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Abstract

Phylogenomic research is accelerating the publication of landmark studies that aim to resolve

deep divergences of major organismal groups. Meanwhile, systems for identifying and inte-

grating the products of phylogenomic inference–such as newly supported clade concepts–

have not kept pace. However, the ability to verbalize node concept congruence and conflict

across multiple, in effect simultaneously endorsed phylogenomic hypotheses, is a prerequi-

site for building synthetic data environments for biological systematics and other domains

impacted by these conflicting inferences. Here we develop a novel solution to the conflict ver-

balization challenge, based on a logic representation and reasoning approach that utilizes

the language of Region Connection Calculus (RCC–5) to produce consistent alignments of

node concepts endorsed by incongruent phylogenomic studies. The approach employs

clade concept labels to individuate concepts used by each source, even if these carry identi-

cal names. Indirect RCC–5 modeling of intensional (property-based) node concept defini-

tions, facilitated by the local relaxation of coverage constraints, allows parent concepts to

attain congruence in spite of their differentially sampled children. To demonstrate the feasibil-

ity of this approach, we align two recent phylogenomic reconstructions of higher-level avian

groups that entail strong conflict in the "neoavian explosion" region. According to our repre-

sentations, this conflict is constituted by 26 instances of input "whole concept" overlap. These

instances are further resolvable in the output labeling schemes and visualizations as "split

concepts", which provide the labels and relations needed to build truly synthetic phyloge-

nomic data environments. Because the RCC–5 alignments fundamentally reflect the trained,

logic-enabled judgments of systematic experts, future designs for such environments need to

promote a culture where experts routinely assess the intensionalities of node concepts pub-

lished by our peers–even and especially when we are not in agreement with each other.
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Author summary

Synthetic platforms for phylogenomic knowledge tend to manage conflict between differ-

ent evolutionary reconstructions in the following way: "If we do not agree, then it is either

our view over yours, or we just collapse all conflicting node concepts into polytomies". We

argue that this is not an equitable way to realize synthesis in this domain. For instance, it

would not be an adequate solution for building a unified data environment where authors

can endorse and yet also reconcile their diverging perspectives, side by side. Hence, we

develop a novel system for verbalizing–i.e., consistently identifying and aligning–incon-

gruent node concepts that reflects a more forward-looking attitude: "We may not agree

with you, but nevertheless we understand your phylogenomic inference well enough to

express our disagreements in a logic-compatible syntax. We can therefore maximize the

translatability of data linked to our diverging phylogenomic hypotheses". We show that

achieving phylogenomic synthesis fundamentally depends on the application of trained

expert judgment to assert parent node congruence in spite of incongruently sampled

children.

Introduction

Three years ago, Jarvis et al. (2014; henceforth 2014.JEA) [1] published a landmark reconstruc-

tion of higher-level bird relationships. Within 12 months, however, another analysis by Prum

et al. (2015; henceforth 2015.PEA) [2] failed to support several of the deep divergences recov-

ered in the preceding study, particularly within the Neoaves sec. (secundum = according to)

Sibley et al. (1988) [3]. Thomas (2015) [4] used the term "neoavian explosion" to characterize

the lack of congruence between inferences of early-diverging lineages (see also [5]). Similarly,

after reviewing six phylogenomic studies, Suh [6] concluded that the root region of the

Neoaves constitutes a "hard polytomy". Multiple analyses have dissected the impact of differen-

tial biases in terminal and genome sampling, as well as evolutionary modeling and analysis

constraints, on resolving this complex radiation [7, 8, 9]. Suh [6] argues that a well resolved

consensus is not imminent (though see [10]). Brown et al. (2017) [11] analyzed nearly 300

avian phylogenies, finding that the most recent studies "continue to contribute new edges".

These recent advancements provide an opportunity to reflect on how synthesis should be

realized in the age of phylogenomics [11, 12, 13]. The neoavian explosion can be considered a

use case where multiple studies provide strong signals for conflicting hierarchies. Resolution

towards a single, universally adopted tree is unlikely in the short term.

Rather than focusing on the analytical challenges along the path towards unitary resolution

[9], we turn to the issue of how the persistence of conflict affects the design of synthetic data

infrastructures. In other words, how do we build a data service for phylogenomic knowledge

in the face of persistent conflict? This question is of broad relevance to systematists, compara-

tive evolutionary biologists, and designers of biological information services interested in

robust, reproducible, and reusable phylogenomic data. And it turns on the issue of improving

identifiers and identifier-to-identifier relationships for this domain.

Particularly verbal representations of the neoavian explosion are not well designed for con-

flict representation and synthesis [14]. To alleviate this, some authors use tree alignment

graphs in combination with color and width variations to identify regions (edges) of phyloge-

nomic congruence and conflict [15]. Other authors may show multiple incongruent trees side-

by-side, using color schemes for congruent clade sections [9]. Yet others may use tanglegrams
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that are enhanced to highlight congruence [4], rooted galled networks [16] or neighbor-net

visualizations [17] that show split networks for conflicting topology regions, or simply provide

a consensus tree in which incongruent bifurcating branch inferences are collapsed into polyt-

omy [6].

Verbalizing phylogenomic congruence and conflict in open, synthetic knowledge environ-

ments [13] constitutes a novel challenge for which traditional naming solutions in systematics

are inadequate. The aforementioned studies implicitly support this claim. All use overlapping

sets of Code-compliant [18] and other higher-level names in the Linnaean tradition, with

sources including [19] or [20]. To identify these source-specific name usages, we will utilize

the taxonomic concept label convention of [14]. Accordingly, name usages sec. 2014.JEA are

prefixed with "2014.", whereas name usages sec. 2015.PEA are prefixed with "2015."

We diagnose the verbalization challenge as follows. (1) In some instances, identical clade

names are polysemic–i.e., have multiple meanings–across studies. For instance, 2015.Pelecani-

formes excludes 2015.Phalacrocoracidae, yet 2014.Pelecaniformes includes 2014.Phalacrocora-

cidae; reflecting on two incongruent meanings of "Pelecaniformes". (2) In other cases, two or

more non-identical names have congruent meanings, e.g., 2015.Strisores and 2014.Caprimul-

gimorphae. (3) Names that are unique to just one study–e.g., 2015.Aequorlitornithes or 2014.

Cursorimorphae–are not always reconcilable in meaning without additional human effort,

thereby adding an element of referential uncertainty to the apparent conflict. (4) Lastly, many

of the newly inferred and conflicting edges are not named at all. There is an implicit preference

for labeling edges when suitable names are already available. However, unnamed edges can

create situations where conflict cannot be verbalized and reconciled in a data environment,

due to the lack of syntactic structure ("names").

Jointly, the effects of polysemic names, synonymous names, exclusive yet hard-to-reconcile

names, and conflicting unnamed edges are symptomatic of an information culture that is not

ready for the identifier and identifier-to-identifier relationship challenges inherent in repre-

senting phylogenomic conflict. Suppose we wish to build a collaborative knowledge environ-

ment towards inferring "the tree of life" (though see [12]). The design should allow us to

individually represent and at the same integrate conflicting hierarchies, from the tips to the

root. The system should respond to name-based data queries across these hierarchies, and

return whether they are congruent or how they conflict in meaning. Clearly, the name usages

of each individual source are not suited for this integration task. Traditional, Linnaean con-

ventions allow for names to have evolving phylogenomic meanings across hierarchies and are

therefore too under-powered for our purpose [21].

At root, this is a novel conceptual challenge for systematics and comparative evolutionary

biology, made imperative by the accelerated generation and ingestion of phylogenomic trees

into open, dynamic knowledge bases for reliable integration and re-use [11, 13, 22, 23, 24].

The services that such environments aspire to provide require an appropriate theory of node
identity, and hence a conception of multi-node congruence or incongruence across individual

trees and entire synthesis versions.

Here we propose a solution to the phylogenomic conflict representation challenge. This

solution requires collaboration between systematic experts, platform designers, and users of

phylogenomic information. It is an extension of prior "concept taxonomy" research [14, 25,

26], and deploys logic reasoning to align tree hierarchies based on Region Connection Calcu-

lus (RCC–5) assertions of node congruence [27, 28, 29]. We demonstrate the feasibility of this

approach by aligning subregions and entire phylogenomic trees inferred by 2015.PEA and

2014.JEA. In doing so, we address key representation challenges; such as the paraphyly of clas-

sification schemes used to label tree regions, and the inference of higher-level node congruence

in spite of differentially sampled terminals. The alignment products for this use case constitute

Verbalizing phylogenomic conflict

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006493 February 15, 2019 3 / 36

https://doi.org/10.1371/journal.pcbi.1006493


a novel answer to our central question: "how to build a synthetic knowledge environment in

the face of persistent phylogenomic conflict?" The discussion focuses on the feasibility and

desirability of creating such an integration service, emphasizing the role of trained expert judg-

ment in providing them [30].

Methods

Syntactic and semantic conventions

1. Taxa are models, concepts are mimics. We typically refrain from using the terms "taxon",

"taxa", or "clade(s)". We take taxa to constitute evolutionary, causally sustained entities whose

members are manifested in the natural realm. The task for systematics is to successively

approximate the identities and limits of these entities. Thus, we assign the status of ’models’ to

taxa, which systematists aim to ’mimic’ through empirical theory making. This perspective

allows for realism about taxa, and also for the possibility to let our representations stand for
taxa [31], at any given time and however imperfectly, to support evolutionary inferences.

In reserving a model status for taxa, we can create a separate design space for the human

theory- and language-making domain. In the latter, we speak only of taxonomic or phyloge-

nomic concepts–the products of inference making [21].

2. Sameness is limited to the same source. Therefore, for the purpose of aligning the neoa-

vian explosion use case, we need not speak of the "same taxa" or "same clades" at all. Similarly,

we need not judge whether one reconstruction or the other more closely aligns with deep-

branching avian taxa, i.e., which is (more) ’right’? Instead, our alignment is only concerned

with modeling congruence and conflict across two sets of concept hierarchies. The concepts

are labeled with the "sec." convention to maintain a one-to-one modeling relationship between

concept labels and concepts (clade identity theories). Accordingly, there is also no need to say

that, in recognizing each a concept with the taxonomic name Neornithes, the two author

teams are authoring "the same concept". Instead, we model the two labels 2015.Neornithes and

2014.Neornithes, each of which symbolizes an individually generated phylogenomic theory

region. As an outcome of our alignment, we may say that these two concepts are congruent, or

not, reflecting the intensional alignment (to be specified below) of two phylogenomic theories.

But, by virtue of their differential sources (authorship provenance), the two concepts 2015.

Neornithes and 2014.Neornithes are never "the same". "Sameness" is limited in our approach

to concepts whose labels contain an identical taxonomic name and which originate from a sin-

gle phylogenomic hierarchy and source. That is, 2015.Neornithes and 2015.Neornithes are

(labels for) the same concept.

Knowledge representation and reasoning

The methods used herein are consistent with [14, 26, 32]. They utilize three core conventions:

(1) taxonomic concept labels to identify concepts; (2) is_a relationships to assemble single-

source hierarchies via parent/child relationships; and (3) RCC–5 articulations to express the

relative congruence of concept regions across multi-sourced hierarchies. The RCC–5 articula-

tion vocabulary entails (with corresponding symbol): congruence (= =), proper inclusion (>),

inverse proper inclusion (<), overlap (><), and exclusion (!). Disjunctions of these articula-

tions are a means to express uncertainty; as in: 2015.Neornithes {= = or> or<} 2014.Neor-

nithes. All possible disjunctions generate a lattice of 32 relationships (R32), where the "base

five" are the most logically constraining subset [33].

The alignments are generated with the open source Euler/X software toolkit [28]. The

toolkit ingests multiple trees (T1, T2, T3, etc.) and articulation sets (A1–2, A2–3, etc.), converting

them into a set of logic constraints. Together with other default or facultative constraints (C)
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needed for modeling tree hierarchies, these input constraints are then submitted to a logic rea-

soner that provide two main services. First, the reasoner infers whether all input constraints

are jointly logically consistent, i.e., whether they permit at least one "possible world". Second, if

consistency is attained, the reasoner infers the set of Maximally Informative Relations (MIR).

The MIR constitute that unique set of RCC–5 articulations for every possible concept pair

across the input sources from which the truth or falseness of any relationship in the R32 lattice

can be deduced [14, 26, 33]. Many toolkit options and functions are designed to encode vari-

able alignment input and output conditions, and to interactively obtain adequately constrained

alignments. The toolkit also features a stylesheet-driven alignment input/output visualization

service that utilizes directed acyclical graphs [28]. A step-wise account of the user/toolkit work-

flow interaction is provided in [26].

Special challenges for multi-phylogeny alignments

Aligning phylogenomic trees entails several special representation and reasoning challenges.

We address three aspects here that have not been dealt with extensively in previous

publications.

1. Representing intensional parent concept congruence via locally relaxed coverage. The

first challenge relates directly to the issue of parent node identity. Unlike comprehensive classi-

fications or revisions [14, 26, 34], phylogenomic reconstructions typically do not aspire to sam-

ple low-level entities exhaustively. Instead, select exemplars are sampled among all possible

low-level entities. The aim is to represent lower-lever diversity sufficiently well to infer reliable

higher-level relationships. Often, terminal sampling is not only incomplete for any single

reconstruction, but purposefully complementary to that of other analyses. Generating infor-

mative genome-level data remains resource-intensive [10]. This makes it prudent to coordi-

nate terminal sampling globally, by prioritizing the reduction of gaps over redundant terminal

sampling. In the case of 2015.PEA (198 terminals) versus 2014.JEA (48 terminals), only 12 spe-

cies-level concept pairs have labels with identical taxonomic names.

