zucchi, 2004; Lim et al., 2006) because parasitoids can
propagate on or in other arthropods. The venom of parasitoid
wasps, which is injected into a host by females before or
at oviposition, is important for the successful development
of the progeny. Parasitoid venoms have diverse physiological
effects on hosts, including developmental arrest; alteration in
growth and physiology; suppression of immune responses;
induction of paralysis, oncosis, or apoptosis; and alteration of
host behavior (Edwards et al., 2006; Price et al., 2009; Tian
et al., 2010; Kryukova et al., 2011). In total, three female-biased
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FIGURE 1 | GO enrichment analysis of (A) female- and (B) male-biased genes. GOSeq explicitly takes into account gene selection bias due to differences in gene
length and thus the numbers of overlapping sequencing reads. GOSeq was used for the GO enrichment analysis, and an adjusted Q-value <0.05 was chosen as
the significance cutoff.
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TABLE 2 | TRP channel genes in the B. lasus transcriptome.

Drosophila Comparative

orthologue Function in analyses with

Gene name Subfamily name Drosophila RNAseq data

c103240.graph_c0 TRPC trp phototransduction up

c107438.graph_c0 trp gamma phototransduction normal

c107438.graph_c1 trp gamma phototransduction normal

c87378.graph_c0 trp gamma phototransduction normal

c107458.graph_c0 TRPM trpm unknown normal

c107458.graph_c1 trpm unknown normal

c103139.graph_c0 TRPA pyrexia geotaxis normal

c106854.graph_c0 pyrexia geotaxis normal

c107721.graph_c1 pyrexia geotaxis normal

c108434.graph_c0 pyrexia geotaxis normal

c89491.graph_c0 pyrexia geotaxis up

c106747.graph_c0 painless nociception normal

c108178.graph_c0 TRPML trpml TRPML normal

genes (c100635.graph_c0, c101314.graph_c0, c101670.graph_c0;
Supplementary Table S5) in this study were annotated for
venom proteins, which were related to known insect venoms

from N. vitripennis and belonged to previously known insect
venom families, such as serine proteases (Graaf et al., 2010;
Werren et al., 2010). Despite the large diversity of parasitoid
wasp species, only a small number of venom proteins have been
described from wasps. A wealth of unexplored biomolecules is
present in parasitoid venoms; these proteins are of value in basic
evolutionary studies, venom biology, host-parasite interactions,
and the study of the evolution of life strategies, and they may
potentially contain components that could be used in biological
control and pharmacology (Moreau and Asgari, 2015).

Annotation of Genes in the TRP Channel
Family and Function Validation
Transient Receptor Potential channels are cation channels that
are mainly considered as unique polymodal cell sensors; TRPs can
be subdivided into six main subfamilies: the TRPC (canonical),
TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin),
TRPML (mucolipin), and TRPA (ankyrin) groups (Gees et al.,
2010). Functionally, TRP channels cause cell depolarization
when activated, which may trigger many voltage-dependent
ion channels. Upon stimulation, Ca2+-permeable TRP channels
generate changes in the intracellular Ca2+ concentration,

FIGURE 2 | Sexual difference in response to light at mRNA level (A,B) and behavioral level (C). In transcriptomic data, we identified putative genes expressed using
the reads per kb per million reads (RPKM) method. Quantitative real-time PCR (qRT-PCR) analysis was used to calculated the relative gene expression to further
check the transcriptomic data, in which the differences in female and male were analyzed by the independent t-test. There was a highly significant correlation
co-efficient of 0.885 between transcriptomic data and qRT-PCR data. Behavioral responses of Brachymeria lasus adults to dark or light were tested with phototaxis
assays. The differences in female (n = 24) and male (n = 18) phototaxis were analyzed by the chi-square test. ∗ indicates p < 0.05. The error bars indicate
standard errors.
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[Ca2+]i, due to Ca2+ entry via the plasma membrane. However,
evidence is increasing that TRP channels are also located in
intracellular organelles and serve as intracellular Ca2+ release
channels (Berridge et al., 2000; Bootman et al., 2001; Gees
et al., 2010). TRP channels in Drosophila are involved in
the perception of sensory signals such as light, temperature,
humidity, pheromones, sound, and touch (Lin et al., 2005).
In our study, we found 13 TRP channel genes in B. lasus;
Nasonia and honey bee contain 12 and 11 genes, respectively,
indicating that the number of trp channels seems to be well
conserved in Hymenoptera (Werren et al., 2010). Of the TRP
channel genes in B. lasus, most belong to two subfamilies: TRPC
and TRPA (Table 2).

