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We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 111
dimensions, for localized excitations with non-zero background, establishing through virial identities
a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that
the system can favor the formation of dispersive shock waves. The general findings are illustrated with
a model of interest to both classical and quantum physics (cubic-quintic NLS equation),
demonstrating a radically novel scenario of instability, where solitons identify a marginal condition
between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of
different sign.

W
ave collapse, i.e. the occurrence of blow up in a finite time or propagation distance1–3, is a general
phenomenon that appears in many contexts including self-focusing in optics4,5 (for an extensive
review and a historical perspective, see ref. 6), plasma waves7, Bose-Einstein condensates8,9, hydro-

dynamics10 and organic systems11. Indeed several dispersive models with critical or supercritical nonlinearity
(e.g. generalized KdV or KP equations12, modified KP13, Zhakarov equation14, and discrete or nonlocal
version of the nonlinear Schrödinger equation15,16) exhibit formation of a point singularity from a large class
of initial data. The critical case is by far the most intriguing one due to the sensitivity of the collapse to
perturbations. In this context the most studied case, namely the focusing cubic nonlinear Schrödinger (NLS)
equation, which is critical in two transverse dimensions, is still a formidable ground to understand the
dynamics of collapse17–20 in spite of long standing investigations3–6. However, many physical classical and
quantum systems need to be described in terms of generalized NLS (gNLS) equation which accounts for
higher-order nonlinearities. Indeed such higher-order terms arise from different physical mechanisms in
nonlinear optics (saturation of optical susceptibilities of standard material21–23, local field effects24, tailoring of
nonlinearities in a cooled gas25), dynamics of superuids26, or quantum condensed systems where they are
related to higher-order atom-atom interactions27–29. In gNLS systems critical collapse can occur also in one
transverse dimension when quintic (or higher-order) nonlinearity is effective2,30,31. Though the blow-up
problem is generally addressed for bright (i.e., zero background) solutions, gNLS systems support transla-
tionally invariant solitary wave solutions with non-zero background, yet of bright type32–36 (complement of
well known dark soliton or bubble type solutions37,38), for which the problem of blow-up have been over-
looked. Our aim in this paper is to establish a novel criterion for collapse valid for solutions of this type, and
study the dynamics across the threshold for blow-up. This allows us to reveal a new instability scenario where
opposite behaviors, such as blowup or decay into a dispersive shock wave, can be controlled by means of an
arbitrarily weak perturbation which controls the variation of the power (or mass) integral of a launched
perturbed solitary wavepacket. We consider regimes for which the background itself is stable (otherwise
modulation instability of the background becomes the main mechanism that affects the decay dynamics of
the field).

The paper is organized as follows. In Section 2 we introduce the model and develop a sufficient criterion for
collapse. In Section 3, we propose an approach to characterize non-collapsing solutions based on self-similar and
semiclassical scaling arguments. The prediction of our analysis are confirmed by means of numerical simulations
with reference to a specific model of physical interest in Section 4.
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The model and collapse criterion. We start from the following gNLS
equation in dimensionless units
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zF yj j2
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y~0, ð1Þ

with a general nonlinearity F(r) (henceforth r 5 jyj2, which has
physical meaning of density or intensity in optics) and study the
instability scenario of localized fields y characterized by
nonvanishing boundary conditions: y +?ð Þ? ffiffiffiffiffi

r0
p

e+iw0 . Equation
(1) is conveniently normalized by setting F(r0) 5 0 at the
background value r0. Invariants of motion originate from the
translational symmetries along t, x and Gauge transformations,
resulting in the renormalized functionals associated with energy H,
momentum P, and L2 norm M (henceforth referred to as ‘mass’,
though it can physically represent number of particles or power in
optics)39
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where U rð Þ:
ðr

r0

F yð Þdy.