By default, the logic toolkit applies a coverage constraint to every input concept region. Cov-

erage means that the region of a parent is strictly circumscribed by the union of its children

[35]. However, this constraint is relaxable, either globally for all concepts, or locally for select

concepts. To relax coverage locally, the prefix "nc_" (no coverage) is used in the input, as in

2014.nc_Psittacidae. This means: either a parent concept’s referential extension is circum-

scribed by the union of its explicitly included children, or there is a possibility of additional

children being subsumed under that parent but not mentioned in the source phylogeny. Either

scenario can yield consistent alignments. In other words, if a parent concept has relaxed cover-

age, it can attain congruence with another parent concept in spite of each parent having incon-

gruent sets of child concepts.

Managing coverage in the toolkit input is not trivial. Relaxing coverage globally is akin to

saying "anything goes", i.e., any parent could potentially include any child. This would yield

innumerable possible worlds, and therefore has no value for our purpose. On the other hand,

applying coverage globally means–counter-intuitively in the case of phylogenomic trees–that

only parents with completely congruent sets of children can themselves attain congruence.

The challenge for experts providing the input is thus to relax coverage locally, and strictly in

the service of ’neutralizing’ lower-level sampling differences between trees that should not

yield conflict at higher levels.

The effect of locally relaxed coverage is illustrated in Figs 1–4, using the example of parrots–

2015./2014.Psittaciformes. At the species level, the author teams sampled wholly exclusive sets

of concepts for this alignment region (Figs 1 and 3). Even at the genus level, only 2015./2014.

Verbalizing phylogenomic conflict
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Nestor is redundantly sampled, yet with the articulation: 2015.Nestor_meridionalis ! 2014.Nes-

tor_notabilis at the child level. Therefore, if no species-level concept sec. 2015.PEA has an

explicitly sampled and congruent region in 2014.Psittaciformes, and, vice-versa, no species-

level concept sec. 2014.JEA has such a region in 2015.Psittaciformes, then under global appli-

cation of the coverage constraint we obtain the alignment: 2015.Psittaciformes ! 2014.Psittaci-

formes (Fig 2). The absence of even partial concept region overlap at the terminal level

’propagates up’ to the highest-level parent concepts, which are therefore also exclusive of each

other.

Asserting higher-level node congruence in light of lower-level node incongruence requires

a conception of node identity that affirms counter-factual statements of the following type: if

2014.JEA had sampled 2014.Psittacus_erithacus, then the authors would have included this

species-level concept as a child of 2014.Psittacidae. This is to say that 2015./2014.Psittacidae,

and hence their respective parents, are intensionally defined [25, 36, 37].

Fig 1. Input visualization for the 2015./2014.Psittaciformes alignment, with coverage globally applied. In all toolkit visualizations, the input and aligned, non-

congruent concepts sec. 2015.PEA are shown as green rectangles (T2−18 concepts). Input and aligned, non-congruent concepts sec. 2014.JEA are shown as yellow

octagons (T1−6 concepts). Congruent sets of aligned, multi-sourced concepts (first shown in Fig 4) are rendered in gray rectangles with rounded corners. In this input

visualization, each phylogenomic tree is separately assembled via parent/child (is_a) relationships (solid black arrows). All species-level concepts sec. 2015.PEA and

2014.JEA are exclusive of each other. Under strict application of the coverage constraint, this is represented by asserting eight articulations (dashed magenta arrows) of

disjointness (!) of each species-level concept from the other-sourced order-level concept. The legend indicates the numbers of nodes and edges for each input tree,

parent/child relationships, and expert-asserted input articulations. See also S1 File.

https://doi.org/10.1371/journal.pcbi.1006493.g001

Fig 2. Alignment visualization for the 2015./2014.Psittaciformes alignment, with coverage globally applied. This alignment corresponds to the Fig 1 input, and

shows reasoner-inferred non-/congruent concepts and articulations (see legend)–i.e., none in this particular case. The reasoner infers 108 logically implied articulations

that constitute the set of MIR. See also S2 File. Although the input and alignment of Figs 1 and 2 are empirically defensible, they fail to capture certain intuitions we have

regarding the higher-level 2015./2014.Psittaciformes relationship. For instance, we may wish to say: "Sure, the author teams sampled complementary species-level

concepts. Yet these trees are not actually in conflict. At higher levels, there likely is agreement that parrots are parrots, and non-parrots are non-parrots". That is: 2015.

Psittaciformes = = 2014.Psittaciformes. To obtain this intuitive alignment, we have to locally relax coverage at select lower levels (Fig 3). In particular, 2015.PEA include

five genus- and species-level concepts under 2015.Psittacidae that have no corresponding region under 2014.Psittacidae. However, if we relax coverage for 2014.

Psittacidae–i.e., we assert 2014.nc_Psittacidae as an input constraint–then we can include each of these; for instance: 2015.Probosciger_aterrimus< 2014.Psittacidae,

2015.Psittacus_erithacus< 2014.Psittacidae, etc. Conversely, if we locally relax coverage for 2015.Psittacidae (2015.nc_Psittacidae), we can specify 2014.

Melopsittacus_undulatus< 2015.Psittacidae. At the genus level, we can align 2015.Nestor = = 2014.Nestor if we relax coverage for each (2015.nc_Nestor, 2014.

nc_Nestor), in spite of the mutually exclusive species-level concepts sampled. Jointly, these four instances of relaxing coverage render the articulation 2015.Psittacidae =

= 2014.Psittacidae consistent, and hence also 2015.Psittaciformes = = 2014.Psittaciformes (Fig 4).

https://doi.org/10.1371/journal.pcbi.1006493.g002
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Using a combination of published topological information (and support), more or less

direct reiterations of phenotypic traits (cf. discussions and supplementary data of 2015.PEA

and 2014.JEA), and trained judgment [30], we align these concept regions as if there are con-

gruent property criteria that each region entails, i.e., something akin to an implicit set of synap-

omorphies or uniquely diagnostic features. Of course, the phylogenomic data provided by

2015.PEA and 2014.JEA do not signal intensional definitions directly. But neither do their

genome-based topologies for parrots provide evidence to challenge the status of such defini-

tions as previously proposed [38]. In addition, particularly 2015.PEA (supplementary informa-

tion; sections on "detailed justification for fossil calibrations" and "detailed phylogenetic

discussion; pp. 3–21) provide a provide an in-depth account of how their preferred topology

relates to published, property-centered circumscriptions of dozens of higher-level clade

Fig 4. Alignment visualization for the 2015./2014.Psittaciformes alignment, with coverage locally relaxed. Compare with Fig 2. Local relaxing of coverage, and

assertions of congruence of paired higher-level concepts (Fig 3), will yield the intuitive alignment of 2015.Psittaciformes = = 2014.Psittaciformes, 2015.Psittacidae = =

2014.Psittacidae, and 2015.Nestor = 2014.Nestor; in spite of wholly incongruent sampling of species-level concepts. The reasoner infers 160 logically implied

articulations that constitute the set of MIR. See also S4 File.

https://doi.org/10.1371/journal.pcbi.1006493.g004

Fig 3. Input visualization for the 2015./2014.Psittaciformes alignment, with coverage locally relaxed. Compare with Fig 1. Here, coverage is relaxed for two family-

level concepts (2015./2014.nc_Pittacidae) and two genus-level concepts (2015./2014.nc_Nestor). The eight species-level concepts of the alignment are correspondingly

included as members of these higher-level concepts. In addition, three instances of congruence are asserted for 2015./2014.{Psittaciformes, Psittacidae, Nestor}. See also

S3 File.

https://doi.org/10.1371/journal.pcbi.1006493.g003
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concepts. We have to assume, fallibly and non-trivially, that such topology-to-synapomorphy

relations are also implied by JEA.2014, as reflected (inter alia) in their discussion.

Three clarifications are in order. First, Region Connection Calculus is at best a means of

translating the signal of an intensional definition. The congruent (= =) symbol means, only:

two regions are congruent in their extension. The RCC–5 vocabulary is obviously not appro-

priate for reasoning directly over genomic or phenomic property statements. The reasoner

does not assess whether 2015.Psittacidae, or any included child or aligned concept, has ’the rel-

evant synapomorphies’. Doing so would not be trivial even if property-based definitions were

provided for all higher-level node concepts, because we would still have to make theory-laden

assumptions about their congruent phylogenomic scopes [26, 39, 40]. Second, we are not pro-

viding detailed textual narratives that would justify each assertion of higher-level congruence.

Such narratives are possible, and even needed to understand disagreements, because they

explain the reasoning process behind an expert-made assertion. However, our main objective

here is to focus on the issue of RCC–5 translation of systematic signals; not on a character-by-

character dissection of each congruent articulation. Third, a sensible intensional alignment

strategy uses a minimal number of instances of locally relaxed coverage in order to compensate

for differential child sampling at lower levels, so that parent coverage can remain in place at

higher levels to expose incongruent node concepts. The benefits of this strategy will be shown

below.

2. Representing clade concept labels. Our modeling approach requires that every region

in each source tree receives a taxonomic or clade concept label. However, the source publica-

tions only provide such labels for a subset of the inferred nodes. In particular, 2015.PEA

(p. 570: Fig 1) obtained 41 nodes above the ordinal level. Of these, 17 nodes (41.5%) were

explicitly labeled in either the published figure or supplement (pp. 9–12). The authors also cite

[20] as the primary source for valid name usages, yet that list is not concerned with supra-ordi-

nal names. Similarly, 2014.JEA (p. 1322: Fig 1) inferred 37 nodes above the ordinal level, of

which 23 nodes (62.2%) were given an explicit label. They provide an account (cf. supplemen-

tary materials SM6: 22–24) of their preferred name usages, sourced mainly to [20] and [41].

In assigning clade concept labels at the supra-ordinal level when the authors may have failed

to do so (consistently), we nevertheless made a good faith effort–through examination of the

supplementary information and additional sources [1, 3, 42, 43, 44, 45, 46, 47]–to represent

the authors’ preferred name usages. Where usages were not explicit, we selected the only or

most commonly applied clade concept name at the time of publication. This effort yielded 13

additional labels for 2015.PEA (Table 1), and 7 such labels for 2014.JEA (Table 2).

If no suitable label was available, we chose a simple naming convention of adding

"_Clade1", "_Clade2", etc., to the available and immediately higher-level node label, e.g. 2014.

Passerea_Clade1. The numbering of such labels along the tree topology starts with the most

immediate child of a properly named parent, and typically follows down one section of the

source tree entirely ("depth-first"), before continuing with the higher-level sister section. Using

this approach, we added 11 labels for 2015.PEA (Table 1) and 7 labels for JEA.2014 (Table 2).

If greater numbers of labels need to be generated, including siblings, then it is sensible to have

a rule for ordering sibling nodes, e.g. by assigning the next-lowest number to the sibling whose

child’s name appears first in the alphabet. Our numbering of the labels 2014.Passerea_Clade2

(child with first-appearing letter: 2014.Ardeae) and 2014.Passerea_Clade3 (child: 2014.Cursor-

imorphae) adhere to this rule.

The clade concept labeling convention was not applied below the family level, where instead

phylogenomic resolution was collapsed into polytomy (exception: Figs 1–4). In the case of

2014.JEA, only four family-level concepts include two children, whereas the remainder have a

single child sampled. Resolving the monophyly of subfamilial clade concepts was not the

Verbalizing phylogenomic conflict
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primary aim of 2014.JEA. The same applies to 2015.PEA, who sampled 104/125 family-level

concepts with only 1–2 children.

3. Representing phylogeny/classification paraphyly. A third, relatively minor challenge is

the occurrence of clade concepts in 2015.PEA’s phylogenomic tree that are not congruently

Table 1. Supra-ordinal clade concept labels used for the phylogenomic tree of 2015.PEA, with sources from which the names were obtained. "Franz et al. 2018"

means: the label was assigned pragmatically in this study. See main text for further detail.

