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Abstract: The farmland area in arid and semiarid regions accounts for about 40% of the total area of
farmland in the world, and it continues to increase. It is critical for global food security to predict
the crop yield in arid and semiarid regions. To improve the prediction of crop yields in arid and
semiarid regions, we explored data assimilation-crop modeling strategies for estimating the yield of
winter wheat under different water stress conditions across different growing areas. We incorporated
leaf area index (LAI) and soil moisture derived from multi-source Sentinel data with the CERES-
Wheat model using ensemble Kalman filter data assimilation. According to different water stress
conditions, different data assimilation strategies were applied to estimate winter wheat yields in arid
and semiarid areas. Sentinel data provided LAI and soil moisture data with higher frequency (<14 d)
and higher precision, with root mean square errors (RMSE) of 0.9955 m2 m−2 and 0.0305 cm3 cm−3,
respectively, for data assimilation-crop modeling. The temporal continuity of the CERES-Wheat
model and the spatial continuity of the remote sensing images obtained from the Sentinel data
were integrated using the assimilation method. The RMSE of LAI and soil water obtained by the
assimilation method were lower than those simulated by the CERES-Wheat model, which were
reduced by 0.4458 m2 m−2 and 0.0244 cm3 cm−3, respectively. Assimilation of LAI independently
estimated yield with high precision and efficiency in irrigated areas for winter wheat, with RMSE and
absolute relative error (ARE) of 427.57 kg ha−1 and 6.07%, respectively. However, in rain-fed areas
of winter wheat under water stress, assimilating both LAI and soil moisture achieved the highest
accuracy in estimating yield (RMSE = 424.75 kg ha−1, ARE = 9.55%) by modifying the growth and
development of the canopy simultaneously and by promoting soil water balance. Sentinel data can
provide high temporal and spatial resolution data for deriving LAI and soil moisture in the study
area, thereby improving the estimation accuracy of the assimilation model at a regional scale. In the
arid and semiarid region of the southeastern Loess Plateau, assimilation of LAI independently can
obtain high-precision yield estimation of winter wheat in irrigated area, while it requires assimilating
both LAI and soil moisture to achieve high-precision yield estimation in the rain-fed area.

Keywords: multi-source Sentinel data; CERES-Wheat model; data assimilation; water stress;
yield estimation

1. Introduction

Monitoring crop growth and estimating yield are crucial for agricultural management
and national food security [1–3]. Assimilation of remote sensing data into crop models
is an effective approach for estimating or predicting crop yield at a regional scale [4–8].
The accuracy of parameters derived from remote sensing data has an important impact on
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the estimation accuracy, which depends on the source of data from remote sensing and the
inversion algorithm [9–12]. Pauwels et al. [13] found that assimilating remote sensing data
into crop models significantly improved the accuracy of the yield estimation if the error of
the leaf area index (LAI) derived from remote sensing data was <1 m2 m−2 or the error in
soil moisture was <0.05 cm3 cm−3, and the temporal resolution was <14 d. In a study based
in northern France, Casa et al. [14] assimilated measured LAI, rather than LAI derived
from remote sensing data, into the STICS model. They reported better dynamic adjustment
of LAI with longer observation periods and increased the amount of observational data by
adjusting the input frequency of the measured LAI data. Curnel et al. [15] assimilated LAI
derived from SPOT-HRV into the WOFOST model, adjusted the input frequency of the LAI,
and found that the accuracy of the yield estimation was highest when the time-frequency
of the LAI was 3–7 d. Previous studies showed that the assimilation of parameters derived
from high spatial-temporal resolution remote sensing data into crop models improved the
accuracy of yield estimation at regional scales.

