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The NT5E (CD73) molecule represents an ecto-5′-nucleotidase expressed on the cell 
surface of various cell types. Hydrolyzing extracellular adenosine monophosphate into 
adenosine and inorganic phosphate, NT5E performs numerous homeostatic functions in 
healthy organs and tissues. Importantly, NT5E can act as inhibitory immune checkpoint 
molecule, since free adenosine generated by NT5E inhibits cellular immune responses, 
thereby promoting immune escape of tumor cells. MicroRNAs (miRNAs) are small 
non-coding RNA molecules regulating gene expression on posttranscriptional level 
through binding to mRNAs, resulting in translational repression or degradation of the 
targeted mRNA molecule. In tumor cells, miRNA expression patterns are often altered 
which in turn might affect NT5E surface expression and eventually influence the efficacy 
of antitumor immune responses. This review describes the diverse roles of NT5E, sum-
marizes current knowledge about transcription factors controlling NT5E expression, and 
highlights the significance of miRNAs involved in the posttranscriptional regulation of 
NT5E expression.

Keywords: checkpoint molecule, CD73, nT5e, microRnA, transcription factor, T cell, tumor, A2A receptor

FUnCTiOnS OF nT5e in HeALTHY TiSSUe AnD TUMORS

The membrane bound NT5E (CD73) is an ecto-5′-nucleotidase (NT5E) hydrolyzing extracellular 
adenosine monophosphate (AMP) into adenosine and inorganic phosphate (1) (Figure 1A). The 
enzyme consists of a homodimer inserted into the cellular membrane by glycophosphatidylinositol 
anchors. Besides hydrolyzing AMP to adenosine, NT5E has nucleosidase activity as shown for nico-
tinamide adenine dinucleotide and nicotinamide mononucleotide (2, 3). NT5E works in concert 
with ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1), which is also referred to as 
CD39, representing another ectonucleotidase acting upstream of NT5E catalyzing the hydrolysis 
of adenosine triphosphate (ATP) into AMP through two reversible reaction steps, whereas the 
final NT5E-mediated reaction from AMP to adenosine is largely irreversible (4) (Figure 1A). The 
two C-terminal domains of the NT5E molecule mediate noncovalent homodimer association and 
harbor the substrate binding sites (2). The molecular structure of NT5E can exhibit open or closed 
conformation and transition between these two stages occurs during substrate cleavage involving 
conformational changes enabled by the flexible α-helix connecting the C-terminal domains with the 
Zn2+ binding N-terminal domains (3), the latter being N-glycosylated at four distinct asparagine 
residues either by mannose saccharide chains or by a mixture of complex glycans and high mannose 
(2). Besides expression of the full-length molecule NT5EL (NT5E-201, 574 aa), a spliced version 
lacking exon 7 designated NT5ES (NT5E-203, 525 aa) can be detected in various human tissues 
and was found intracellularly overexpressed in human hepatocellular carcinoma cell lines (5). 

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00813&domain=pdf&date_stamp=2018-04-18
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00813
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:s.eichmueller@dkfz.de
https://doi.org/10.3389/fimmu.2018.00813
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00813/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00813/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00813/full
https://loop.frontiersin.org/people/515000
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FigURe 1 | (A) Structure and function of CD73/NT5E. The membrane bound ecto-5′-nucleotidase NT5E hydrolyzes extracellular adenosine monophosphate (AMP) 
into adenosine and inorganic phosphate (P). Upstream of NT5E, adenosine triphosphate (ATP) is hydrolyzed via two reaction steps into AMP by the enzyme 
ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) (CD39). Adenosine thus produced exerts anti-inflammatory effects by binding to the adenosine A2A 
receptor (ADORA2A) expressed by T cells, natural killer (NK) cells, and dendritic cells (DCs) resulting in cAMP mediated blocking of their effector functions. To some 
extent, the A2B receptor (ADORA2B) is also expressed on DCs and macrophages which are suppressed by adenosine. Thus, cancer cells can evade the immune 
system by upregulating NT5E protein levels. Furthermore, adenosine binds to the A2B receptor expressed by cancer cells leading to tumor cell survival and 
proliferation. Cancer cells also express the adenosine A1 receptor (ADORA1) and A3 receptor (ADORA3) and binding of adenosine to these receptors leads to 
tumor cell migration and proliferation via signaling through Gαi proteins. Adenosine is also involved in the adaption to hypoxia and shows pro-angiogenic potential. 
All adenosine receptors are depicted as stylized green transmembrane proteins. Adenosine is also symbolized as yellow circles marked with “A”. (B) Network of 
transcription factors and microRNAs (miRNAs) regulating NT5E expression. This network summarizes the current knowledge on regulation of NT5E on 
transcriptional (TFs) and posttranscriptional level by TFs and miRNAs, respectively. Transcriptional activators are depicted in blue and transcriptional repressors are 
highlighted in magenta. miRNAs targeting NT5E directly are shown, as well as miRNAs with indirect impact on NT5E expression through targeting of 
transcriptional regulators.
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As depletion of amino acids 404–453 encoded by exon 7 prevents 
homo dimerization, NT5ES shows impaired substrate binding 
resulting in abrogated 5′-nucleotidase activity and lack of surface 
expression. Importantly, overexpression of NT5ES was shown to 
cause proteasome-mediated degradation of intracellular NT5EL, 
without affecting expression levels of native NT5EL dimers. Thus, 
altered splicing patterns commonly observed in many tumors 
(6–8) might contribute to aberrant NT5E expression levels in 
cancer cells.