# Clade concept label Utilized name source Immediate child concepts

P01 2015.Neornithes Livezey & Zusi 2007 [43] 2015.Palaeognathae, 2015.Neognathae

P02 2015.Palaeognathae Prum et al. 2015 [2] 2015.Notopalaeognathae, 2015.Struthioniformes

P03 2015.Notopalaeognathae Yuri et al. 2013 [46] 2015.Novaeratitae, 2015.Rheiformes

P04 2015.Novaeratitae Yuri et al. 2013 [46] 2015.Apterygiformes, 2015.Novaeratitae_Clade1

P05 2015.Novaeratitae_Clade1 Franz et al. 2018 2015.Casuariiformes, 2015.Tinamiformes

P06 2015.Neognathae Jarvis et al. 2014 [1] 2015.Galloanserae, 2015.Neoaves

P07 2015.Galloanserae Prum et al. 2015 [2] 2015.Anseriformes, 2015.Galliformes

P08 2015.Neoaves Prum et al. 2015 [2] 2015.Strisores, 2015.Neoaves_Clade1

P09 2015.Strisores Prum et al. 2015 [2] 2015.Caprimulgidae, 2015.Strisores_Clade1

P10 2015.Strisores_Clade1 Franz et al. 2018 2015.Nyctibiidae, 2015.Steatornithidae, 2015.Strisores_Clade2

P11 2015.Strisores_Clade2 Franz et al. 2018 2015.Apodiformes, 2015.Aegothelidae, 2015.Podargidae

P12 2015.Neoaves_Clade1 Franz et al. 2018 2015.Columbaves, 2015.Neoaves_Clade2

P13 2015.Columbaves Prum et al. 2015 [2] 2015.Columbimorphae, 2015.Otidimorphae

P14 2015.Columbimorphae Prum et al. 2015 [2] 2015.Columbiformes, 2015.Columbimorphae_Clade1

P15 2015.Columbimorphae_Clade1 Franz et al. 2018 2015.Mesitornithiformes, 2015.Pterocliformes

P16 2015.Otidimorphae Prum et al. 2015 [2] 2015.Musophagiformes, 2015.Otidimorphae_Clade1

P17 2015.Otidimorphae_Clade1 Franz et al. 2018 2015.Mesitornithiformes, 2015.Ptercoclidiformes

P18 2015.Neoaves_Clade2 Franz et al. 2018 2015.Gruiformes, 2015.Neoaves_Clade3

P19 2015.Neoaves_Clade3 Franz et al. 2018 2015.Aequorlitornithes, 2015.Inopinaves

P20 2015.Aequorlitornithes Prum et al. 2015 [2] 2015.Aequorlitornithes_Clade1, 2015.Ardeae

P21 2015.Aequorlitornithes_Clade1 Franz et al. 2018 2015.Charadriiformes, 2015. 2015.Phoenicopterimorphae

P22 2015.Phoenicopterimorphae Jarvis et al. 2014 [1] 2015.Phoenicopteriformes, 2015.Podicipediformes

P23 2015.Ardeae Brodkorb 1963 [42] 2015.Aequornithia, 2015.Phaethontimorphae

P24 2015.Aequornithia Prum et al. 2015 [2] 2015.Aequornithia_Clade1, 2015.Gaviiformes

P25 2015.Aequornithia_Clade1 Franz et al. 2018 2015.Pelecanimorphae, 2015.Procellariimorphae

P26 2015.Pelecanimorphae Prum et al. 2015 [2] 2015.Ciconiiformes, 2015.Pelecanimorphae_Clade1

P27 2015.Pelecanimorphae_Clade1 Franz et al. 2018 2015.Pelecaniformes, 2015.Suliformes

P28 2015.Procellariimorphae Prum et al. 2015 [2] 2015.Procellariiformes, 2015.Sphenisciformes

P29 2015.Phaethontimorphae Prum et al. 2015 [2] 2015.Eurypygiformes, 2015.Phaethontiformes

P30 2015.Inopinaves Prum et al. 2015 [2] 2015.Opisthocomiformes, 2015.Telluraves

P31 2015.Telluraves Prum et al. 2015 [2] 2015.Accipitriformes, 2015.Eutelluraves

P32 2015.Eutelluraves Prum et al. 2015 [2] 2015.Australaves, 2015.Coracornithia

P33 2015.Australaves Prum et al. 2015 [2] 2015.Cariamiformes, 2015.Eufalconimorphae

P34 2015.Eufalconimorphae Suh et al. 2011 [45] 2015.Falconiformes, 2015.Passerimorphae

P35 2015.Passerimorphae Sibley et al. 1988 [3] 2015.Passeriformes, 2015.Psittaciformes

P36 2015.Coracornithia Claramunt & Cracraft 2015 [47] 2015.Coraciimorphae, 2015.Strigiformes

P37 2015.Coraciimorphae Prum et al. 2015 [2] 2015.Coliiformes, 2015.Eucavitaves

P38 2015.Eucavitaves Yuri et al. 2013 [46] 2015.Cavitaves, 2015.Leptosomiformes

P39 2015.Cavitaves Yuri et al. 2013 [46] 2015.Picocoraciae, 2015.Trogoniformes

P40 2015.Picocoraciae Mayr 2010 [44] 2015.Bucerotiformes, 2015.Picodynastornithes

P41 2015.Picodynastornithes Yuri et al. 2013 [46] 2015.Coraciiformes, 2015.Piciformes

https://doi.org/10.1371/journal.pcbi.1006493.t001
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aligned with higher-level concepts of [20]. We highlight these instances here because they rep-

resent a widespread phenomenon in phylogenomics. It is useful to understand how such dis-

crepancies can be modeled with RCC–5 alignments (Figs 5 and 6).

Fig 5 exemplifies the phylogenetic tree/classification incongruence observed in 2015.PEA.

The authors state (supplementary Table 1, p. 1): "Taxonomy follows Gill and Donsker (2015;

fifth ed)". As shown in Fig 5, their phylogeny accommodates four sampled genus-level con-

cepts that would correspond to children of the family-level concept Eurylaimidae sec. Gill &

Donsker (2015) [20]. However, these concepts are arranged paraphyletically in relation to the

Table 2. Supra-ordinal clade concept labels used for the phylogenomic tree of 2014.JEA, with sources from which the names were obtained. "Franz et al. 2018"

means: the label was assigned pragmatically in this study. See main text for further detail.

# 2014.JEA clade concept label Utilized name source Immediate child concepts

J01 2014.Neornithes Jarvis et al. 2014 [1] 2014.Palaeognathae, 2014.Neognathae

J02 2014.Palaeognathae Jarvis et al. 2014 [1] 2014.Struthioniformes, 2014.Tinamiformes

J03 2014.Neognathae Jarvis et al. 2014 [1] 2014.Galloanseres, 2014.Neoaves

J04 2014.Galloanseres Jarvis et al. 2014 [1] 2014.Anseriformes, 2014.Galliformes

J05 2014.Neoaves Jarvis et al. 2014 [1] 2014.Columbea, 2014.Passerea

J06 2014.Columbea Jarvis et al. 2014 [1] 2014.Columbimorphae, 2014.Phoenicopterimorphae

J07 2014.Columbimorphae Jarvis et al. 2014 [1] 2014.Columbiformes, 2014.Columbimorphae_Clade1

J08 2014.Columbimorphae_Clade1 Franz et al. 2018 2014.Mesitornithiformes, 2014.Pterocliformes

J09 2014.Phoenicopterimorphae Jarvis et al. 2014 [1] 2014.Phoenicopteriformes, 2014.Podicipediformes

J10 2014.Passerea Jarvis et al. 2014 [1] 2014.Passerea_Clade1, 2014.Passerea_Clade4

J11 2014.Passerea_Clade1 Franz et al. 2018 2014.Passerea_Clade2, 2014.Passerea_Clade3

J12 2014.Passerea_Clade2 Franz et al. 2018 2014.Ardeae, 2014.Telluraves

J13 2014.Ardeae Brodkorb 1963 [42] 2014.Aequornithia, 2014.Phaethontimorphae

J14 2014.Aequornithia Jarvis et al. 2014 [1] 2014.Aequornithia_Clade1, 2014.Gaviimorphae

J15 2014.Aequornithia_Clade1 Franz et al. 2018 2014.Pelecanimorphae, 2014.Procellariimorphae

J16 2014.Pelecanimorphae Jarvis et al. 2014 [1] 2014.Pelecaniformes

J17 2014.Procellariimorphae Jarvis et al. 2014 [1] 2014.Procellariiformes, 2014.Sphenisciformes

J18 2014.Gaviimorphae Jarvis et al. 2014 [1] 2014.Gaviiformes

J19 2014.Phaethontimorphae Jarvis et al. 2014 [1] 2014.Eurypygiformes, 2014.Phaethontiformes

J20 2014.Telluraves Jarvis et al. 2014 [1] 2014.Afroaves, 2014.Australaves

J21 2014.Afroaves Jarvis et al. 2014 [1] 2014.Accipitrimorphae, 2014.Coracornithia

J22 2014.Accipitrimorphae Jarvis et al. 2014 [1] 2014.Accipitriformes

J23 2014.Coracornithia Claramunt & Cracraft 2015 [47] 2014.Coraciimorphae, 2014.Strigiformes

J24 2014.Coraciimorphae Jarvis et al. 2014 [1] 2014.Coliiformes, 2014.Eucavitaves

J25 2014.Eucavitaves Yuri et al. 2013 [46] 2014.Cavitates, 2014.Leptosomiformes

J26 2014.Cavitates Yuri et al. 2013 [46] 2014.Picocoraciae, 2014.Trogoniformes

J27 2014.Picocoraciae Mayr 2010 [44] 2014.Bucerotiformes, 2014.Picodynastornithes

J28 2014.Picodynastornithes Yuri et al. 2013 [46] 2014.Coraciiformes, 2014.Piciformes

J29 2014.Australaves Jarvis et al. 2014 [1] 2014.Cariamiformes, 2014.Eufalconimorphae

J30 2014.Eufalconimorphae Suh et al. 2011 [45] 2014.Falconiformes, 2014.Passerimorphae

J31 2014.Passerimorphae Jarvis et al. 2014 [1] 2014.Passeriformes, 2014.Psittaciformes

J32 2014.Passerea_Clade3 Franz et al. 2018 2014.Cursorimorphae, 2014.Opisthocomiformes

J33 2014.Cursorimorphae Jarvis et al. 2014 [1] 2014.Charadriiformes, 2014.Gruiformes

J34 2014.Passerea_Clade4 Franz et al. 2018 2014.Caprimulgimorphae, 2014.Otidimorphae

J35 2014.Caprimulgimorphae Jarvis et al. 2014 [1] 2014.Caprimulgiformes

J36 2014.Otidimorphae Jarvis et al. 2014 [1] 2014.Cuculiformes, 2014.Otidimorphae_Clade1

J37 2014.Otidimorphae_Clade1 Franz et al. 2018 2014.Musophagiformes, 2014.Otidiformes

https://doi.org/10.1371/journal.pcbi.1006493.t002
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reference classification. There is no parent concept that can be labeled 2015.Eurylaimidae and

would not also (1) include 2015.Pittidae, i.e., 2015.Passeriformes_Clade1 in Fig 6, or (2) just

represent aligned subset of the Eurylaimidae sec. Gill and Donsker (2015) [20], i.e., 2015.Pas-

seriformes_Clade2 or 2015.Passeriformes_Clade3 in Fig 6. The concept Eurylaimidae sec. Gill

and Donsker (2015) [20] has an overlapping (><) articulation with 2015. Passeriformes_

Clade1.

In summary, our approach represents non-monophyly as an incongruent alignment of the

phylogenomic tree and the source classification used to provide labels for that tree’s monophy-

letic clade concepts. There are four distinct regions in the phylogeny of 2015.PEA where such

alignments are needed: {Caprimulgiformes, Eurylaimidae, Hydrobatidae, Procellariidae, Tityr-

idae} sec. Gill & Donsker (2015) [20]. Each of these is provided in the S7–S9 Files.

Configuration of input constraints and alignment partitioning

The source phylogenies specify 703 and 216 clade or taxonomic concepts, respectively. The fre-

quent instances of locally relaxed coverage increase the reasoning complexity in relation to

multi-classification alignments [14], making specialized RCC–5 reasoning useful [48]. The rea-

soning and visualization challenges commend a partitioned alignment approach. To keep the

Results concise, we show visualizations of the larger input and alignment partitions only in the

Supporting Information. A detailed account of the input configuration and partitioning work-

flow is given below.

Underlying all alignments is the presumption that at the terminal (species) level, the

taxonomic concept labels of 2015.PEA and 2014.JEA are reliable indicators of either pairwise

congruence or exclusion [14, 26, 32]. That is, e.g., 2015.Cariama_cristata = = 2014.Cariama_

cristata, or 2015.Charadrius_hiaticula ! 2014.Charadrius_vociferus. Because the time interval

Fig 5. Input visualization of the alignment of the phylogenomic reconstruction of passeriform clade concepts sec. 2015.PEA–prefixed with "Phylo2015"–with

the corresponding classification concepts sec. Gill & Donsker (2015) [20]–prefixed with "Class2015". The phylogenomic topology renders that of Class2015.

Eurylaimidae paraphyletic, and hence the name "Eurylaimidae" is not represented in any clade concept label sec. 2015.PEA. See also Prum et al. (2015). See also S5 File.

https://doi.org/10.1371/journal.pcbi.1006493.g005

Fig 6. Alignment visualization corresponding to Fig 5. The alignment shows an overlapping articulation (dashed blue line) between the phylogenomic clade concept

sec. 2015.PEA (Phylo2015.Passeriformes_Clade1) and the Eurylaimidae sec. Gill & Donsker (2015) [20] (Class2015.Eurylaimidae). The two dashed red arrows

symbolize reasoner-inferred relationships not explicit in the input constraints. See also S6 File.

https://doi.org/10.1371/journal.pcbi.1006493.g006
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separating the two publications is short in comparison to the time needed for taxonomic revi-

sions to effect changes in classificatory practice, the genus- or species-level taxonomic concepts

are unlikely to show much incongruence; though see [49] or [50]. We note that 2015.PEA

(p. 571) use the label 2015.Urocolius(_indicus) in their phylogenomic tree, which also corre-

sponds to the genus-level name endorsed in [20] Gill & Donsker (2015). However, in their

Supplementary Table 1 the authors use 2015.Colius_indicus. We chose 2015.Urocolius and

2015.Urocolius_indicus as the labels to apply in the alignments.