As demonstrated by Barashenkov38, traveling solitary solutions
y(x, t) 5 w(x 2 vt) of the gNLS equation (1) on a finite back-
ground r0 ? 0 are unstable when the slope of the curve P 5 P(v)
becomes negative (dP/dv , 0). Under the validity of such assump-
tion, we begin our theoretical analysis by finding a sufficient cri-
terion for collapse based on virial identities (see the review papers
in Refs. 1–3, 6. We address the most common regime where, in the
absence of an initial derivative of the virial (second-order
momentum), the collapse of a bright disturbance with vanishing
background is known to be essentially ruled by the energy
(Hamiltonian) invariant of motion. Conversely, for a finite back-
ground we show that blow-up is driven by a suitable combination
of renormalized energy and mass, thus allowing the existence of
non collapsing solutions even for negative energy. We then employ
a combination of virial identities and arguments based on self-
similarity to study the leading order scaling of the dynamics in
both collapsing and non collapsing regimes. In the latter case, a
suitable rescaling in a semiclassical form and a diagonalization of
the resulting equations of motion in terms of Riemann invariants,
allow us to predict a completely novel scenario where collapse is
arrested and the instability leads to the decay into dispersive shock
waves, i.e. expanding fast wavetrains that are naturally emitted,
owing to dispersion, to regularize steep gradients developing
through the nonlinearities40–51. We verified our theoretical finding
on a model of physical interest, namely the defocusing-focusing
Cubic-Quintic Nonlinear Schrödinger Equation (CQNLS). We
demonstrate a specific class of localized pulses on a pedestal, repre-
sented by antidark solitons, marking a marginal condition cross-
over between collapse and shock-wave generation, controlled via
(even infinitesimal) mass perturbations. These findings, other than
the fundamental interest related to collapse, suggest a new avenue
for arresting blow-up and generating dispersive shocks from
unstable solutions with nonzero background.

We begin our theoretical analysis by writing the Hamilton-Jacobi
equations of motion for the evolution of a suitable renormalized

virial V tð Þ~
ð

dxx2 yj j2{r0
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where we set y f xð Þj jyh i:
ð

dxy�f xð Þy, and Eq. (6) is obtained by

further deriving in time Eq. (5) and expressing such derivative in
terms of the energy functional H, and the suitably defined functional

G rð Þ:
ð

dx 2U rð Þ{rF rð Þ½ �, which depends on the nonlinear res-

ponse of the system. In order to derive a sufficient criterion for
collapse, we expand in series the functional G(r), obtaining

G rð Þ~{
X?
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with F mð Þ:
LmF
Lrm r~r0

�� . Several different scenario can arise according

to the signs of the terms in the expansion (7). An interesting case
manifests when a low order defocusing nonlinearity —which sup-
ports localized solutions on a pedestal— competes with high order
contributions of different sign, i.e., when F(1) , 0 and F(m) . 0 for m
. 2. The following inequality then holds

G rð Þƒ{MF 1ð Þr0: ð8Þ

Then, combining Eq. (6) and (8), we find the following differential
inequality

L2V
Lt2
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which gives an upper bound to the dynamics of the virial V(t) in
terms of rescaled Hamiltonian Hr, depending on the renormalized
energy H and mass M. When Hr , 0, or equivalently:

H{MF 1ð Þr0v0, ð10Þ

the virial V(t) , Ct2 (C negative constant) tends to zero regardless of
any initial condition V(0) and hV(0)/ht. In order to understand the
consequences of a vanishing virial on the dynamics of the field y, we
employ a specific form of the Hölder inequality:ð

dxx
ffiffiffiffiffiffiffiffiffiffiffiffi
r{r0
p L ffiffiffiffiffiffiffiffiffiffiffiffi
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and through an integration by parts of Eq. (11), derive the following
upper limit for the virial evolution,

V tð Þ§ M2

4
Ð

dx L
ffiffiffiffiffiffiffiffiffi
r{r0
p

Lx

� �2 : ð12Þ

According to Eq. (12), if the virial tends to zero, the gradient normð
dx

L ffiffiffiffiffiffiffiffiffiffiffiffi
r{r0
p

Lx


 �2

diverges in order to maintain an invariant mass

M. This condition leads to the formation of a singularity in the
field r 2 r0. Equation (10) can be therefore regarded as a suf-
ficient condition for blow-up in the generalized NLS equation (1)
with non vanishing boundary conditions. An important obser-
vation, stemming from Eq. (12), concerns the role of the back-
ground during the collapse. In particular the gradient norm,
which drives the collapsing dynamics, does not depend on the
background r0. The latter is therefore unaffected by the dynamics
and the density evolves by respecting the boundary conditions
r(6‘, t) 5 r0.
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Self-similar analysis and semiclassical argument. The differential
inequality (9) can be also employed to calculate the leading order
dynamics in both collapsing and non collapsing regimes. We start
from the following self-similar form of the field