Considering healthy tissue, expression of NT5E is detectable 
in epithelial cells of the respiratory tract, smooth muscle cells, 
and cardiac myocytes and other tissues, as can be deduced from 
the bioGPS mRNA expression data base (9) using the data set of 
Primary Cell Atlas (10). Under physiological conditions, NT5E 
has been described as a regulator of epithelial ion transport, 
thereby preserving mucosal hydration (11). Moreover, NT5E can 
act as gate keeper on endothelial cells as free adenosine facilitates 
“resealing” of gaps between vascular endothelial cells left behind 
by transmigrating neutrophils (12). Furthermore, adenosine 
generated through NT5E was described to restrict inflammatory 
immune responses through a negative feedback loop on adeno-
sine receptor expressing neutrophils (13). NT5E has been found 
expressed on regulatory T cells (Treg) and at even higher levels on 
anergic CD4+ T cells, thereby preserving self tolerance in healthy 
individuals and protecting the fetus from maternal immune 
attack during pregnancy (14, 15).

Interestingly, qualitative differences in NT5E function have 
been described depending on the NT5E expressing cell type 
(16, 17). Comparing epithelial cells and lymphocytes, both 
expressing NT5E, lymphocyte NT5E was found susceptible to 
phosphatidylinositol phospholipase to greater extent compared 
to NT5E expressed by epithelial cells (16). In the same study, 
antibody binding to NT5E triggered shedding from the surface 
of lymphocytes, but not in the case of epithelial cells. A similar 
observation was reported by others who proposed NT5E shed-
ding from the surface of B16F10 cells as explanation for absent 
cell surface staining on murine B16F10 melanoma cells despite 
detection of intracellular NT5E expression (18). The study by 
Airas et  al. (16) demonstrated also signal transduction activity 
of NT5E expressed on lymphocytes, whereas NT5E express-
ing epithelial cells lacked this function. Signal transduction by 
NT5E appears unexpected since this molecule lacks intracellular 
signaling domains (Figure 1A); however, it has been suggested 
that NT5E might associate with src protein kinases, thereby 

facilitating cellular signal transduction as proposed by Wang and 
colleagues (19, 20). Alternatively, NT5E might also mediate signal 
transduction directly (19).

In pathophysiological situations, NT5E activity was found 
relevant for the generation of cardio-protective adenosine in 
the ischemic myocardium (21) or for adaption to hypoxia (see 
below). Importantly, NT5E is involved in tumor development. 
Thus, NT5E has been described to sustain tumor angiogenesis 
in murine tumor models of breast cancer and prostate cancer  
(20, 22) as well as in xenograft models of humans breast cancer 
(23). Likewise, NT5E expression promoted invasion and metas-
tasis of murine and human melanoma cells (24) and of human 
breast cancer cells (25).