The toolkit workflow favors a partitioned, bottom-up approach [29]. The process of gener-

ating, checking, and regenerating input files must be handled ’manually’ on the desktop (note:

improved workflow documentation and semi-automation of input-output-input changes are

highly desirable). The performance of different toolkit reasoners was benchmarked in [28].

To work efficiently, the large problem of aligning all concepts at once is broken down into

multiple smaller alignment problems, e.g. 2015./2014.Psittaciformes (Figs 3 and 4). To manage

one particular order-level alignment, we start with assembling each input phylogeny sepa-

rately, with relaxed coverage applied as needed (Fig 3). The RCC–5 articulations for low-level

concept pairs are provided incrementally, e.g., in sets of 1–5 articulations at a time. Following

such an increment, the toolkit reasoning process is re-/deployed to validate input consistency

and infer the number of possible worlds. There is an option to specify that only one possible

world is sought as output, which is equivalent to just checking for input consistency, as

opposed to inferring all possible worlds. Doing so saves time as long as the input remains

(vastly) under-specified. The stepwise approach of adding a small number of articulations at a

time leads to increasingly constrained alignments, while minimizing the risk of introducing

many new. difficult-to-diagnose inconsistencies.

Once a set of small, topographically adjacent alignment partitions is well specified, these

can serve as building blocks for the next, larger partition. Hence, the basic sequence of building

up larger alignments is: (1) obtain a well-specified low- (order- or family-) level alignment; (2)

record the inferred parent-level articulations from this alignment; (3) propagate the latter–

now as low-level input articulations–for the next, more inclusive alignment; (4) as needed,

prune the lowest-level (sub-ordinal) input concepts and articulations of (1) from this align-

ment; (5) repeat (1) to (4) for another paired region; (6) assemble the more inclusive alignment

by (manually) connecting the pruned, propagated concepts and articulations from two or

more lower-level alignments, by adding to them the higher-level concepts from each input

phylogeny. Depending on the interplay between (ranked) higher-level names recognized in

each phylogeny and the number of terminal concepts sampled, steps (1) to (6) may be iterated

once (e.g., 2015./2014.{Falconiformes, Psittaciformes}) or multiple times (e.g., 2015./2014.Pas-

seriformes) to cover a supra-/ordinal alignment. An example of the latter is the 2015./2014.Pas-

serimorphae alignment, which includes two order-level concepts and their children in each

source phylogeny. Such mid-level partitions eventually form the basis for the largest alignment

partitions, e.g. 2015./2014.Telluraves.

Sometimes, coverage will have to be relaxed even at higher levels. In all, 2014.JEA sample

children of 34 order-level concepts in their phylogeny, whereas 2015.PEA recognize 40 order-

level concepts. The latter authors represent four order-level concepts for which no analogous

children are included in 2014.JEA, i.e.: 2015.{Apterygiformes, Casuariiformes, Ciconiiformes,

Rheiformes}. Three of these are assigned to 2015.Palaeognathae, whereas 2015.Ciconiiformes

are subsumed under 2015.Pelecanimorphae–in each case under relaxed parent coverage. The

remaining 36 order-level concepts sec. 2015.PEA show some child-level overlap with those of

2014.JEA.

Our partitioning approach for this use case started with specifying the input constraints for

nearly 35 paired order-level concepts and their respective children, as demonstrated in Figs 3
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and 4. The largest order-level partition is 2015./2014.Passeriformes, with 148 x 22 input con-

cepts, seven instances of relaxed parent coverage, and 101 input articulations. This alignment

completes in less than 15 seconds on an individual 2.0 GHz processor, yielding 3,256 MIR.

As the partitions grew, we configured the following six, non-overlapping alignments as

building blocks for the global alignment: 2015./2014.Palaeognathae (34 x 12 input concepts,

four instances of relaxed coverage, and 25 articulations; same data sequence used for following

alignments), 2015./2014.Galloanserae (49, 16, 7, 46), 2015.Columbaves/2014.Columbimorphae

+ 2014.Otidimorphae (53, 37, 13, 37), 2015.Strisores/2014.Caprimulgimorphae (44, 17, 8, 32),

2015./2014.Ardeae (100, 55, 19, 75), and the largest partition of 2015./2014.Telluraves (316,

104, 37, 241).

At the next more inclusive level, the inferred congruence of 2015.Telluraves = = 2014.Tell-

uraves presented an opportunity to partition the entire alignment into two similarly sized

regions, where the complementary region includes all 2015./2014.Neornithes concepts (392,

174, 58, 259), except those subsumed under 2015./2014.Telluraves, which are therein only rep-

resented with two concepts labels and one congruent articulation. These two complements are

the core partitions that inform our use case alignment, globally. The corresponding S10 and

S11 Files include the input constraint (.txt) and visualization (.pdf) files, along with the align-

ment visualization (.pdf) and MIR (.csv).

The two large partitions yield unambiguous RCC–5 articulations from the species concept

level to that of 2015./2014.Neornithes. They can be aggregated into a synthetic, root-to-order

level alignment, where all subordinal concepts and articulations are secondarily pruned away

(see above). Such an alignment retains the logic signal derived from the bottom-up approach,

but represents only congruent order-level concept labels as terminal regions, except in cases

where there is incongruence. We present this alignment as an analogue to Fig 1 in [4] (p. 515),

and compare how each conveys information about congruent and conflicting higher-level

clade concepts.

Lastly, we further reduce the root-to-order alignment to display only 5–6 clade concept lev-

els below the congruent 2015./2014.Neoaves. This region of the alignment is the most conflict-

ing, and therefore forms the basis for our Discussion.

Results

Higher-level congruence

Our alignments show widespread higher-level congruence across the neoavian explosion use

case; along with several minor regions of conflict and one strongly conflicting region between

concepts placed immediately below the 2015./2014.Neoaves.

We focus first on the large complementary partitions, i.e. 2015./2014.Neornithes (with-

out) / 2015./2014.Telluraves (see S10 and S11 Files). Jointly, they entail 707 concepts sec.

2015.PEA and 283 concepts sec. 2014.JEA. Among these, 34 "no coverage" regions were

added to 2015.PEA’s phylogeny, whereas 61 instances of relaxing parent coverage were

assigned to 2014.JEA’s phylogeny, for a total of 95 instances of relaxing this constraint. The

2015./2014.Neornithes partition shows 305 aligned regions– 247 without the "no coverage"

regions–of which 60 congruently carry at least one concept label from each source phylog-

eny. This alignment also shows eight congruent species-level concept regions. These would

be the only instances of congruence if coverage were globally applied (Figs 1 and 2). There-

fore, relaxing the coverage constraint yields 52 additional instances of higher-level node

congruence. Similarly, the 2015./2014.Telluraves partition has 231 aligned regions– 194

without the "no coverage" regions–of which 38 are congruent. This corresponds to an

increase of 34 regions, compared to four congruent species-level concept regions present
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under strict coverage. Correcting for the redundant 2015./2014.Telluraves region, we ’gain’

85 congruent parent node regions across the two phylogenies if node identity is encoded

intensionally (Figs 3 and 4). Indeed, this approach yields the intuitive articulation 2015.

Neornithes = = 2014.Neornithes at the highest level.

Two kinds of conflict: Differential granularity and overlap

We now focus on characterizing the conflict between 2015.PEA and 2014.JEA. Phylogenomic

incongruence can be divided into two general categories: (1) differential granularity or resolu-

tion of clade concepts (RCC–5 translation: < or >), and (2) overlapping clade concepts

(RCC–5 translation: ><).

The first of these is less problematic from a standpoint of achieving integration: for a given

alignment subregion, the more densely sampled phylogeny will entail additional, more finely

resolved clade concepts in comparison to its counterpart. Typically, this distinction belongs to

the phylogeny of 2015.PEA, due to the 4:1 ratio of terminals sampled. There are 83 above spe-

cies-level clade concepts sec. 2015.PEA that can be interpreted as congruent refinements of the

2014.JEA topology (see S10 and S11 Files). Conversely, only two such instances of added reso-

lution are contributed by 2014.JEA: (1) 2014.Passeriformes_Clade3 which entails 2014.Passeri-

dae and 2014.Thraupidae; and (2) 2014.Haliaeetus with two subsumed species-level concepts.

Nevertheless, the joint 97 congruent node regions and 85 refining node regions cover a large

section of the alignment where integration is either reciprocally (= =) or unilaterally (< or >)

feasible.

Topological overlap

The remaining 38 instances of overlapping articulations between constitute the most profound

conflict. These instances are clustered in four distinct regions, i.e.: 2015./2014.Pelecanimor-

phae (8 overlaps; Fig 7 and S12 File); 2015.Passeri/2014.Passeriformes_Clade2 (3 overlaps; Fig

8 and S13 File); 2015.Eutelluraves/2014.Afroaves (1 overlap; Figs 9 and 10, and S14 and S15

Files); and finally, 2015./2014.Neoaves (26 overlaps; Figs 11–13, and S16–S18 Files). We will

examine each of these in sequence.

1. 2015./2014.Pelecanimorphae. The two author teams sampled four family-level concepts

congruently for this alignment region (Fig 7). However, 2015.PEA’s phylogeny entails six addi-

tional family-level concepts that have no apparent match in 2014.JEA. Moreover, the latter

authors recognize only one order-level concept, 2014.Pelecaniformes, under which all four

family-level concepts are subsumed, including 2014.Phalacrocoracidae. In contrast, 2015.PEA

infer an intensionally less inclusive concept of 2015.Pelecaniformes, and place their congruent

Fig 7. Alignment visualization for the 2015./2014.Pelecanimorphae alignment, with eight overlapping relationships. See text for further detail. The reasoner infers

200 logically implied articulations that constitute the set of MIR. See also S12 File.

https://doi.org/10.1371/journal.pcbi.1006493.g007

Verbalizing phylogenomic conflict

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006493 February 15, 2019 14 / 36

https://doi.org/10.1371/journal.pcbi.1006493.g007
https://doi.org/10.1371/journal.pcbi.1006493


2015.Phalacrocoracidae in the order-level concept 2015.Suliformes. This is the first instance

where we may plausibly reject the proposition: "Had 2014.JEA sampled 2014.Phalacrocoraci-

dae, they would have assigned this concept to 2014.Suliformes". The assertion is no longer

counter-factual: 2014.JEA did sample the corresponding child concept (2014.Phalacrocoraci-

dae), but did not assign it to a parent concept separate from 2014.Pelecaniformes. Accordingly,

we obtain three overlapping, ’cascading’ articulations between concepts that form the 2015.

Suliformes higher-level topology and 2014.Pelecaniformes. Meanwhile, the uniquely sampled

2015.Ciconiiformes are subsumed under 2014.Pelecanimorphae with relaxed parent coverage.

Within 2015.Pelecaniformes, we obtain five additional overlapping articulations between

five concepts that make up the 2015/2014 supra-familial topologies in this alignment (Fig 7).

This conflict is due to the differential assignment of 2015./2014.Pelecanidae. Specifically, 2015.

PEA inferred a sister relationship of 2015.Pelecanidae with 2015.Balaenicipitidae, for which

2014.JEA have no sampled match. Meanwhile, the latter authors inferred a sister relationship

of 2014.Pelecanidae with 2014.Ardeidae. The latter concept is matched in 2015.PEA with 2015.

Ardeidae, though not as the most immediate sister concept of 2015.Pelecanidae. Of course, we

may posit that a 2015.Ardeidae/2015.Pelecanidae sister relationship is what 2015.PEA would
have obtained, had these authors not also sampled 2015.Balaenicipitidae and 2015.Scopidae.

But they did, and hence obtained two clade concepts that include 2015.Pelecanidae yet exclude

2015.Ardeidae; i.e., 2015.Pelecanoidea_Clade1 and 2015.Pelecanoidea_Clade2. While relaxing

parent coverage for 2014.Pelecaniformes_Clade2 could serve to mitigate this conflict, we deem

the overlapping relationship to better represent 2015.PEA’s phylogenomic signal, which hap-

pens to ’break up’ the lowest supra-familiar clade concept supported by 2014.PEA.

Fig 9. Alignment visualization for the 2015./2014.Telluraves alignment, under whole-concept resolution, with one overlapping relationship. Compare with Fig 10;

see text for further detail. The reasoner infers 81 logically implied articulations that constitute the set of MIR. See also S14 File.

https://doi.org/10.1371/journal.pcbi.1006493.g009

Fig 8. Alignment visualization for the 2015.Passeri/2014.Passeriformes_Clade2 alignment, with three overlapping relationships. See text for further detail. The

reasoner infers 135 logically implied articulations that constitute the set of MIR. See also S13 File.

https://doi.org/10.1371/journal.pcbi.1006493.g008
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2. 2015.Passeri/2014.Passeriformes_Clade2. This alignment region is another instance

where relaxing parent coverage can only partially mitigate conflict (Fig 8). In this case, 2015.

PEA and 2014.JEA sampled two sets of family-level concepts that are wholly exclusive of each

other, except for 2015./2014.Corvidae. Regarding the only two additional family-level concepts

recognized in 2014.JEA–i.e., 2014.Passeridae and 2014.Thraupidae–we may posit counter-fac-

tually that these would be subsumed under 2015.Passeroidea with relaxed coverage [47]. How-

ever, further assertions of congruence are difficult to justify, given the limited sampling of

2014.JEA. Thus, in our current representation, 2014.Passeriformes_Clade2 shows an overlap-

ping relationship with 2015.Passeroidea, its immediate parent 2015.Passerida, and also with

2015.Corvoidea.