r x,tð Þ~b tð ÞS xffiffiffiffiffiffiffiffi
a tð Þ

p
" #

zr0, a 0ð Þ~a0, ð13Þ

which can be used to extract the scaling dynamics in the unstable
regime3, and then employ the conservation of the mass M to
determine the relationship between the peak value b and the width
(variance) a of the field jyj2 2 r0,

b tð Þ
ffiffiffiffiffiffiffiffi
a tð Þ

p
~

M
I0

, ð14Þ

being I0~

ð
dxS xð Þ. By substituting Eqs. (13) and (14) into Eq. (9),

we obtain

L2a
Lt2

ƒ4
I0

MI2
Hr, ð15Þ

having introduced the constant I2~

ð
dxx2S xð Þ representing the

second-order moment of inertia of S(x) with respect to x 5 0. By
integrating twice Eq. (15) in time, we straightforwardly obtain the
following lower bound for the evolution of the peak b of jyj2 2 r0

b tð Þ§
ffiffiffiffiffiffiffiffiffiffi
M3I2
p

I0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I0Hrt2za0MI2
p , ð16Þ

which states that at leading order the field power b(t) scales as b*
1
t

for a non collapsing solution possessing Hr . 0. This scaling has
important consequences in the development of shock wave
instabilities when the input self-similar parameter is small, i.e., for
a 0ð Þ*2E2 with Ev1. In this case, we can rescale Eq. (1) with

x~y

ffiffiffi
2
p

E
and t~Et, thus obtaining a semiclassical form of the NLS

equation with a general nonlinearity:
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Equation (17) can be casted into a hydrodynamic (or so-called
dispersionless) form by applying the Madelung trans-formation

y~
ffiffiffi
r
p

e
i
E

Ð
dyu yð Þ and taking the leading-order terms in E, which yields
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which is physically equivalent to the system (also known as P-
system) that rules the evolution of a compressible gas flow with
density r, velocity u and pressure given through the equation of
state P 5 P(r). In our case such equation of state is explicitly given

in terms of nonlinearity and density as P rð Þ~
ð

drF{rF rð Þ~

{
Ð

rLrF rð Þdr, which in turn defines the sound velocity
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p
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Equivalently Eqs. (18) can be cast in the form of a system of quasi-
linear equations htq 1 Ahyq 5 0, with q ; (r, u)T and 2 3 2 matrix A
5 (u r;2hrF u), which is diagonalizable in the form

Ll+
Lt

z u+cð Þ Ll+
Ly

~0, ð20Þ

by introducing the Riemann invariants l+~u+
ðr

r0

c rð Þ
r

dr and the

eigenvelocities of the system v6 5 u 6 c, which correspond to the
eigenvalues of the matrix A. By expanding in Taylor series the
nonlinearity F(r) around r0, we obtain

c2~{r F 1ð Þz
X?
m~2

F mð Þ

m{1ð Þ! r{r0ð Þm{1

" #
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When Eq. (10) is not fulfilled and a collapse is not observed in the
dynamics, the field density decreases rapidly (as shown above by the
self-similarity argument), and higher-order terms in the sum in Eq.

(21) scale as r{r0ð Þm{1*
1

tm{1
, m $ 2, thus becoming negligible.