Notably, NT5E plays a significant role as immune-inhibitory 
checkpoint molecule (26). Thus, infiltration of tumors by NT5E 
expressing regulatory immune cells such as Treg (27), MDSCs (28), 
or dendritic cells (DCs) (29) results in accumulation of immuno-
suppressive adenosine that can activate cAMP signaling in T cells 
expressing A2A adenosine receptors (ADORA2A). Moreover, 
adenosine receptors were found to be expressed on DCs, mac-
rophages, MDSCs, and natural killer (NK) cells, implying that 
adenosine can repress the function of these immune cells (30, 31).  
Recently, an interesting phenomenon was described showing 
that Treg undergoing apoptosis within the metabolically abnormal 
tumor microenvironment release substantial amounts of ATP, 
that is degraded by the nucleotidases of the faded Treg resulting 
in accumulating adenosine levels (32). Adenosine can then trig-
ger immune suppressive downstream effects among T cells like 
inhibition of chemotaxis, proliferation, activation, and effector 
function (33, 34). In light of its immune suppressive function 
and due to its expression by various tumor entities, such as mela-
noma (35–37), triple-negative breast cancer (34, 38), colorectal 
cancer (CRC) (39), and non-small cell lung cancer (40), NT5E 
has been considered as target checkpoint molecule for novel 
tumor immunotherapy approaches (41, 42). Indeed, injection of 
blocking NT5E-specific ab into tumor bearing mice resulted in 
reduced outgrowth of NT5E expressing tumors as shown for vari-
ous tumor entities (43–45). Noteworthy, tumor cells can express 
adenosine A1 receptor (ADORA1) and ADORA3 receptors 
coupled to Gαi proteins, fostering tumor cell proliferation and 
migration (46). Moreover, therapeutic targeting of NT5E using 
specific inhibitors or blocking antibodies, respectively, has been 
proposed (22, 34, 38, 47–50) and is presently tested in a phase I 
clinical trial (NCT02503774).
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TABLe 1 | List of transcription factors and miRNAs regulating NT5E.

Target Regulator effect on nT5e Host cell Reference

NT5E SP1 Activation Human WI-L2 Hansen et al. (54)
Rat hepatocytes Fausther et al. (55)

NT5E TFAP2A Activation Human WI-L2 Hansen et al. (54)
NT5E SMAD2 Activation Rat hepatocytes Fausther et al. (55)
NT5E SMAD3 Activation Rat hepatocytes Fausther et al. (55)
NT5E SMAD4 Activation Rat hepatocytes Fausther et al. (55)
NT5E SMAD5 Activation Rat hepatocytes Fausther et al. (55)
NT5E HIF1A Activation Human T84 epithelial cells Synnestvedt et al. (57)

Human HepaRG cells Tak et al. (58)
NT5E TCF-1/β-catenin Activation Human HeLa and Jurkat cells, monkey Cos-7 cells Spychala and Kitajewski (59)
NT5E APC Inhibition Human SW480 colon cancer cells Spychala and Kitajewski (59)
NT5E NFκB/TNFα Activation Human HT29 colon cancer cells Pagnotta et al. (60)
NT5E PPARγ Inhibition Human HT29 colon cancer cells Pagnotta et al. (60)
NT5E GFI-1 Inhibition Murine Th17 cells Chalmin et al. (61)
NT5E STAT3 Activation Murine Th17 cells Chalmin et al. (61)
NT5E FOXP3 Activation Murine Treg cells Zheng et al. (62)
NT5E miR-422a Inhibition Human SCC61, SQ20B and HaCaT cells Bonnin et al. (63)
NT5E miR-30 family Inhibition Human colorectal cancer Xie et al. (64)

Human gallbladder cancer Wang et al. (65)
NT5E miR-340 Inhibition Human gallbladder cancer Wang et al. (65)
NT5E miR-187 Inhibition Human colon cancer SW480, RKO and SW620 Zhang et al. (66)
NT5E miR-193b Inhibition Human pancreatic cancer Ikeda et al. (67)
SP1 miR-23b Inhibition Human MM and WM tumor cells Fulciniti et al. (68)
SP1 miR-223 Inhibition Human gastric cancer MGC-803, SGC-7901 and BGC-823 Hu et al. (69)
SP1 miR-200c Inhibition Human gastric cancer MGC-803 and AGS Tang et al. (70)
SMAD2 miR-200c Inhibition Human ATC-derived cells Braun et al. (71)
SMAD2 miR-30 family Inhibition Human ATC-derived cells Braun et al. (71)
SMAD3 miR-16 Inhibition Human Osteosarcoma Jones et al. (72)
SMAD3 miR-142 Inhibition Human HT29 colon cancer cells Chanda et al. (73)

MDA-MB-231 breast cancer cells Ma et al. (74)
SMAD4 miR-20a Inhibition Human HT29 and HCT116 colon cancer cells Cheng et al. (75)
HIF1A miR-20a Inhibition HeLa cells, primary human macrophages Poitz et al. (76)
GFI1 miR-495 Activation Human DAOY and D283 (medulloblastoma) cells Wang et al. (77)
SMAD4 miR-422a Inhibition Human LHCN-M2 muscle cells Paul et al. (78)

MM, multiple myeloma; WM, Waldenstrom’s macroglobulinemia; ATC, anaplastic thyroid carcinoma; miRNAs, microRNAs; HIF-1, hypoxia-inducible factor-1; TCF-1, T cell factor 1; 
APC, adenomatous polyposis coli; Treg, regulatory T cells.
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In addition to its enzymatic function, NT5E can act as a 
receptor molecule shown to mediate cell–cell adhesion between 
lymphocytes and endothelial cells (51). Moreover, it was dem-
onstrated that NT5E was can interact with extracellular matrix 
components (ECM) (34, 52, 53). This interaction occurred 
independently from enzymatic activity of NT5E, as blocking 
of ectonucleotidase function by concanavalin A did not affect 
interaction with ECM components like fibronectin, tenascin C, 
or collagen 1. In fact, NT5E turned out to mediate cell adhesion 
and migration via interaction with tenascin C (53).