3. 2015.Eutelluraves/2014.Afroaves. A single overlap occurs just within the congruent par-

ent concepts 2015./2014.Telluraves (Fig 9). Two levels below this paired parent region, both

author teams recognize three congruent children; viz. 2015./2014.{Australaves, Coracornithia,

Accipitrimorphae/Accipitriformes}. However, 2015.Prum group the former two concepts

under 2015.Eutelluraves, with 2015.Accipitriformes as sister; whereas 2014.JEA cluster the lat-

ter two concepts under 2014.Afroaves, with 2014.Australaves as sister. This is the first occur-

rence of conflict that cannot justifiably be resolved by relaxing parent coverage, but instead

reflects divergent phylogenomic signals.

Whole-concept and split-concept resolution

How to speak of such overlap? In Fig 9, we utilize clade concept labels that pertain to each

input phylogeny. In the resulting alignment, the articulation 2015.Eutelluraves >< 2014.

Afroaves is visualized as a dashed blue line between these regions. Yet Fig 9 also specifies the

extent of regional overlap at the next lower level. Accordingly, only the region 2015./2014.Cor-

acornithia is subsumed under each of the overlapping parents. This is indicated by the two

inclusion arrows that extend ’upward’ from this region. The other two paired child regions are

respectively members of one parent region.

If we call the input regions 2015.Eutelluraves "A" and 2014.Afroaves "B", we can use the fol-

lowing syntax to identify output regions that result from overlapping input concepts [26]: A�B

(read: "A and B") constitutes the output region shared by two parents, whereas A\b ("A, not b")

and B\a ("B, not a") are output regions with only one parent. We call this more granular syntax

split-concept resolution ("merge concepts" in [26]), as opposed to whole-concept resolution
which preserves the syntax and granularity provided by the input concept labels.

Fig 10. Alignment visualization for the 2015./2014.Telluraves alignment, under split-concept resolution, resolving the overlapping relationship. Compare with

Fig 9; see text for further detail. The reasoner infers 81 logically implied articulations that constitute the set of MIR. See also S15 File.

https://doi.org/10.1371/journal.pcbi.1006493.g010
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In Fig 10, the 2015./2014.Telluraves overlap is represented with split-concept resolution.

This eliminates the need to visualize a dashed blue line between 2015.Eutelluraves and 2014.

Afroaves (Fig 9). Moreover, in this case the split-concept resolution syntax is redundant or

unnecessary, because each of the three resolved regions under "A" (2015.Eutelluraves) and "B"

(2014.Afroaves) is congruent with two regions already labeled in the corresponding input phy-

logenies. We will see, however, that this granular syntax is essential for verbalizing the out-

comes of more complex alignments that contain many overlapping regions.

Fig 11. Alignment visualization for the 2015./2014.Neornithes alignment, under whole-concept resolution, ranging from the root to the ordinal level (with

exceptions where needed), and with 28 overlapping relationships. Compare with Figs 7, 9 and 10; see text for further detail. The reasoner infers 8,051 logically implied

articulations that constitute the set of MIR. See also S16 File.

https://doi.org/10.1371/journal.pcbi.1006493.g011
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Zooming in on the neoavian explosion

4. 2015./2014.Neoaves. The remaining 26 instances of overlap are shown under different

alignment visualizations in Figs 11–13. They occur 1–5 levels below the congruent concept

pair 2015./2014.Neoaves, and jointly make up the primary region of conflict between these

reconstructions. Because parent coverage was already and selectively applied at lower levels,

none of the 26 overlaps in the alignment are caused by differential child sampling. Therefore

parent coverage must hold here, resulting in genuine conflict in the higher-level arrangement

of congruent sets of children.

Our Fig 11 is intended to be an RCC–5 alignment analogue to Fig 1 in [3]. The alignment

reaches from the root to the ordinal level, and to the family level in the two subregions where

order-level concepts are conflicting (see Fig 4 and S12 File). The visualization provides an intu-

itive signal of the distribution of in-/congruence throughout the alignment. In all, 66/111

regions (59.5%) are congruent, of which 22 are located in the 2015./2014.Telluraves; 15 are

contained in the 2015./2014.Ardeae; and 5 are part of the 2015./2014.Columbimorphae.

Fig 12. Alignment visualization for the 2015./2014.Neoaves alignment, under whole-concept resolution, limited to the main conflict region, and with 26

overlapping relationships. Compare with Fig 11. The reasoner infers 441 logically implied articulations that constitute the set of MIR. See also S17 File.

https://doi.org/10.1371/journal.pcbi.1006493.g012

Fig 13. Alignment visualization for the 2015./2014.Neoaves alignment, under split-concept resolution, limited to the main conflict region, and resolving the 26

overlapping relationships. Compare with Fig 12; the 15 salmon-colored regions are only identifiable via split-concept resolution labels. Compare with Fig 12 and

Table 4. See text for further detail. The reasoner infers 441 logically implied articulations that constitute the set of MIR. See also S18 File.

https://doi.org/10.1371/journal.pcbi.1006493.g013
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Outside of the 2015./2014.Neoaves, 8 such regions are present. In other words, the two phylog-

enies are congruent at the highest level and also in several intermediate regions above the ordi-

nal level.

Fig 12 shows just the neoavian explosion region under whole-concept resolution. Each phy-

logeny contributes 21 input concepts to this ’zoomed-in’ alignment, which yields 13 congruent

regions. Of these, only 2015./2014.Neoaves and 2015./2014.Otidimorphae represent non-ter-

minal concepts.

Unpacking the complexity of this conflict region requires a stepwise analysis. From the per-

spective of 2015.PEA, the 2015.Neoaves are split into a sequence of three unnamed, higher-

level clade concepts, i.e. 2015.{Neoaves_Clade1, Neoaves_Clade2, Neoaves_Clade3}, with

2015.{Strisores, Columbaves, Gruiformes} as corresponding sister concepts. The two children

of 2015.Neoaves_Clade3 are 2015.{Aequorlitornithes, Inopinaves}. The authors accept the

nomenclature of [44] for 2015.Strisores, with is congruent with 2014.Caprimulgimorphae; and

the region 2015./2014.Gruiformes is congruent as well. However, the remaining six high-level

concepts of 2015.PEA are in conflict with the two highest-level neoavian concepts of 2014.JEA,

i.e. 2014.{Columbea, Passerea}, and also with any of the four unnamed clade concepts below

2014.Passerea. In particular, the node sequence 2015.{Neoaves_Clade3, Aequorlithornites,

Aequorlithornites_Clade1} participates in 16/26 overlaps, as summarized in Table 3. Loosely

corresponding to this sequence are the concepts 2014.{Passerea_Clade1, Passerea_Clade2,

Cursorimorphae}, jointly with 10 overlaps. These overlaps are grounded in the incongruent

assignment of five paired, lower-level concept regions; viz. 2015./2014.{Ardeae, Charadrii-

formes, Opisthocomiformes, Phoenicopterimorphae, Telluraves}. Two conflicting placements

contribute most to the number of overlaps: (1) 2015./2014.Charadriiformes in 2015.Aequor-

lithornites_Clade1 (sister to 2015.Phoenicopterimorphae) versus 2014.Cursorimorphae (sister

to 2014.Gruiformes); and (2) 2015./2014.Phoenicopterimorphae in 2015.Aequorlithornite-

s_Clade1 versus 2014.Columbea (sister to 2014.Columbimorphae). The newly proposed yet

unnamed 2015. Aequorlithornites_Clade1, consisting of certain "waterbirds", in effect causes

the most topological incongruence with 2014.JEA. This concept, together with its four super-

seding parents, ’triggers’ 20/26 overlaps with the phylogenomic tree of 2014.JEA.

Two additional clusters of conflict are identifiable in Fig 12. The first concerns the align-

ment of the two concepts 2015.Inopinaves and 2014.Passerea_Clade2, which share the child

regions 2015./2014.Telluraves, yet which differentially accommodate the congruent regions

2015./2014.Ardeae and 2015./2014.Opisthocomiformes. This further contributes to the abun-

dance of overlaps along the respective 2015.Neoaves_Clade{1–3}/Aequorlithornites/_Clade1

and 2014.Passerea/_Clade{1–3}/Cursorimorphae chains. Second, the two paired regions

Table 3. Overview of 26 pairwise 2015/2014 concept overlaps in main neoavian conflict region. See also Figs 11 and 12.

Clade concept label 2014.

Passerea

2014.

Columbea

2014.Passerea

_Clade3

2014.Cursori-

morphae

2014.Passerea

_Clade1

2014.Passerea

_Clade2

2014.Passerea

_Clade4

2014.Otidimor-

phae_Clade1

Totals

2015.Aequorlithornites >< >< >< >< >< >< 6

2015.Aequorlithornites_Clade1 >< >< >< >< >< 5

2015.Neoaves_Clade3 >< >< >< >< >< 5

2015.Columbaves >< >< >< 3

2015.Neoaves_Clade1 >< >< 2

2015.Neoaves_Clade2 >< >< 2

2015.Inopinaves >< >< 2

2015.Otidimorphae_Clade1 >< 1

Totals 6 5 4 3 3 2 2 1 26

https://doi.org/10.1371/journal.pcbi.1006493.t003
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2015./2014.Columbimorphae and 2015./2014.Otidimorphae are incongruently assigned to

three overlapping parents, i.e. 2015.Columbaves and 2014.{Columbea, Passerea_Clade4}.

From the perspective of 2015.PEA, 2014.JEA’s bifurcation of 2014.Columbea and 2014.Pas-

serea is the most conflicting, as these two concepts participate in 11 overlaps. A third and more

minor incongruence concerns the placement of three concept regions within the 2015./2014.

Oditimorphae.

Split-concept resolution for the neoavian explosion

In Fig 13, the same ’zoomed-in’ alignment is shown under split-concept resolution. This per-

mits identifying all output regions created by the 26 overlaps of the neoavian explosion (see

Table 4). The entire set consists of 78 labels; i.e., 26 labels for each split-resolution product

{A�B, A\b, B\a} for one instance of input region overlap. Not all of these split-concept resolu-

tion labels are semantically redundant with those provided in the input. Specifically, 51 labels

are generated ’in addition’ for the 12 terminal congruent regions (compare with Fig 12). These

are indeed unnecessary synonyms for regions already identified in the input. However, the rel-

ative number of additional labels generated per input region is telling. This number will be

highest for regions whose differential placements are the primary drivers of incongruence. As

explained above, these are: 2015./2014.{Phoenicopterimorphae, Charadriiformes, Columbi-

morphae}, respectively with 14, 8, and 7 additional labels. Six redundant split-concept resolu-

tion labels are further produced for input regions that are unique to one phylogeny; e.g., 2014.

Columbea is also labeled 2015.Neoaves_Clade1 \ 2014.Passerea (where the "\" means: not).

The remaining 21 split-concept resolution labels identify 15 salmon-colored alignment

regions– 11 uniquely and 4 redundantly with 2–3 labels each–for which there are no suitable

labels in either of the phylogenomic input trees (Table 4). Forty-six additional articulations are

inferred to align these regions to those displayed in Fig 12. Although these novel regions are

not congruent with any clade concepts recognized by the source phylogenies, they are needed

to express how exactly the authors’ respective clade concepts overlap.

Three distinct reference services are gained by generating the split-concept resolution

labels. First, in cases where no whole-concept resolution labels are available, we obtain appro-

priately short and consistent labels to identify the split regions caused by overlapping clade

concepts. Second, the {A�B, A\b, B\a} triplets have an explanatory function, by using the same

syntactic set of input labels (A, B) to divide complementary alignment subregions of an over-

lap. If we focus on one label of a triplet, we can find the two complements, and thereby system-

atically explore the ’reach’ of each split in the alignment. Third, the clade concept labels (A, B)

used in the split-concept resolution labels will be exactly those that identify overlapping

regions across the source phylogenies.

Analysis of clade name performance

We can now also ask to what extent the clade names (syntax) used by the two author teams

succeed or fail to identify congruent and incongruent concept regions (semantics). Such

name:meaning (read: "name-to-meaning") analyses were carried out in three previous align-

ment use cases, with rather unfavorable outcomes for the respective names in use [14, 32, 51].

Here, based on the alignment of Fig 11, the 97 x 83 input concepts yield a set of 8,051 MIR

(S16 File). Of these, 384 MIR involve one of four "no coverage" regions added to 2014.JEA con-

cepts. We therefore restrict the name:meaning analysis to the remaining 7,667 MIR (Table 5).

Interestingly, the clades names used by the respective author teams fare rather well. Only

nine of 7,667 pairings in the MIR (0.12%) are unreliable as identifiers of in-/congruence of the

respective RCC–5 articulation. In seven instances, two congruent concepts have different
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Table 4. Overview of 15 newly inferred split-concept resolution regions and labels (or label clusters) for the neoavian conflict region that lack appropriate input

clade concept labels. See also Fig 13. For each split-concept resolution label (or label cluster), we provide the two immediate children or constituent concepts 1 and 2 –i.e.,

what is jointly subsumed ’underneath’ the split–as well as the set of lower-level concept regions (using whole-concept resolution labels) that are differentially distributed by

the split between the two source phylogenies. � = Two children listed.

# Split-concept label(s) Constituent clade concept 1 Constituent clade concept 2 Lower-level concept regions differently

assigned by the split

1 2015.Neoaves_Clade1 � 2014.