In Drosophila, TRPC plays an important role in the perception
of light signals, i.e., the phototransduction pathway (Leung
et al., 2000) (ko: 04745; Supplementary Figure S1-d), which
was enriched in B. lasus male adults. In Drosophila, a number
of genes in the visual signal transduction pathway have been
characterized, with functions including rhodopsin activation,
phosphoinoside signaling, and the opening of TRP and TRPL
channels (Wolff and Ready, 1993; Zuker, 1996; Leung et al.,
2000; Wang and Montell, 2007). Our transcriptional analyses
(Figure 2A: FDR < 0.01, log2 FC = 1.62) and q-PCR results
(Figure 2B: t = −3.169, df = 6, p = 0.019), showed that the
gene corresponding to trp (c103240.graph_c0) was more highly
expressed in B. lasus males, consistent with the phototaxis test.
Although both females and males tended to move toward light
(Figure 2C: female, Z = −1.34, p < 0.05; male, Z = −1.6,
p < 0.05), the tendency to prefer light was significantly influenced
by sex in adults (Figure 2C. χ2 = 4.17, df = 1, p < 0.05),
males more preferring to move to light. This result is similar
to the results of research on trp mutants in Drosophila, which
had altered phenotypes, including a reduction in light response
(Leung et al., 2000; Popescu et al., 2006). Female reduction in light
response might be due to their long periods living in the dark to
search for hosts and lay offspring into them, as most host species
(e.g., pupae of L. dispar or H. cunea) hide in dark environments,
such as the litter horizon (Yan et al., 1989; Yang et al., 2001).
Surprisingly, five members of the TRPA subfamily, which is
involved in sensing environmental temperature, were annotated
in our study. Animals must maintain thermal homeostasis and
avoid prolonged contact with harmfully hot or cold objects
(Caterina, 2007; Karashima et al., 2009). Unlike most parasitoid
species, which overwinter in their hosts as eggs or larvae, B. lasus
lives through the winter in its adult stage (Yan et al., 1989).
Thus, TRPA may be essential for B. lasus adults, allowing them
to sense harmful cold during winter. In addition, intraspecific
aggregations in B. lasus have been observed in previous research,
and an active component that elicited the aggregation response
was isolated and identified as 3-hexanone (Mohamed and
Coppel, 1987). The effects of aggregation behavior include
mating, host attack, defense, and thermoregulation, and in this
species, a previous study suggested that aggregation resulted
from an increase in reproductive success by increasing the
probability of mate location, as well as offering the possibility
of mate choice (Mohamed and Coppel, 1987). However,
combining the above results, adults may also aggregate at a

site for purposes of thermoregulation, especially in winter,
in response to cold. Further studies are required to elucidate the
nature of this cue.

CONCLUSION

Brachymeria lasus is a solitary parasitoid species and has been
evaluated as a potential candidate for release to control L. dispar.
Whereas previous studies have focussed on the application
of parasitoids and their sex differences in phenotypes, this
study focussed mainly on sex differences in gene expression.
Brachymeria lasus as a representative of solitary species was
studied, which enriched our understanding of sexual transcription
differences in parasitoid wasps, especially solitary species. Here,
we performed transcriptome assembly using the Trinity program,
which provided a large amount of useful information for
molecular studies of B. lasus, including venom protein and
perception of sensory signals. In addition to sex-biased genes,
epigenetic processes, such as DNA methylation, are known to play
important roles in differentiating phenotype and have been widely
studied in Hymenopteran insects, for example, female morphs
(queens and workers) in the honeybee, Apis mellifera (Kucharski
et al., 2008; Lyko et al., 2010), although these processes do not
appear to be in Nasonia (Wang et al., 2015). More future research
will be conducted to better understand the molecular mechanisms
underlying the biological traits of sex differences in B. lasus and
to better apply this parasitoid to the biological control of pests.
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