Thus, NT5E appears to support tumor growth at multiple 
levels, i.e., by suppression of antitumoral immune responses via 
supply of adenosine and through facilitated dissemination of 
malignant cells from the primary tumor.

TRAnSCRiPTiOnAL RegULATiOn 
OF nT5e eXPReSSiOn

The promoter region of NT5E contains binding sites for the 
 transcription factors SP1, AP-2, and SMAD proteins as well 
as cAMP-responsive elements (54, 55) (Figure  1B; Table  1). 

Chromatin immunoprecipitation showed that transcription 
 factors SMAD2, SMAD3, SMAD4, SMAD5, and SP1 bind to the 
rat NT5E promoter, with SMAD5 and SP1 being most efficient 
(55). As rat and human NT5E transcripts share 89% identity 
(56), it appears possible that human NT5E expression might be 
regulated by SMAD transcription factors as well.

Interestingly, hypoxia-inducible factor-1 (HIF-1) can directly 
bind to the NT5E promoter thereby activating NT5E expres-
sion (57), which is in line with the functional role described 
for NT5E in hypoxia adaptation (79). Thus, hypoxia resulting 
from uncontrolled tumor cell proliferation (80) might induce 
HIF mediated upregulation of NT5E expression on tumor cells. 
Another biochemical cascade often altered in tumors is the 
β-catenin-dependent Wnt signaling pathway (81). The promoter 
core sequence of NT5E is flanked upstream by a regulatory 
region containing consensus motifs for T cell factor 1 (TCF-1), 
representing a component of Wnt/β-catenin signaling pathway. 
In fact, expression of β-catenin could drastically enhance expres-
sion of NT5E. This upregulation was found to be dependent on 
the presence of TCF-1. Interestingly, the authors could also show 
that the antagonist of β-catenin, adenomatous polyposis coli 
protein, inhibits NT5E expression (59). The activation of NT5E 
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expression by β-catenin was also confirmed by Pagnotta et  al. 
who furthermore identified NFκB/TNFα as positive transcrip-
tional regulators of NT5E (60). Seeking biomarkers for CRC, the 
authors applied a translational pathology approach and identified 
NT5E among others as a prognostic marker. In line with these 
findings, NT5E levels were found significantly upregulated in 
tumor specimens compared to normal colonic mucosa samples. 
Spranger et al. found that active β-catenin signaling was negatively 
associated with T cell infiltration in human melanoma samples. 
This was confirmed in authochtonous tumor models with induc-
ible β-catenin expression, where absence of T cells was observed 
selectively in β-catenin expressing tumors (82). It is tempting to 
speculate that this immune suppressive effect on T cell infiltration 
might result from enhanced NT5E expression induced through 
β-catenin signaling. Of note, besides activating mechanisms 
on NT5E expression via NFκB/TNFα signaling pathways, also 
negative effects on NT5E expression through of PPARγ have been 
described (60).

In murine Th17  cells differentiated with IL-6 and TGF-β 
in vitro, IL-6 was found to activate Stat3, while TGF-β suppressed 
the transcription factor Gfi-1. As shown by the authors Stat3 
sustained, whereas Gfi-1 repressed expression of ENTPD1 and 
NT5E through specific promoter binding, thus demonstrating 
transcriptional regulation of these exonucleotidases in Th17 cells 
through IL-6 and TGF-β (61).

A genome-wide analysis to identify forkhead box transcrip-
tion factor (Foxp3) target genes in mouse led to the identification 
of Nt5e as one target gene of Foxp3 in mature Treg cells (62). Foxp3 
is a specific transcription factor expressed in murine and human 
Treg cells and in recently activated human T cells (83). Thus, regu-
lation of Nt5e by Foxp3 appears cell type specific and does not 
necessarily apply the same way to cancer cells. Noteworthy, high 
expression levels of FOXP3 in ovarian cancer has been identified 
as a prognostic marker for poor survival of patients (84).