Passarea_Clade4

2015.Neoaves_Clade2 2014.Columbea 2015./2014.Otidimorphae, 2015.Strisores/2014.

Caprimulgimorphae

2 2015.Neoaves_Clade1 � 2014.

Passerea

2015./2014.Otidimorphae 2014.Passerea_Clade1 2015.Strisores/2014.Caprimulgimorphae, 2014.

Columbea

3 2014.Passerea \ 2015.Columbaves 2015.Strisores/2014.

Caprimulgimorphae

2014.Passerea_Clade1 2015./2014.Columbimorphae, 2015./2014.

Otidimorphae

4 2014.Passerea \ 2015.

Aequorlitornithes_Clade1

2015.Aequorlitornithes \ 2014.

Passerea

2014.Passerea_Clade1 \ 2015.

Aequorlitornithes_Clade1

2015./2014.Charadriiformes, 2015./2014.

Phoenicopterimorphae

5 2014.Passerea \ 2015.

Aequorlitornithes

2014.Passera \ 2015.

Neoaves_Clade3

2014.Passerea_Clade1 \ 2015.

Aequorlitornithes

2015./2014.Ardeae, 2015./2014.Charadriiformes,

2015./2014.Phoenicopterimorphae

6 2015.Neoaves_Clade3 \ 2014.

Cursorimorphae

2015.Inopinaves 2015.Neoaves_Clade3 \ 2014.

Passerea_Clade3

2015./2014.Charadriiformes, 2015./2014.

Gruiformes

7 2014.Passerea \ 2015.

Neoaves_Clade3

2015./2014.Gruiformes 2014.Passerea_Clade4 2015./2014.Ardeae, 2015./2014.Charadriiformes,

2015./2014.Opisthocomiformes,

2015./2014.Phoenicopterimorphae, 2015./2014.

Telluraves

8 2014.Passerea_Clade1 \ 2015.

Aequorlitornithes_Clade1

2014.Passerea_Clade1 \ 2015.

Aequorlitornithes

2014.Passerea_Clade2 2015./2014.Charadriiformes, 2015./2014.

Phoenicopterimorphae

9 {2015.Neoaves_Clade3 \ 2014.

Columbea,

2015.Neoaves_Clade3 � 2014.

Passerea,

2015.Neoaves_Clade3 � 2014.

Passerea_Clade1}

{2015.Aequorlitornithes \ 2014.

Columbea,

2015.Aequorlitornithes � 2014.

Passerea,

2015.Aequorlitornithes � 2014.

Passerea_Clade1},

2015.Neoaves_Clade3 � 2014.

Passerea_Clade3 �

2015.Inopinaves,

2014.Passerea_Clade2 �
2015./2014.Columbimorphae, 2015./2014.

Gruiformes,

2015./2014.Otidimorphae, 2015./2014.

Phoenicopterimorphae, 2015.Strisores/2014.

Caprimulgimorphae

10 2015.Neoaves_Clade3 \ 2014.

Passerea_Clade3

{2015.Aequorlitornithes \ 2014.

Cursorimorphae,

2015.Aequorlitornithes \ 2014.

Passerea_Clade3}

2014.Passerea_Clade2 2015./2014.Ardeae, 2015./2014.Charadriiformes,

2015./2014.Gruiformes, 2015./2014.

Opisthocomiformes,

2015./2014.Phoenicopterimorphae, 2015./2014.

Telluraves

11 2014.Passerea_Clade1 \ 2015.

Aequorlitornithes

2014.Passerea_Clade3 \ 2015.

Aequorlitornithes,

2014.Passerea_Clade3 \ 2015.

Aequorlitornithes_Clade1}

2015.Inopinaves 2015./2014.Ardeae, 2015./2014.Charadriiformes,

2015./2014.Gruiformes, 2015./2014.

Opisthocomiformes,

2015./2014.Phoenicopterimorphae, 2015./2014.

Telluraves

12 {2015.Aequorlitornithes \ 2014.

Cursorimorphae,

2015.Aequorlitornithes \ 2014.

Passerea_Clade3}

2015./2014.Phoenicopterimorphae 2015./2014.Ardeae 2015./2014.Gruiformes, 2015./2014.

Opisthocomiformes

13 {2015.Aequorlitornithes \ 2014.

Columbea,

2015.Aequorlitornithes � 2014.

Passerea,

2015.Aequorlitornithes � 2014.

Passerea_Clade1}

2015./2014.Ardeae 2015./2014.Charadriiformes 2015./2014.Columbimorphae, 2015./2014.

Gruiformes,

2015./2014.Opisthocomiformes, 2015./2014.

Otidimorphae,

2015./2014.Phoenicopterimorphae,

2015.Strisores/2014.Caprimulgimorphae,

2015./2014.Telluraves

14 2015.Neoaves_Clade3 � 2014.

Passerea_Clade3

2015./2014.Charadriiformes 2015./2014.Opisthocomiformes 2015./2014.Ardeae, 2015./2014.Gruiformes,

2015./2014.Phoenicopterimorphae, 2015./2014.

Telluraves

15 {2014.Passerea_Clade3 \ 2015.

Aequorlitornithes,

2014.Passerea_Clade3 \ 2015.

Aequorlitornithes_Clade1}

2015./2014.Gruiformes 2015./2014.Opisthocomiformes 2015./2014.Ardeae, 2015./2014.Charadriiformes,

2015./2014.Phoenicopterimorphae

https://doi.org/10.1371/journal.pcbi.1006493.t004
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names. Four of these merely involve changes in name endings, viz.: 2015.Accipitriformes = =

2014.Accipitrimorphae, 2015.Galloanserae = = 2014.Galloanseres, 2015.Gaviiformes = = 2014.

Gaviimorphae, and 2015.Pteroclidiformes = = 2014.Pterocliformes. The other three instances

involve the respectively preferred roots 2015.Strisores and 2014.Caprimulgi-{formes, mor-

phae}. The articulation 2015.Pelecaniformes < 2014.Pelecaniformes is the single instance in

which the meaning of the same name is less inclusive in one source (Fig 7). Lastly, the overlap-

ping relationship 2015.Otidimorphae_Clade1 >< 2014.Otidimorphae_Clade1 involves the

same name (Figs 12 and 13), though it is not actually used by the author teams (see Methods).

In summary, the clade concept names used by 2015.PEA and 2014.JEA rarely provide an

incorrect signal regarding in-/congruence. This desirable outcome seems to reflect their recog-

nition that newly inferred clade concepts merit the use of unique names.

Comparison with other conflict visualizations

We now compare these results with conflict analysis and visualization tools created for the

Open Tree of Life project (OToL)–a community-curated tree synthesis platform [13, 22, 23,

24]. The OToL approach is explained in [11, 15, 23, 52, 53]. The method starts off with ’nor-

malizing’ all terminal names in the source trees to a common taxonomy [24]. Having the same

terminal name means taxonomic concept congruence (= =). To assess conflict from the per-

spective of one rooted input tree (A), a source edge j of that tree is taken to define a rooted

bipartition S(j) = Sin | Sout, where Sin and Sout are the tip sets of the ingroup and outgroup,

respectively. The algorithm progresses sectionally from the leaves to the root. Concordance or

conflict for a given edge j in tree A with that of tree B is a function of the relative overlap of the

corresponding tip sets, as follows [23]. Concordance between two edges in the input trees A

and B is obtained when Bin is a proper subset (�) of Ain and Bout� Aout. On the other hand,

two edges in trees A and B are conflicting if none of these sets are empty: Ain intersects (
T

)

with Bin, Ain

T
Bout, or Bin

T
Aout. In other words, conflict means that there is reciprocal over-

lap in the ingroup and outgroup bipartitions across the two trees.

We applied this approach in both directions, i.e. starting with 2014.JEA as primary source

and identifying edges therein that conflict with those of 2015.PEA, and vice-versa. The visuali-

zations are shown in Figs 14 and 15, respectively.

Most of the red edges in Fig 15, which is based on the more densely sampled tree sec. 2015.

PEA, are consistent with the overlapping RCC–5 relationships shown in Figs 7 to 13. However,

within the 2015.Pelicanimorphae, certain RCC–5 overlaps (Fig 7) are not recovered ("false pos-

itives"). In addition, numerous edges within the 2015.Passeriformes are shown as conflicting

("false negatives") but are congruent refinements based on the RCC–5 alignment (Fig 8).

Using the less densely sampled tree sec. 2014.JEA as the base topology creates is instructive

(Fig 14). Here, a much larger subset of the topology ’backbone’ is inferred by the OToL algo-

rithm as conflicting–an outcome that would appear inconsistent. For instance, 2014.{Neoaves,

Ardeae, Coracornithia} are shown as conflicting edges in Fig 14, when 2015.{Neoaves, Ardeae,

Coracornithia} are concordant edges in Fig 15. The inconsistencies are caused by the addition

of terminals sec. 2015.PEA that have no matches in 2014.JEA’s sampled tips and tree, and will

Table 5. Clade name-to-RCC–5 relationship reliability analysis for the higher-level neoavian explosion alignment. Relationship data are derived from the set of MIR

corresponding to Fig 11 and the S16 File.

Relationship (RCC–5 / clade name) = = > < >< ! Totals

Same clade name 62 0 1 1 0 64

Different clade names 7 625 691 27 6,253 7,603

Totals 69 625 692 28 6,253 7,667

https://doi.org/10.1371/journal.pcbi.1006493.t005
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therefore attach as children to a higher-level parent in the OToL taxonomy. The latter is used

to place terminals that are differentially sampled between sources. For instance, 2015.Ciconii-

formes–which has no close match in 2014.JEA–may end up attaching as a child of 2014.Neog-

nathae instead of 2014.Pelecanimorphae (Fig 7). Hence the OToL taxonomy is used to

represent concept intensionality, but it cannot do so reliably if it lacks relevant input concepts.

Fig 14. Conflict visualization for Avian phylogenomic relationships, using the method of [11, 15, 23], with 2014.JEA as the primary source phylogeny and

2015.PEA as the alternative. Black edges indicate concordance, whereas red edges signal conflict. Clade and terminal concept labels are added in accordance with

the present study. Moreover, consistency or inconsistency of the edge concordance/conflict analysis with the RCC–5 alignments (Figs 7 to 13) are signaled via a

green "+" circle and a black "–" circle, respectively. See also S19 File.

https://doi.org/10.1371/journal.pcbi.1006493.g014
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At the time of analysis, the OToL taxonomy lacked a name/concept for "Neoaves". This means

that the 2015./2014.Neoaves ingroup/outgroup bipartitions will be inconsistent in evaluating

the placement of 2015.Ciconiiformes, showing conflict in Fig 14 but not in Fig 15.

Fig 15. Conflict visualization for Avian phylogenomic relationships, using the method of [11, 15, 23], with 2015.

PEA as the primary source phylogeny and 2014.JEA as the alternative. Display conventions as in Fig 14. See also S20

File.

https://doi.org/10.1371/journal.pcbi.1006493.g015
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Discussion

Key phylogenomic conflict representation conventions

We review the key conventions of our approach before discussing services that can be derived

from our alignments.

1. Using the taxonomic concept label convention of [14] allows us to individuate each concept

entailed in 2014.JEA and 2015.PEA, even if the taxonomic or clade concept name compo-

nents are identical, as in 2015.Pelicaniformes < 2014.Pelicaniformes.

2. Because our main intention is to represent phylogenomic congruence and conflict across

these inferred phylogenies, there is no need to speak of sameness in any profound sense,

such as referring to the "same {clades, nodes, species, taxa}". Such language is best used

once we shift from modeling similarities and differences between human-made phyloge-

nomic theories, to hopefully (but not necessarily) robust evolutionary inferences. We

thereby avoid blurring the lines between two important communication goals best met by

maintaining complementary manners of speaking [21].

3. Linking concepts via is_a (parent/child) relationships permits the assembly of single-source

hierarchies, whereas RCC–5 articulations express the relative congruence of concept

regions across multi-source hierarchies. Uncertainty can be accommodated via disjunctions

of the base five relations [33].

4. Under parent coverage, differential child-level sampling will propagate up to yield incon-

gruent relationships among parent-level clade concepts [14, 26, 29]. Local relaxation of the

coverage constraint can mitigate this effect. However, this requires expert judgment [30],

reflected in input articulations that stipulate counter-factual circumstances. We can thereby

indirectly model intensional (property-based) node concept definitions in RCC–5, and

obtain instances of clade concept congruence in spite of incongruent terminal sampling

(Figs 1–4).

5. Because every clade concept region to be aligned requires a label suited for human commu-

nication, we need to supply such labels when the sources fail to do so. A pragmatic solution

is to utilize the next available higher-level name and add the suffix "_Clade#", as in 2015.

Neoaves_Clade1 or 2014.Passerea_Clade3 (Tables 1 and 2). This may involve deciding on a

breadth- vs. depth-first approach, and having a rule to prioritize between sibling nodes.

6. In some instances, the source may provide a clade concept label for a non-monophyletic

tree region. Representing such mismatches is achieved by providing an(other) alignment

between (1) the reference classification and (2) the phylogeny to which the labels are incon-

gruently applied (Figs 5 and 6).