As a consequence the velocity c is determined by the lowest power of
r in the leading order term F 1ð Þ~:LrFjr~r0

. For leading-order
cubic nonlinearities where F rð Þ~x r{r0ð Þz � � � , with x 5 61 is
the sign of the nonlinearity, we have F(1) 5 x and Eq. (21) yields
c~

ffiffiffiffiffiffiffiffiffiffi
{rx
p

. In this case, whenever x 5 21 (leading-order cubic
nonlinearity of defocusing or repulsive type), the corresponding
Riemann velocities v+~u+

ffiffiffi
r
p

are real and coincides (at leading
order), with those pertaining to the integrable (cubic) defocusing
NLS system41. As a consequence we expect the system to undergo
wave-breaking through the development of a gradient catastrophe
(formation of vertical front in finite time) from smooth input
conditions launched in the system. In the former case the conse-
quent regularization of the dynamics, owing to the dispersive
terms neglected in Eqs. (17), occurs in term of a dispersive
shock40,41,43–51. Conversely, such argument looses validity in the
case x 5 1 (focusing cubic nonlinearity), where v+~u+

ffiffiffiffiffiffiffiffi
{r
p

would imply a catastrophe of the elliptic umbilic type (charac-
teristic of systems with dispersionless limit of the elliptic type with
complex conjugate eigenvelocities v6), where r 2 r0 increases in
time. In such a case higher-order terms in Eq. (21) become important
and no conclusive statements on the type of dynamics can be made
from such an approach.

In the following section we show, with reference to a specific
system, how an arbitrarily small mass perturbation of a solitary waves
with non-zero background can lead, depending on its sign, to com-
pletely different different decay scenarios implying either collapse or
dispersive shock formation.

Application to cubic-quintic nonlinearity. In order to illustrate our
theoretical findings on a realistic system of physical interest, we
consider the CQNLS equation with competing nonlinearities. The
CQNLS is a general model for superfluidity26, nonlinear optics of
saturable nonlinearities or cascading effects24,37, and systems of quan-
tum condensed gases with elastic two- and three-body interac-
tions27,28. The regime of interest here is a leading-order (cubic)
nonlinearity of the defocusing type saturated by a focusing quintic
nonlinearity, which is described by the nonlinear function F rð Þ~
{ r{r0ð Þza r2{r2

0

� �
, where a is a dimensionless parameter

describing the strength of the quintic term (responsible for the
collapse) over the defocusing cubic nonlinearity. We consider the
following input field r(x, t 5 0):

r x,0ð Þ~ rar

rz tanh2 wx
{r0


 �
1zdð Þ2zr0, ð22Þ

where the small parameter d is introduced to measures a mass
perturbation of a still (zero velocity) anti-dark soliton rsol(x) 5

rar/(r 1 tanh2 wx) [see profile in figure 1(a)], which is an exact
solitary solution of the CQNLS provided r 5 r0/(ra 2 r0),
w~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a ra{r0ð Þr0=3

p
, ra 5 (3 2 4ar0)/2a35. Zero velocity anti-

dark solitons of CQNLS are always unstable in the spirit of Ref. 38
while their background is stable35, thereby being ideal candidate for
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our theoretical investigation. We begin our analysis by calculating
the correspondent reduced energy Hr, shown in figure 1(b). As seen,
any positive mass perturbation d . 0 leads to Hr , 0 and, by virtue of
Eq. (10), to collapse. In order to numerically ascertain this result, we
perform a direct integration of the CQNLS via a fourth order finite
difference scheme. In our simulations, we launch Eq. (22) at t 5 0 and
monitor its dynamical evolution in the system for a fixed
combination of a, r and a varying d, which defines the mass
perturbation of the CQNLS soliton. Our integration scheme is
developed within an adaptive fourth order Runge-Kutta method52,
which automatically adjusts the time resolution in order to maintain
good accuracy on the results. The relative error tolerance in the
simulation results is 1029. The spatial resolution of the grid was dx
5 8 ? 1023. During each time-step, we also monitored the conserved
quantities (2), checking that their value remained practically
constant. Figure 2 summarizes our results for instance for d 5 0.1,
a 5 0.1 and a background r0 5 1 (similar dynamics is obtained for
other choices of values). In perfect agreement with our theory, a
positive mass variation leads to a catastrophic collapse of the wave
function [see figure 2(a–c)], which is attained at a relatively short
distance, as shown in figure 2(c). We also observe, in agreement with
Eq. (12), that the background intensity r0 does not change during the
collapsing dynamics, remaining stable as also predicted by the linear
stability analysis against the growth of periodic modulations35.