MiCRORnAs (miRnAs) RegULATing 
nT5e eXPReSSiOn

MicroRNAs are small non-coding RNA molecules that bind to 
the 3′ untranslated region (3′-UTR) of target mRNAs, thereby 
blocking translation or inducing degradation of the targeted 
mRNA molecule, respectively, depending on the degree of com-
plementary among the interacting nucleotide sequences (85). In 
cancer cells, aberrant miRNA expression patterns resulting in 
impaired regulation of target mRNA expression is commonly 
observed. Tumor cell-derived miRNAs have therefore gained 
relevance as biomarkers and as prognostic factors as described 
(86–88). Of note, the 3′-UTR of NT5E comprises 1,774 nucleo-
tides (89) (NM_001204813.1), exceeding the average size of a 
human 3′-UTR (90) approximately threefold. Thus, regulation of 
NT5E expression by miRNAs appears to be particularly restric-
tive. To date, only a few miRNAs have been described that directly 
regulate NT5E expression (Table  1). Bonnin and co-workers 
reported the regulation of NT5E by miR-422a in head and neck 
squamous cell carcinoma (HNSCC) patients. The authors found 
a significant negative correlation between expression levels of 

miR-422a levels and NT5E mRNA. Blocking of endogenous 
miR-422a by specific antagomiRs resulted in increased NT5E 
protein levels with enhanced enzymatic activity. Reduced levels 
of miR-422a correlated with shorter relapse free survival times in 
HNSCC, potentially due to overexpression of NT5E (63).

Recently, miR-30a was found to target NT5E in CRC (64). In 
this study, transfection with miR-30a reduced NT5E expression 
on the mRNA and on protein level and direct interaction of 
miR-30a with the NT5E 3′-UTR was demonstrated via luciferase 
reporter assays. Similarly, direct regulation of NT5E was described 
through miR-30a-5p in non-small cell lung cancer (91). Enhanced 
expression of NT5E was accompanied by reduced miR-30a-5p 
expression, whereas miR-30a-5p overexpression resulted in 
downregulated NT5E expression on mRNA and protein levels. At 
the same time, proliferation, cell migration, and invasion of these 
cells were significantly reduced. These effects were mimicked by 
silencing NT5E expression using shRNA directed against NT5E.

Interestingly, the miR-30 family shares the same seed sequence 
(92). Thus, other miRNAs from this family might also regulate 
NT5E. Indeed, direct regulation of NT5E by miR-30b was shown 
by Wang et  al. in gall bladder carcinoma (GBC). Including 
miR-340 in their study, the authors found that overexpression of 
miR-30b or miR-340 reduced GBC cell proliferation, migration, 
and invasion. For both miRNAs, direct interaction with the NT5E 
3′-UTR could be verified and NT5E overexpression partially 
reverted these miRNA-mediated effects in GBC cells (65). In CRC, 
miR-187 levels were found strongly downregulated compared to 
adjacent normal tissue leading to the establishment of miR-187 
expression levels as prognostic marker for CRC patients. In fact, 
transfection of miR-187 reduced cell proliferation and migration 
in vitro and decelerated tumor growth of CRC lines in vivo. In 
the same study, direct targeting of NT5E by miR-187 was demon-
strated (66). Studies focused on miRNAs involved in the MAPK 
pathway of human pancreatic cancer cell lines revealed miR-
193b as a direct binder of the NT5E 3′-UTR. However, in this 
study, binding specificity using a mutated reporter plasmid was 
not controlled and effects of miR-193 overexpression on NT5E 
expression on mRNA and protein level were not analyzed (67).

Considering the extraordinary size of the NT5E 3′-UTR 
region, the restricted number of validated miRNAs identified so 
far that directly target NT5E mRNA most likely represent just 
the tip of the iceberg. Further studies are needed to broaden the 
spectrum of known miRNAs that directly regulate NT5E surface 
expression, thereby potentially affecting the tumor cells’ vulner-
ability toward immune attack.

On the other hand, miRNAs can also function via indirect 
circuits, for example, by targeting transcription factors of NT5E, 
opening an alternative route for miRNA-mediated regulation of 
NT5E expression. In fact, miR-23b was found to directly suppress 
expression of transcription factor SP1 in multiple myeloma cells 
(68), and in gastric cancer, an inhibiting effect of miR-223 on epi-
thelial to mesenchymal transition via direct posttranscriptional 
silencing of SP1 was reported (69). Other authors described miR-
200b and miR-200c as direct inhibitors of SP1 transcription within 
this tumor entity (70). Whether the miRNA-mediated inhibition 
of SP1 expression resulted also in downstream reduction of NT5E 
expression levels was not investigated in these studies.
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