Currently, remote sensing data that are commonly used to derive LAI and soil mois-
ture are MODIS-LAI products, soil moisture products (AMSR-E soil moisture product,
Ocean Salinity (SMOS) mission), and LAI and soil moisture derived from Landsat images.
The MODIS-LAI products have a spatial resolution of 250–1000 m. The low spatial res-
olution in MODIS products results in a large number of mixed pixels. The MODIS-LAI
is lower than the LAI measured in the field [16]. Soil moisture product data (AMSR-E
soil moisture product, Ocean Salinity (SMOS) mission) has a spatial resolution of 25 km
and a low product accuracy, which is the result of the crop cover on the surface during
vigorous crop growth [13,17,18]. Both LAI and soil moisture derived from Landsat images
have a spatial resolution of 30 m and a temporal resolution of 16 d. Landsat products
provide limited information during the winter wheat growth period due to low temporal
resolution and the susceptibility of optical remote sensing to interference by rain and snow.
The inputs from low-frequency remote sensing images do not greatly modify the simulated
LAI or simulated soil moisture profiles of the crop model, limiting the improvements in
estimation accuracy of the crop model through assimilation [15]. However, the data of
the Earth Observation Satellite Sentinel from the European Space Agency are ideal for
assimilation with crop models because of the high spatial and temporal resolution [19,20].
At present, researchers have tried to assimilate Sentinel-2 data to crop models for yield
estimation since this method has good application potentials [21,22].

Data assimilation algorithms play a central role in integrating remote sensing data
into crop models. Parameter optimization methods that are based on cost functions and
filtering methods from estimation theory are two main types of data assimilation meth-
ods. In parameter optimization methods, we iteratively adjust the parameters or initial
conditions to minimize the difference between remote sensing observations and model
simulation values. The parameters or initial conditions are closely related to growth and
yield formation in crop models, and they are difficult to obtain by conventional meth-
ods [4,9]. Curnel et al. [15] used the four-dimensional variational algorithm to assimilate
the LAI derived from remote sensing data and WOFOST models to optimize the input
parameters of the WOFOST model. The core of the filtering algorithm is to integrate remote
sensing observation data from different resolutions within the dynamic framework of the
mechanism process model so that the mechanism process model and various observation
operators can become a prediction system that continuously relies on external observations
to automatically adjust the model trajectory and reduce errors. de Wit et al. [23] used
the ensemble Kalman filter (EnKF) algorithm to assimilate the soil moisture derived from
microwave remote sensing and the WOFOST model to correct the water balance process of
the crop model.

For parameter selection in assimilation, it is a common practice to assimilate a single
variable into crop models to improve the accuracy of crop yield estimation at a regional
scale. Some studies also assimilated two variables into crop models. For example, de Wit
et al. [23] and Nearing et al. [24] assimilated two variables (i.e., LAI and soil moisture,
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or LAI and evapotranspiration (ET)) into crop models. They found that assimilation with
two variables improved the accuracy of estimating crop yields at a regional scale compared
with the method that only assimilated a single variable because it corrected for canopy
growth and soil water balance. However, further studies by Ines et al. [18] and Mishra
et al. [25] found that assimilation of two variables (i.e., LAI and soil moisture) was suitable
for predicting yield in years with average precipitation, although assimilation of a single
variable (i.e., LAI) into crop models was more suitable for predicting yield in extremely wet
years. In arid and semiarid areas, precipitation is limited. Not all croplands have irrigation
conditions. Some areas can be irrigated, but other arid crop areas can not, and the growth
of crops in those areas are affected by water stress. By selecting optimal parameters from
remote sensing information and assimilating those parameters into crop models, we could
improve the prediction of crop yields across different regions, which would aid in decisions
about the allocation of water in agricultural areas.

The aims of this study were (1) Using LAI and soil moisture derived from Sentinel
images to provide high temporal and spatial resolution data for data assimilation-crop
modeling. (2) Using ensemble Kalman filter data assimilation to modify the LAI and soil
moisture simulated by the CERES-Wheat model. (3) Seeking the optimal data assimilation-
crop modeling strategies for estimating the yield of winter wheat under different water
stress conditions.

2. Materials and Methods
2.1. Study Area

The research areas are located in the southeast of the Loess Plateau in China and
included three counties: Xiangfen county, Xinjiang county, and Wenxi county (110◦59′33′′—
111◦40′31′′ E, 35◦9′38′′—36◦03′14′′ N, altitude between 184–1535 m) (Figure 1a). The study
area is characterized by a warm-temperate, continental, monsoon climate with an average
annual rainfall of 450–600 mm, an annual average temperature of 12–14 ◦C, and a frost-free
period of 160–190 d. The crops in this region are mainly wheat in winter and maize in
summer. As the main crop in the study area, the planting area of winter wheat is 108,061 ha,
which accounts for 73.31% of the farmland area.

Figure 1. The geographical location and sampling sites of the study area. (a) The location of the study area in the Loess
Plateau; (b) The location of the field measured points in the three counties. All points (including red and yellow points) are
field measured points, and the red points are sampling sites for data assimilation.