When the initial soliton mass is conversely decreased, for d , 0, we
have Hr . 0 [see figure 1(b)]. In the limit of a perturbative quintic
nonlinearity a , 1, from Eq. (14) we obtain

a 0ð Þ~2
Ma

I0 3{4ar0ð Þ*2av1, ð23Þ

which leads to a semiclassical behavior described by Eqs. (17) – (21)
with a~

ffiffi
E
p

. This predicts the generation of dispersive shock waves
when d , 0. Figure 3 reports numerical simulations for the case of a
negative mass perturbation with d 5 20.01 and the same initial
parameters (a 5 0.1, r0 5 1) as in figure 2. In complete agreement

with Eq. (16), the intensity amplitude falls off as *
1
t

[see

figure 3(b)]. This process leads to wave breaking occurring through
two symmetric gradient catastrophes (formation of symmetric steep
fronts), followed by dispersive shock wave generation, as displayed in
figure 3(c). It is worthwhile observing that for d 5 20.01 the energy
H of the field y is still negative, as indicated by figure 1(b). At
variance with the case of bright localized waveform on a zero back-
ground, which under the condition H , 0, are always collapsing in
NLS systems3, our analysis demonstrates that a suitable background
intensity can arrest the blow-up, leading to a completely different
instability scenario where dispersive shocks are generated.

Figure 1 | (a) Density distribution r(x, t 5 0) at fixed perturbation d 5 0.2, and (b) Reduced energy functional Hr~H{M
LF
Lr
jr0

(solid line) and energy

H (dashed line) vs. perturbation parameter d, for the perturbed antidark soliton of CQNLS equation, expressed by Eq. (22) with a 5 0.1 and r0 5 1.

Figure 2 | Collapse ruled by the defocusing-focusing CQNLS: (a) color

level plot of r 5 | y | 2 in time-space (t, x); (b) snapshots of r(x) at t 5 0

(dashed line) and t 5 0.049 (solid line); (c) peak intensity (or density)

evolution along t. Here the quintic coefficient is a 5 0.1, the background r0

5 1, and we employ a positive-mass perturbation d 5 0.1.

Figure 3 | Dispersive shock generation in the defocusing-focusing

CQNLS: (a) color level plot of r 5 | y | 2 in time-space (x, t); (b) peak

intensity (or density) maxx( | y(x, t) | 2) versus t; (c) snapshots of r(x) at t 5

0 (dashed line), t 5 0.4 (solid thin line) and t 5 3 (solid thick line). The

parameters are as in figure 2 (a 5 0.1, r0 5 1), except for a negative-mass

perturbation d 5 20.01.
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Conclusions
In conclusion, we investigated wave instability in NLS systems in the
presence of a non vanishing background. Through virial identities
and semiclassical analysis, we have demonstrated a sufficient cri-
terion for collapse and unveiled a novel instability dynamics char-
acterized by the emission of dispersive shocks. Theoretical findings
are verified against numerical simulations on the CQNLS equation,
where we unveiled a set of solutions that exhibit a marginal crossover
between the two aforementioned regimes. Besides the large interest
of the physical community in wave collapse, these results show that a
non vanishing background acts an affective mechanism for arresting
collapse, leading to a new scenario characterized by the emission of
shock waves.
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17. Skupin, S., Saffman, M. & Królikowski, W. Nonlocal stabilization of nonlinear
beams in a self-focusing atomic vapor. Phys. Rev. Lett. 98, 263902 (2007).

18. Linzon, Y., Rutkowska, K. A., Malomed, B. A. & Morandotti, R. Magneto-optical
control of light collapse in bulk kerr media. Phys. Rev. Lett. 103, 053902 (2009).

19. Desyatnikov, A. S., Buccoliero, D., Dennis, M. R. & Kivshar, Y. S. Suppression of
collapse for spiraling elliptic solitons. Phys. Rev. Lett. 104, 053902 (2010).

20. Shim, B., Schrauth, S. E., Gaeta, A. L., Klein, M. & Fibich, G. Loss of phase of
collapsing beams. Phys. Rev. Lett. 108, 043902 (2012).

21. Chen, Y.-F. et al. Measurement of fifth- and seventh-order nonlinearities of
glasses. J. Opt. Soc. Am. B 23, 347–352 (2005).
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