7. Multi-rooted, bottom-up, and incremental partitions may be required to manage the logic

reasoning complexity of large or even global alignments [28]. Consistent alignments of

higher-level concept hierarchies (Fig 11), can be derived from this bottom-up approach by

propagating the inferred parent-level articulations while pruning the children used for

aligning lower-level partitions [14, 28, 51].

8. Overlapping relationships among higher-level clade concepts can be represented using

either whole-concept or split concept resolution (compare Figs 9 and 10; Figs 12 and 13).

The latter option provides a uniquely powerful syntax to partition and label the alignment

regions created by concept overlap (Tables 3 and 4).
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9. The reasoner-inferred MIR are useful for quantifying all pairwise instances where the

names used by each source succeed, or fail, in matching the signal of the RCC–5 relation-

ships (Table 5).

10. The alignments can be compared with other conflict representation methods, such as the

OToL concordance/conflict visualizations [11, 15, 23]. This is particularly illustrative in

cases where differential sampling of low-level concepts generates unequal assessments

between the OToL and RCC–5 approaches (Figs 14 and 15). The latter is more reliable in

cases where expert judgment is needed to represent higher-level concept intensionality

under strongly divergent sampling schemes.

Knowledge representation services

What can we gain from this approach, both narrowly for this use case and for future data inte-

gration in systematics?

Data representation designs have inherent trade-offs. Unlike other semi-/automated phylo-

genomic conflict visualization methods [13, 23, 24], the above approach requires extensive

upfront application of human expertise to obtain the intended outcomes. In return, the RCC–5

alignments deliver a level of explicitness and verbal precision exceeding that of published alter-

natives [4, 5, 6, 9, 16, 17]. We can not just verbalize all instances of congruence and conflict,

but transparently document and therefore understand their provenance in a global alignment

(Figs 11 and 13). In other words, the RCC–5 alignments provide a logically tractable means to

identify and also explain the extent of conflict.

We can derive novel data services from the alignment products. (Note that these services

are envisioned but not yet implemented in a web-based platform.) Example queries include the

following. (1) Show all congruent regions of the alignment and their clade concept labels. (2)

Modify this query to only apply to alignment regions subsumed under one particular concept

and source, such as 2014.Columbea. (3) For any subset region of the global alignment (e.g.,

2015./2014.Australaves), show the lowest-level pairs of children that are sampled congruently,

versus those that are sampled incongruently. (4) Highlight within such an alignment region all

clade concepts for which parent coverage is relaxed, and which show congruence as a result of

this action. (5) Highlight sets of concepts where incongruence is due to differential granularity

(sampling), versus actual overlap. (6) Identify and rank concepts that participate in the greatest

number of overlapping relationships (Table 3). (7) Identify and rank the longest chains of

nested, overlapping concept sets (Fig 12). (8) Highlight the congruent, lowest-level concept

pairs whose incongruent placement into higher-level regions causes the chains of overlap. (9)

List all split-concept resolution labels in complementary triplets {A�B, A\b, B\a}, and provide

for each the two immediate children and (again) the set of lower-level, whole-concept resolu-

tion regions that are differentially distributed by the split (Fig 13 and Table 4). (10) Identify

clade names that are unreliable across the source phylogenies; including identical clade name

pairs that participate in concept labels with an incongruent relationship, or different clade

names whose concept labels have a congruent relationship (Table 5).

All of the above queries, and many others we could propose, are enabled by our RCC–5

representation and reasoning conventions, which therefore present a new foundation for

building logic-based, machine-scalable data integration services for the age of phylogenomics.

Conceptualizing node identity and congruence this way addresses a gap in current systematic

theory that is not adequately filled by other syntactic solutions.

Linnaean naming. We have shown elsewhere that homonymy and synonymy relationships

are unreliable indicators of congruence [14, 26, 32]. Code-enforced Linnaean naming is
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designed to fixate the meaning of names by ostension, while allowing the intensional compo-

nents to remain ambiguous [21, 54, 55, 56, 57]. This trade-off effectively shifts the burden of

disambiguating varying intensionalities associated with Linnaean names onto an additional,

interpreting agent–typically human experts. Our RCC–5 alignment approach can be viewed as

a way to formalize the disambiguation effort, so that it can attain machine-interpretability.

Phyloreferencing. Similarly, node-based phyloreferences [58, 59, 60] are not well suited to

reconstruct an alignment such as that of 2015./2014.Pelecanimorphae (Fig 7). This would

require: (1) an elaborate notion of phyloreference homonymy and synonymy (e.g., 2015.Peleca-

nifores versus 2014.Pelecaniformes, or 2015.Strisores versus 2014.Caprimulgimorphae); (2)

node-based definitions with inclusion/exclusion constraints that cover all terminals in the phy-

logeny; and (3) synapomorphy-based definitions at higher levels to model the local relaxation

of coverage constraints. All of these functions may be feasible in principle with phylorefer-

ences, provided that human experts are permitted to enact them. However, it may be fair to

say that phyloreferences were not mainly designed to bring out fine differences between node

concepts across multiple phylogenies. They are best utilized when concept evolution and con-

flict are not the main drivers of an information system design.

Role of trained judgment

The two largest alignments of 2015./2014.Neornithes (without) / 2015./2014.Telluraves jointly

entail 895 concepts and 95 instances of relaxed parent coverage. They provide us with 97 con-

gruent regions in the global alignment, of which 85 regions are obtained only because of the

indirect modeling of intensional node definitions. The contingency of the alignment outcome

on expert intentions is neither surprising nor trivial. We should therefore explore this depen-

dency more deeply.

Redelings and Holder [23: pp. 5–6] comment on the OToL synthesis method: "Any

approach to supertree construction must deal with the need to adjudicate between conflicting

input trees. We choose to deal with conflict by ranking the input trees, and preferring to

include edges from higher-ranked trees. The merits of using tree ranking are questionable

because the system does not mediate conflicts based on the relative amount of evidence for

each alternative. [. . .] In order to produce a comprehensive supertree, we also require a rooted

taxonomy tree in addition to the ranked list of rooted input trees. Unlike other input trees, the

taxonomy tree is required to contain all taxa, and thus has the maximal leaf set. We make the

taxonomy tree the lowest ranked tree. [. . .] Our method must resolve conflicts in order to con-

struct a single supertree. However, the rank information used to resolve conflicts is an input to

the method, not an output from the method. We thus perform curation-based conflict resolu-

tion, not inference-based conflict resolution."

Clearly, the outcomes of the OToL synthesis method are also deeply dependent on expert

input regarding the relative ranking of input phylogenies and of the OToL taxonomy [24]. We

have shown (Figs 14 and 15) that these choices can lead to inconsistent outcomes whenever

the sequence of input trees determines how concordance and conflict are negotiated by the

algorithms. If the less densely sampled tree is prioritized, and the taxonomy cannot accommo-

date all components of a lower-ranked tree, then the method will show more conflict in com-

parison to an inverse input sequence. Any global rule of priority among trees is a poor proxy

for modeling individual node concept intensionality, which requires making reliable, local

decisions between (1) conflict due to differential granularity versus (2) conflict due to overlap.

We can now return to the challenge posed in the Introduction. How do we build a data ser-

vice for phylogenomic knowledge in the face of persistent conflict? Our answer is novel in the

following sense. Assuming that such a service is desirable, we show that achieving it
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fundamentally depends on making and expressing upfront empirical commitments about the

intensionalities of clade concepts whose children are incongruently sampled. Without embed-

ding these judgments into the alignment input, we lose the 85 congruent parent regions recov-

ered under relaxed parent coverage. We furthermore lose the ability to distinguish the former

from more than 340 alignment regions that are not congruent. And we lose the power to

express the nature of this residual conflict–granularity versus overlaps–and how to resolve it.

In other words, the first step for building the phylogenomic data knowledge service will be

to recognize that conceptualizations of node identity within such a system just cannot be pro-

vided through some mechanical, ’objective’ criterion. Instead, we need an inclusive standard

of objectivity that embraces trained judgment as an integral part of identifying and linking

node concepts [30]. In that sense, phylogenomic syntheses are inference-based (contra [23])

and also driven by a specific purpose. As integrative biologists, our goal in providing RCC–5

alignments is to maximize intensional node congruence. There may not be a more reliable cri-

terion for achieving this than expert judgment, which draws on complex and context-specific

theoretical knowledge [40, 43, 61]. Logic representation and reasoning can help render these

constraints explicit and consistent, and expose implicit articulations through the MIR which

encompass all node concepts in an alignment. But logic cannot substitute the expert aligners’

intensional aims and definitions.

Building a phylogenomic data knowledge service forces us to become experts about exter-

nally generated results that conflict with those which we may (currently) publish or endorse.

We need to become experts of another author team’s node concepts, to the point where we are

comfortable with expressing counter-factual statements regarding their intensionalities, in

spite of incongruent child sampling. This will require a profound but necessary adjustment in

achieving a culture of synthesis in systematics that no longer manages conflict this way: "If we

do not agree, then it is either our view over yours, or we just collapse all conflicting node con-

cepts into polytomies". In contrast, we need to develop the following culture of synthesis: "We

may not agree with you, but we understand your phylogenomic inference well enough to

express our dis-/agreements in a logic-compatible syntax. Therefore, we are prepared to assert

and refine articulations from our concepts to yours for the purpose of maximizing intensional

node congruence". Only then can we expect to also maximize the empirical translatability of

biological data linked to diverging phylogenomic hypotheses.

Shifting towards the latter attitude will be more challenging than providing the operational

logic to enable scalable alignments. Automation of certain workflow components is certainly

possible. Ultimately, the logic or technical issues are not the hardest bottlenecks to overcome.

Designers of future data environments capable of verbalizing phylogenomic conflict and syn-

thesis need to reflect on how to promote a culture where experts routinely re-/assess the inten-

sionalities of node concepts published by peers. If we wish to track progress and conflict across

phylogenomic inferences, we first need to design a value system that better enables and moti-

vates experts to do so.

Response to reviewers

He we discuss various reviewer comments that merit a response but would break up the main

flow of the narrative if inserted earlier. We take liberty to assign a header to each comment.

Phylogenetic clade definitions and taxonomic concepts are fundamentally mismatched.

One reviewer pointed out that clade hypotheses are about branching patterns and relationships

of descent, and therefore are mismatched with our notion of node intensionality. We disagree

in the following sense. We believe that we are not conflating two fundamentally different kinds

of clade conceptualizations, as much as bringing out with the RCC–5 alignments one aspect in
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the dual, or hybrid nature of clade concepts. The latter are not either this or that–with parallels

to the taxa as classes-versus-individuals literature–both can be both, depending on the prag-

matic interest [36, 37, 62]. For the purpose of synthesis and integration, modeling the inten-

sional aspect of clade concepts is critical. We see this purpose reflected (e.g.) in the matching

of high-level terminals in [3].

No mechanism for quantitatively expressing uncertainty about tree topology. The same

reviewer pointed out that we select single point estimate topologies for each author team,

thereby not accounting for the complex likelihood surfaces of the reconstructions and the rela-

tive uncertainty of each topology. Applied to what we show here, this criticism is valid. How-

ever, it would be feasible perform RCC–5 alignments on a cluster of paired topology

alternatives with similar likelihood values. The products can be compared in order to manage

uncertainty, through identification of stable versus variable regions across multiple alignments.

If most of the variation occurs at higher levels, this would mean that the vast majority of our

low-level RCC–5 input articulations could be reused.

Phylogenetic conflict is not limited to two trees. Another reviewed pointed out the need

to align more than two phylogenies in situations where many recent reconstructions are avail-

able to inform a synthesis [5, 6, 11]. While the current logic toolkit handles three or more

input trees in principle, there certainly are unrealized opportunities to model transitive rela-

tionships (example: for concepts A, B, C in the input trees T1, T2, T3: if AT1 = = BT2 and BT2 =

= CT3 then AT1 = = CT3). ’Smartly’ breaking down alignments of three or more trees while

exploiting transitive relationships, as well as visualizing the outcomes accessible ways, are

important future improvements for this approach.

"Not every clade [concept] is worth labeling and discussing". We can agree with that

assessment. But, having a framework to do so is critical to evaluating the feasibility of a phylo-

genomic data knowledge service, and should not trail behind discussions regarding its desir-
ability. If we have no formalized means of translating Fig 1 of [3] into a machine-accessible

language (Fig 11), then we cannot fully understand the costs and benefits of building the

service.

Incentivizing alignment production. One reviewer pointed out that efforts to align multi-

ple trees are costly, and inquired about our suggestions for incentivizing such expert contribu-

tions. An initial answer would point to the creation of an e-journal, where multi-phylogeny

and -taxonomy alignments can be published either as stand-alone articles or in association

with separate publications of new tree reconstructions. The platform of a formal journal best

responds to expert needs to receive academic credit [63]. Knowledge systems such as [64]

could represent the information input and output. The most valuable product of such an e-

journal are the expert-vetted sets of RCC–5 articulations, which represent a new kind of "sys-

tematic intelligence". Scientists and commercial publishers may utilize this intelligence to

improve the precision and recall of systematically structured data [54], where business models

would focus on the latter clients for revenue. Needless to say, these are ideas that will take time

to concretize and test.

Supporting information

S1 File. (A) Reasoner input constraints for the 2015./2014.Psittaciformes alignment, with cov-

erage globally applied. (B) Input visualization for the 2015./2014.Psittaciformes alignment,

with coverage globally applied.