2.2. Data
2.2.1. Field Measurements

There were 45 sampling sites across the study area (Figure 1b). Measurements from
20 sites (red points in Figure 1b) were used to parameterize the assimilation for crop yield
estimation, and measurements from 25 sites (yellow points in Figure 1b) were used to
verify the accuracy of yield estimation of winter wheat. In September 2017, 20 sites (red
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points) were selected for soil sampling. Soil samples were taken for physical and chemical
analyses before winter wheat sowing. The soil profile was divided into 7 layers (0–10 cm,
10–20 cm, 20–50 cm, 50–80 cm, 80–120 cm, 120–160 cm, and 160–200 cm). The physical and
chemical properties of each layer of the soil profile were measured in the laboratory. LAI
and soil moisture at all sites were measured during the jointing stage on 19 March 2018 and
17 March 2019, and during the heading-filling stage on 16 April 2018 and 19 April 2019.
LAI was measured using dry weight. The measurement was sampled within a 1 m × 1 m
area. Thirty winter wheat samples were selected from the total sample, and then the stems
and leaves were separated. We took the leaves and measured the length and width of
each leaf (the widest part of the leaf). We multiplied the length and width of each leaf and
summed all 30 samples of winter wheat to determine the total leaf area. The leaf samples
were dried and weighed again to obtain the leaf dry weight. Combined with the total leaf
area, we calculated the leaf area corresponding to the dry weight per unit leaf area. Based
on the total number of the samples, the dry leaf weight of 30 wheat plants, and the leaf
area corresponding to the dry weight per unit leaf area, we calculated the total canopy
area of the sampling area. The LAI was calculated based on the sampling area and the
total canopy area of the sampling area. The moisture content of the 0–20 cm soil depth
was measured using the drying method. During the mature stage of winter wheat in 2018
and 2019, the yield was measured within a 1 m × 1 m area. Samples were dried, threshed,
and weighed to calculate the yield (kg ha−1). In addition, field management data were
collected from 2017–2019. This included wheat varieties, planting dates, maturity dates,
planting methods, planting density, fertilization dates and amounts, and irrigation dates
and amounts. In this study, the measured and field management data from 2018 were used
to calibrate the CERES-Wheat model. Data in 2019 were used to conduct assimilation to
estimate the regional yield of winter wheat in the study area.

2.2.2. Multi-Source Sentinel Data

Sentinel-1 and Sentinel-2 belong to a series of satellites from the European Space
Agency (ESA). Sentinel-1 is a radar satellite, and Sentinel-2 is an optical satellite. Sentinel-1
is equipped with a C-band synthetic aperture radar (SAR), which is not constrained by light
and weather conditions, and provides continuous images at all times under any weather
conditions. It has a spatial resolution of 5 m × 20 m and a temporal resolution of 12 d [26].
The temporal resolution of Sentinel-2 optical images is 5 d. The spatial resolution of the red
and near-infrared bands that were used to calculate the vegetation index is 10 m [27]. The
combination of the two satellites monitored a large area and provided data with a high
revisit period and high resolution, which sufficiently met the data requirements for data
assimilation between remote sensing and crop models [4]. During the main growth stages
of winter wheat (from green-up stage to milking stage), Sentinel-1 images were selected at
seven dates: 2 March, 14 March, 26 March, 7 April, 19 April, 1 May, and 13 May in 2019.
The Sentinel-2 images with <10% cloud content were selected at seven dates: 17 March,
1 April, 16 April, 11 May, 21 May, 26 May, and 10 June in 2019.

2.3. Extraction of Irrigated and Rain-Fed Winter Wheat Planting Areas
2.3.1. Extraction of Winter Wheat Planting Areas

Types of land use in the study area included farmland, forest, grassland, and con-
struction land. Farmland was mainly planted with winter wheat and maize. Combined
with the different phenological characteristics between winter wheat and other vegetation
with spectral differences at different times, we extracted the winter wheat planting area by
using a decision tree method. Based on the decision tree method proposed by Li et al. [28],
normalized difference vegetation index (NDVI) was calculated using three Sentinel-2 im-
ages on 17 March, 16 April, and 10 June 2019. Based on the manual discrimination and
the comparison with the distribution of farmland in the farmland fertility database of
Shanxi Province in 2014, we determined the extracted NDVI threshold from winter wheat
as 0.25. This means that the NDVI threshold on 17 March and 16 April was greater than
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0.25, while the NDVI threshold on 10 June was less than 0.25. The NDVI value on 16
April was greater than on 10 June. The extracted winter wheat area was 103,254 ha, which
was consistent with the statistics of the Shanxi Provincial Agriculture Bureau (108,061 ha).
The extraction accuracy of the winter wheat planting area was 96.0%.

2.3.2. Irrigated Areas and Rain-Fed Areas for Winter Wheat

According to different water stress conditions, the area covered with winter wheat
was divided into irrigated areas (non-water stressed) and rain-fed areas (water-stressed).
Irrigated areas were <600 m in altitude, and the slope was <15◦. Rain-fed areas had an
elevation >600 m and a slope >15◦ [29]. Using the above thresholds, we used a decision
tree to define irrigated areas and rain-fed areas in the research area, and we calculated the
corresponding planting area (Figure 2). The area of irrigated land in winter wheat was
82,913 ha, and the area of rain-fed land in winter wheat was 20,341 ha, which accounted for
80.3% and 19.7%, respectively, of the total area planted with winter wheat. We compared
the irrigated areas for winter wheat extracted from the decision tree with the extracted areas
from the farmland fertility database of Shanxi Province in 2014 (Figure 3). The extraction
accuracy was 81%, suggesting a reliable estimation of irrigated and rain-fed areas for
winter wheat.

Figure 2. Spatial distribution of irrigated areas and rain-fed areas for winter wheat in Xiangfen,
Xinjiang, and Wenxi county.

Figure 3. The irrigated winter wheat area extracted from the decision tree and the irrigated winter
wheat area of the farmland fertility database of Shanxi Province in 2014.
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2.4. Water Cloud Model

In this study, soil moisture in the winter wheat planting areas was derived from
Sentinel-1 radar data using the water cloud model. In 1978, Attema and Ulaby (1978)
proposed a water cloud model to estimate soil moisture in agricultural lands. In this
model, they assumed that the crop canopy was a homogeneous scatterer. They described
the microwave backscatter of the crop canopy as the sum of two parts (i.e., the volume
scattering obtained by direct reflection of crops and the surface scattering after dual
attenuation of crops) [30]. The model is expressed as Equation (2):

σ0
can(θ) = σ0

veg(θ) + γ2(θ) · σ0
soil(θ) (1)

σ0
veg(θ) = A ·mveg · cos(θ) · (1− γ2(θ)) (2)

γ2(θ) = exp(−2 · B ·mveg · sec(θ)) (3)

where σ0
can(θ) is the total microwave backscattering coefficient of the croplands, σ0

veg(θ) is
the backscattering coefficient of the crop canopy, σ0

soil(θ) is the soil direct backscattering
coefficient, r2(θ) is the dual attenuation factor of microwave penetration through the canopy,
θ is the incidence angle of a microwave, mveg is the water content of plants (kg m−2), and A
and B are parameters dependent on vegetation types. Bindlish and Barros (2001) calculated
parameters of the water cloud model in lands with different covers and found that the
canopy parameters of winter wheat were A = 0.0018 and B = 0.138 [31].

Plant water content, mveg, is an important input parameter of the water cloud model.
There is a good quantitative relationship between mveg and the spectral index. This is
the theoretical basis for calculating plant water content using the empirical model [32].
According to Jackson et al. [33], the relationship between mveg and normalized difference
water index (NDWI) is as follows:

mveg = 1.44 · NDWI2 + 1.36 · NDWI + 0.34 (4)

NDWI= (ρ(NIR)−ρ(MIR))/(ρ(NIR)+ρ(MIR)) (5)