(ZIP)

S2 File. (A) Alignment visualization for the 2015./2014.Psittaciformes alignment, with cover-

age globally applied. (B) Set of Maximally Informative Relations (MIR) inferred for the 2015./
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2014.Psittaciformes alignment, with coverage globally applied. Total = 108 MIR.

(ZIP)

S3 File. (A) Reasoner input constraints for the 2015./2014.Psittaciformes alignment, with cov-

erage locally relaxed. Includes information on run commands; and 4 instances of "no cover-

age". (B) Input visualization for the 2015./2014.Psittaciformes alignment, with coverage locally

relaxed.

(ZIP)

S4 File. (A) Alignment visualization for the 2015./2014.Psittaciformes alignment, with cover-

age locally relaxed. (B) Set of Maximally Informative Relations (MIR) inferred for the 2015./

2014.Psittaciformes alignment, with coverage locally relaxed. Total = 160 MIR.

(ZIP)

S5 File. (A) Reasoner input constraints for the alignment of passeriform clade concepts

("Phylo2015") sec. 2015.PEA with the corresponding classification concepts ("Class2015") sec.

Gill & Donsker (2015); including the (paraphyletic) Class2015.Eurylaimidae. Includes infor-

mation on run commands; and 0 instances of "no coverage". (B) Input visualization for the

alignment of passeriform clade concepts ("Phylo2015") sec. 2015.PEA with the corresponding

classification concepts ("Class2015") sec. Gill & Donsker (2015); including the (paraphyletic)

Class2015.Eurylaimidae.

(ZIP)

S6 File. (A) Alignment visualization for the alignment of passeriform clade concepts

("Phylo2015") sec. 2015.PEA with the corresponding classification concepts ("Class2015") sec.

Gill & Donsker (2015); including the (paraphyletic) Class2015.Eurylaimidae. (B) Set of Maxi-

mally Informative Relations (MIR) inferred for the alignment of passeriform clade concepts

("Phylo2015") sec. 2015.PEA with the corresponding classification concepts ("Class2015") sec.

Gill & Donsker (2015); including the (paraphyletic) Class2015.Eurylaimidae. Total = 63 MIR.

(ZIP)

S7 File. Supporting files for the alignment of tyrannoid clade concepts ("Phylo2015") sec.

2015.PEA with the corresponding classification concepts ("Class2015") sec. Gill & Donsker

(2015); including the (paraphyletic) Class2015.Tityridae. (A) Reasoner input constraints.

Includes information on run commands; and 0 instances of "no coverage". (B) Input visualiza-

tion. (C) Alignment visualization. (D) Set of Maximally Informative Relations (MIR).

Total = 140 MIR.

(ZIP)

S8 File. (A) Reasoner input constraints for the alignment of procellariiform clade concepts

("Phylo2015") sec. 2015.PEA with the corresponding classification concepts ("Class2015") sec.

Gill & Donsker (2015); including the (paraphyletic) Class2015.Hydrobatidae and Class2015.

Procellariidae. Includes information on run commands; and 0 instances of "no coverage". (B)

Input visualization for the alignment of procellariiform clade concepts ("Phylo2015") sec.

2015.PEA with the corresponding classification concepts ("Class2015") sec. Gill & Donsker

(2015); including the (paraphyletic) Class2015.Hydrobatidae and Class2015.Procellariidae. (C)

Alignment visualization for the alignment of procellariiform clade concepts ("Phylo2015") sec.

2015.PEA with the corresponding classification concepts ("Class2015") sec. Gill & Donsker

(2015); including the (paraphyletic) Class2015.Hydrobatidae and Class2015.Procellariidae.

(D) Set of Maximally Informative Relations (MIR) inferred for the alignment of procellarii-

form clade concepts ("Phylo2015") sec. 2015.PEA with the corresponding classification con-

cepts ("Class2015") sec. Gill & Donsker (2015); including the (paraphyletic) Class2015.
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Hydrobatidae and Class2015.Procellariidae. Total = 221 MIR.

(ZIP)

S9 File. (A) Reasoner input constraints for the alignment of caprimulgiform clade concepts

("Phylo2015") sec. 2015.PEA with the corresponding classification concepts ("Class2015") sec.

Gill & Donsker (2015); including the (paraphyletic) Class2015.Caprimulgiformes. Includes

information on run commands; and 0 instances of "no coverage". (B) Input visualization for

the alignment of caprimulgiform clade concepts ("Phylo2015") sec. 2015.PEA with the corre-

sponding classification concepts ("Class2015") sec. Gill & Donsker (2015); including the (para-

phyletic) Class2015.Caprimulgiformes. (C) Alignment visualization for the alignment of

caprimulgiform clade concepts ("Phylo2015") sec. 2015.PEA with the corresponding classifica-

tion concepts ("Class2015") sec. Gill & Donsker (2015); including the (paraphyletic) Class2015.

Caprimulgiformes. (D) Set of Maximally Informative Relations (MIR) inferred for the align-

ment of caprimulgiform clade concepts ("Phylo2015") sec. 2015.PEA with the corresponding

classification concepts ("Class2015") sec. Gill & Donsker (2015); including the (paraphyletic)

Class2015.Caprimulgiformes. Total = 672 MIR.

(ZIP)

S10 File. (A) Reasoner input constraints for the 2015./2014.Neornithes alignment (excepting

2015./2014.Telluraves), with coverage locally relaxed. Includes information on run commands;

and 58 instances of "no coverage". (B) Input visualization for the 2015./2014.Neornithes align-

ment (excepting 2015./2014.Telluraves), with coverage locally relaxed. (C) Alignment visuali-

zation for the 2015./2014.Neornithes alignment (excepting 2015./2014.Telluraves), with

coverage locally relaxed. (D) Set of Maximally Informative Relations (MIR) inferred for the

2015./2014.Neornithes alignment (excepting 2015./2014.Telluraves), with coverage locally

relaxed. Total = 68,208 MIR.

(ZIP)

S11 File. (A) Reasoner input constraints for the 2015./2014.Telluraves alignment, with cover-

age locally relaxed. Includes information on run commands; and 37 instances of "no coverage".

(B) Input visualization for the 2015./2014.Telluraves alignment, with coverage locally relaxed.

(C) Alignment visualization for the 2015./2014.Telluraves alignment, with coverage locally

relaxed. (D) Set of Maximally Informative Relations (MIR) inferred for the 2015./2014.Tellur-

aves alignment, with coverage locally relaxed. Total = 32,864 MIR.

(ZIP)

S12 File. (A) Reasoner input constraints for the 2015./2014.Pelecanimorphae alignment, with

coverage locally relaxed. Includes information on run commands; and 2 instances of "no cov-

erage". (B) Input visualization for the 2015./2014.Pelecanimorphae alignment, with coverage

locally relaxed. (C) Alignment visualization for the 2015./2014.Pelecanimorphae alignment,

with coverage locally relaxed. (D) Set of Maximally Informative Relations (MIR) inferred for

the 2015./2014.Pelecanimorphae alignment, with coverage locally relaxed. Total = 200 MIR.

(ZIP)

S13 File. (A) Reasoner input constraints for the 2015.Passeri/2014.Passeriformes_Clade2

alignment, with coverage locally relaxed. Includes information on run commands; and 1

instance of "no coverage". (B) Input visualization for the 2015.Passeri/2014.Passeriforme-

s_Clade2 alignment, with coverage locally relaxed. (C) Alignment visualization for the 2015.

Passeri/2014.Passeriformes_Clade2 alignment, with coverage locally relaxed. (D) Set of Maxi-

mally Informative Relations (MIR) inferred for the 2015.Passeri/2014.Passeriformes_Clade2
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alignment, with coverage locally relaxed. Total = 140 MIR.

(ZIP)

S14 File. (A) Reasoner input constraints for the 2015./2014.Telluraves alignment (higher-

level subset), under whole-concept resolution. Includes information on run commands; and 0

instances of "no coverage". (B) Input visualization for the 2015./2014.Telluraves alignment

(higher-level subset), under whole-concept resolution. (C) Alignment visualization for the

2015./2014.Telluraves alignment (higher-level subset), under whole-concept resolution. (D)

Set of Maximally Informative Relations (MIR) inferred for the 2015./2014.Telluraves align-

ment (higher-level subset), under whole-concept resolution. Total = 81 MIR.

(ZIP)

S15 File. (A) Reasoner input constraints for the 2015./2014.Telluraves alignment (higher-

level subset), under split-concept resolution. Includes information on run commands; and 0

instances of "no coverage". (B) Input visualization for the 2015./2014.Telluraves alignment

(higher-level subset), under split-concept resolution. (C) Alignment visualization for the

2015./2014.Telluraves alignment (higher-level subset), under split-concept resolution. (D) Set

of Maximally Informative Relations (MIR) inferred for the 2015./2014.Telluraves alignment

(higher-level subset), under split-concept resolution. Total = 81 MIR.

(ZIP)

S16 File. (A) Reasoner input constraints for the 2015./2014.Neornithes alignment, under

whole-concept resolution, ranging from the root to the ordinal level (with exceptions where

needed). Includes information on run commands; and 4 instances of "no coverage". (B) Input

visualization for the 2015./2014.Neornithes alignment, under whole-concept resolution, rang-

ing from the root to the ordinal level (with exceptions where needed). (C) Alignment visualiza-

tion for the 2015./2014.Neornithes alignment, under whole-concept resolution, ranging from

the root to the ordinal level (with exceptions where needed). (D) Set of Maximally Informative

Relations (MIR) inferred for the 2015./2014.Neornithes alignment, under whole-concept reso-

lution, ranging from the root to the ordinal level (with exceptions where needed).

Total = 8,051 MIR.

(ZIP)

S17 File. (A) Reasoner input constraints for the 2015./2014.Neoaves alignment, under whole-

concept resolution, limited to the main conflict region. Includes information on run com-

mands; and 0 instances of "no coverage". (B) Input visualization for the 2015./2014.Neoaves

alignment, under whole-concept resolution, limited to the main conflict region. (C) Align-

ment visualization for the 2015./2014.Neoaves alignment, under whole-concept resolution,

limited to the main conflict region. (D) Set of Maximally Informative Relations (MIR) inferred

for the 2015./2014.Neoaves alignment, under whole-concept resolution, limited to the main

conflict region. Total = 441 MIR.

(ZIP)

S18 File. (A) Reasoner input constraints for the 2015./2014.Neoaves alignment, under split-

concept resolution, limited to the main conflict region. Includes information on run com-

mands; and 0 instances of "no coverage". (B) Input visualization for the 2015./2014.Neoaves

alignment, under split-concept resolution, limited to the main conflict region. (C) Alignment

visualization for the 2015./2014.Neoaves alignment, under split-concept resolution, limited to

the main conflict region. (D) Set of Maximally Informative Relations (MIR) inferred for the

2015./2014.Neoaves alignment, under split-concept resolution, limited to the main conflict
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region. Total = 441 MIR.

(ZIP)

S19 File. Output tree file (visualized using FigTree) of the OToL conflict visualization

method, with 2014.JEA as the primary source phylogeny and 2015.PEA as the alternative.

(TRE)

S20 File. Output tree file (visualized using FigTree) of the OToL conflict visualization

method, with 2015.PEA as the primary source phylogeny and 2014.JEA as the alternative.

(TRE)
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ing conflicting taxonomic views using a logic-based approach. Proc Assoc Info Sci Tech. 2017 Oct 24;

54(1):46–56.

30. Daston LJ, Galison P. Objectivity. Cambridge: MIT Press; 2007.

31. Ogden CK, Richards IA. The meaning of meaning. 8th Edition. Harcourt: Brace & World, Inc.; 1923.

Verbalizing phylogenomic conflict

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006493 February 15, 2019 34 / 36

https://doi.org/10.1093/sysbio/syx041
http://www.ncbi.nlm.nih.gov/pubmed/28369655
https://doi.org/10.1016/j.ympev.2017.08.002
https://doi.org/10.1016/j.ympev.2017.08.002
http://www.ncbi.nlm.nih.gov/pubmed/28797692
https://doi.org/10.1073/pnas.1423041112
http://www.ncbi.nlm.nih.gov/pubmed/26385966
https://doi.org/10.1093/sysbio/syw023
http://www.ncbi.nlm.nih.gov/pubmed/27009895
https://doi.org/10.1371/journal.pcbi.1003223
http://www.ncbi.nlm.nih.gov/pubmed/24086118
https://doi.org/10.1093/bioinformatics/btp217
http://www.ncbi.nlm.nih.gov/pubmed/19478021
https://doi.org/10.1093/molbev/msh018
http://www.ncbi.nlm.nih.gov/pubmed/14660700
http://www.worldbirdnames.org/
http://www.worldbirdnames.org/
https://doi.org/10.1093/bioinformatics/btv276
http://www.ncbi.nlm.nih.gov/pubmed/25940563
https://doi.org/10.7717/peerj.3058
http://www.ncbi.nlm.nih.gov/pubmed/28265520
https://doi.org/10.1371/journal.pone.0118247
https://doi.org/10.1371/journal.pone.0118247
http://www.ncbi.nlm.nih.gov/pubmed/25700173
https://arxiv.org/abs/1402.1992
https://doi.org/10.1371/journal.pcbi.1006493


32. Franz NM, Chen M, Kianmajd P, Yu S, Bowers S, Weakley AS, et al. Names are not good enough: Rea-

soning over taxonomic change in the Andropogon complex. Semantic Web (IOS). 2016 Oct 11; 7

(6):645–667.
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