2.5. CERES-Wheat Model

CERES-Wheat is one of the sub-models in the DSSAT (Decision Support System
for Agrotechnology Transfer) model series, which was developed especially for wheat.
The model simulates the growth and development of wheat, yield, and nitrogen-carbon-
water balance at a daily scale by using meteorological and soil databases and modules
of soil moisture, nitrogen, and carbon balance [34,35]. The required data for running the
CERES-Wheat model included four parts: meteorological data, soil information, field
management, and genetic parameters of crops [34]. The meteorological data included the
daily maximum and minimum temperatures, the daily total precipitation, and the daily
integrated solar radiation at the research sites. These data were downloaded from the China
Meteorological Administration (CMA) database (http://data.cma.cn/ (accessed on 1 June
2019). Soil information included clay content, silt content, bulk density, field water holding
capacity, saturated soil water content, organic carbon content, total nitrogen, available
potassium, available phosphorus, cation exchange capacity, and pH, which were obtained
through field measurements. Field management included planting dates, planting density,
fertilization dates and amounts, and irrigation dates and amounts. In the CERES-Wheat
model, there are seven genetic parameters of winter wheat. Genetic parameters control the
growth and development of wheat and are directly related to the development of plant
morphology and crop yield. Therefore, genetic parameters need to be calibrated before any
application of the model [23,34,36]. The calibration of genetic parameters generally uses the
‘trial-and-error’ method [14,28,37,38]. The meteorological, soil, and field management data
for winter wheat were used as the input parameters for the CERES-Wheat model during
the growth stages during 2017–2018. The measured LAI, yield, and harvest dates during

http://data.cma.cn/
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the growth stages were used to calibrate the model to determine the genetic parameters
of winter wheat in the study area. RMSE between the simulated LAI of the calibrated
CERES-Wheat model and the measured LAI was 1.1243 m2 m−2. RMSE of yield between
predictions and measurements was 622.23 kg ha−1. The difference in harvest date between
predictions and measurements was <4 d. Therefore, the accuracy of the calibrated CERES-
Wheat model was high.

2.6. Ensemble Kalman Filter (EnKF) Assimilation Algorithm

For the implementation of the EnKF, we based our research on the work of Evensen [39]
and Xie et al. [38]. The basic analysis steps in an EnKF for each ensemble member was
defined as

A f
k = M(Aa

K−1)

Aa
k = A f

k + Pk HT(HPk HT + Rk)
−1

(Dk − HA f
k ) (6)

where Aa
k and A f

k are the analyzed and forecasted matrices, respectively, of ensemble states
at time k, Pk and Rk are the ensemble and observation covariance matrices, respectively,
H is the measurement operator, and Dk − HA f

k are the innovation vectors. In this study,
LAI and soil moisture were treated as state variables, and the observations consisted of
Sentinel-retrieved LAI and Sentinel-retrieved soil moisture.

Assimilation followed two steps. First, the initial parameters were input to the CERES-
Wheat model to simulate the growth of winter wheat. Second, based on the measured LAI,
the standard errors of simulated LAI from the CERES-Wheat model and the derived LAI
from the Sentinel data were calculated. The same process was applied to the soil moisture
data. Based on the standard deviations between simulated data and measurements, the
standard deviations were set to 17% and 9% for the simulated LAI and simulated soil
moisture of the CERES-Wheat model, respectively. Similarly, the standard deviations of
LAI and soil moisture derived from multi-source Sentinel data were set to 13% and 8%,
respectively. Then, at the initial time k of the EnKF assimilation, the Monte Carlo method
was used to perturb the LAI and soil moisture simulated by the CERES-Wheat model to
generate a forecast set of state variables based on the standard deviations of the simulated
state variables. The measured LAI and soil moisture were perturbed to generate a data
set of the same size as the observed set according to standard deviations of state variables
derived from remote sensing. The forecast set and the observed set were substituted into
the assimilation to produce the assimilated LAI and the assimilated soil moisture at time k,
which were used to predict the LAI and soil moisture at time k + 1.

3. Results
3.1. LAI Derived from Sentinel-2

There is a good quantitative relationship between the NDVI and LAI [40–42]. First,
we calculated the NDVI from the seven selected Sentinel-2 images. Then, we obtained the
corresponding NDVI of the Sentinel-2 image on 17 March 2019 for the 45 locations in the
field based on the geographic coordinates. We established a regression model between
NDVI and LAI from field measurements on the same day (Equation (1)). The regression
model had a determination coefficient (R2) of 0.52 and a root mean square error (RMSE) of
0.9955 m2 m−2 and was statistically significant (p < 0.001). LAI from the seven Sentinel-2
images was derived according to Equation (7):

LAI = 8.8049 ∗ NDVI − 0.9866 (7)

3.2. Soil Moisture Derived from Sentinel-1

After separating the contribution of vegetation scattering and absorption from the
total backscatter of the microwave by using the water cloud model, the direct backscatter
of the soil was obtained as σ0

soil(θ). Then, we matched the corresponding σ0
soil(θ) from

Sentinel-1 imaging pixels on 19 April 2019 for the locations measured in the field based
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on the geographic coordinates. We further established a regression model between σ0
soil(θ)

and the measured soil moisture in the field on 19 April 2019 (Equation (8)). The regression
model had a determination coefficient (R2) of 0.47, an RMSE of 0.0305 cm3 cm−3, and was
statistically significant (p < 0.01). The soil moisture of the seven selected Sentinel-1 images
was calculated according to Equation (8):

Soilwater = 0.0133σ0
soil(θ) + 0.3815 (8)

3.3. Analysis of Assimilated LAI

The LAI derived from Sentinel-2 data and the LAI simulated by the CERES-Wheat
model were assimilated using the EnKF algorithm to obtain the assimilated LAI. The assim-
ilated LAI maintained the same patterns as the simulated LAI. The LAI increased rapidly
from the green-up stage to the heading-filling stage and reached the maximum at about
200 d after sowing. The assimilated LAI and the simulated LAI reached their maximum
values at the same time. Then, LAI began to decrease. During the green-up stage to the
heading-filling stage of winter wheat, the simulated LAI was lower than the measured
LAI. Using LAI derived from remote sensing to correct the simulation profile, the value
of the assimilated LAI increased substantially and was closer to the measurements in the
field. After the LAI peak, the simulated LAI decreased rapidly. Using LAI derived from
remote sensing to correct the simulated LAI, the decline in the assimilated LAI slowed
down, which was more in line with the actual change of LAI during the winter wheat
filling stage (Figure 4).

Figure 4. Simulated leaf area index (LAI), assimilated LAI, LAI derived from Sentinel-2, and field-measured LAI for winter
wheat in the three sites in 2019. (a) Nanxindian village of Xiangfen county; (b) Zezhang village of Xinjiang county; (c) Su
village of Wenxi county in 2019.

To test the accuracy of simulated LAI and assimilated LAI, we used field-measured
LAI from 20 assimilation sampling sites and conducted linear regressions between the
measured LAI and the simulated LAI and the assimilated LAI. We calculated the RMSE
and the corresponding determination coefficient (R2). All regressions were significant
(p < 0.001). The regression between assimilated LAI and measured LAI had a greater R2

(0.6446) than the regression between assimilated LAI and simulated LAI (R2 = 0.6186).
The assimilated LAI had a smaller RMSE (1.1886 m2 m−2) than the simulated LAI’s RMSE
(1.6344 m2 m−2) (Figure 5). The accuracy of the assimilated LAI was higher than that of the
simulated LAI, and it was more representative of the actual situation of winter wheat LAI.

To estimate the regional yield of winter wheat using assimilated LAI, we extended
the LAI assimilation values from the field scale to the regional scale. Considering factors,
such as the phenological period of winter wheat and the imaging time of the remote
sensing images, we selected the derived LAI from the Sentinel-2 images on 17 March,
1 April, 16 April, and 21 May in 2019, as the LAI at the green-up, jointing, heading-filling,
and milking stages, respectively. Regression analysis was performed on the selected LAI
and the assimilated LAI at the corresponding dates at the 20 sample sites to obtain the
assimilated LAI at the regional scale across the phenophase.
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Figure 5. Linear regression analysis with measured LAI. (a) Assimilated LAI; (b) Simulated LAI.

3.4. Analysis of the Assimilated Soil Moisture

The soil moisture values derived from the Sentinel-1 data and the soil moisture
values simulated by the CERES-Wheat model were assimilated using the EnKF algorithm
to obtain the soil moisture assimilation values for growth stages of winter wheat at a
daily scale. Taking three irrigated areas, which included Nanxindian village in Xiangfen
county, Zezhang village in Xinjiang county, and Su village in Wenxi county, and three
rain-fed areas, which included Dongguo village in Xiangfen county, Bolin village in Wenxi
county, and Hutou village in Wenxi county, as examples, we compared the assimilated soil
moisture, the simulated soil moisture, and soil moisture derived from Sentinel-1 (Figure 6).
The assimilated soil moisture maintained the trend change characteristics of soil moisture
simulated by the CERES-Wheat model. Using soil moisture derived from Sentinel-1 to
correct the simulation profile, the assimilated soil moisture profile of the sampling sites
in irrigated areas was lower than simulations. The assimilated soil moisture values of
the sampling sites in rain-fed areas increased from day 150 to 190. From day 190 to 250,
the assimilated soil moisture profile decreased compared with the simulated profile, which
was closer to the measurements.

Figure 6. The pattern of simulated soil moisture, assimilated soil moisture, and soil moisture derived from Sentinel-1 from
the irrigated areas of winter wheat in (a) Nanxindian village of Xiangfen county, (b) Zezhang village of Xinjiang county,
and (c) Su village of Wenxi county and in the rain-fed areas in (d) Dongguo village of Xiangfen county, (e) Bolin village of
Wenxin county, and (f) Hutou village of Wenxi county in 2019.

To test the accuracy of simulated soil moisture and assimilated soil moisture, we used
field-measured soil moisture from 20 assimilation sampling sites to conduct linear regres-
sions between the simulated soil moisture and the assimilated soil moisture against the
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measured soil moisture. We calculated the RMSE and R2. All regressions were significant
(p < 0.01). The assimilated soil moisture had a greater R2 (0.6734) than the simulated soil
moisture’s R2 (0.6547). The assimilated soil moisture had a smaller RMSE (0.0412 cm3 cm−3)
than the simulated soil moisture’s RMSE (0.0656 cm3 cm−3) (Figure 7). The accuracy of the
assimilated soil moisture was higher than that of the simulated soil moisture.

Figure 7. Linear regression analysis with measured soil moisture. (a) Assimilated soil moisture;
(b) Simulated soil moisture.

To estimate the regional winter wheat yield using assimilated soil moisture, we ex-
tended assimilated field-scale soil moisture values to the regional scale. Considering factors,
such as the phenological period of winter wheat and the imaging time of remote sensing
images, we selected the derived soil moisture from the Sentinel-1 images on 2 March,
7 April, 19 April, and 13 May in 2019, as the soil moistures for the green-up, jointing,
heading-filling, and milking stages, respectively. Regression analysis was performed on the
selected soil moisture values and the assimilated soil moisture values for the corresponding
dates from 20 sampling sites to obtain the assimilated soil moisture at the regional scale
across the phenophase.

3.5. Selection and Analysis of Assimilation Variables in Yield Estimation

To select suitable assimilation strategies for rain-fed areas of winter wheat and irri-
gated areas that would estimate yield with high accuracy, we used three different assimila-
tion strategies: (1) assimilate LAI alone to estimate winter wheat yield, (2) assimilate soil
moisture alone to estimate winter wheat yield, and (3) assimilate LAI and soil moisture
simultaneously to estimate winter wheat yield. We used these three strategies for the esti-
mation of winter wheat yields in different regions to determine the assimilation estimation
strategy that was applicable to irrigated areas and rain-fed areas.

In this study, we used the assimilated LAI, assimilated soil moisture, or assimilated
LAI and soil moisture to construct assimilation models to estimate winter wheat yields.
According to the analytical hierarchy, the weights of LAI that contributed to the yield of
winter wheat at the green-up, jointing, heading-filling, and milking stages were 0.0550,
0.2650, 0.5660, and 0.1140, respectively, and the weights for soil moisture were 0.0555,
0.5655, 0.2605, and 0.1185, respectively. Based on these weights, the weighted assimilated
LAI, the weighted assimilated soil moisture, or the weighted assimilated LAI and soil
moisture in the main growth stages of winter wheat were calculated to conduct linear
regressions with the measured winter wheat yield.

In irrigated areas for winter wheat, 10 sample sites were used to establish the yield
estimation model. The remaining 15 sites were used to verify the accuracy of the yield.
Ten sites in the rain-fed areas were used to establish the corresponding estimation model,
and the remaining 10 sites were used for verification (Tables 1 and 2). The yield estimation
model constructed either by assimilated LAI independently or by assimilated both LAI
and soil moisture in irrigated areas for winter wheat showed good performance. The
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R2 of the two methods was the same, although the RMSE and absolute relative error
(ARE) from the method with assimilated LAI were smaller than that of the assimilated LAI
and soil moisture. The yield estimation model constructed by assimilated soil moisture
independently had the lowest R2 and the largest RMSE and ARE. Therefore, the application
of assimilated LAI independently estimated the yield of winter wheat with high accuracy
in irrigated areas and improved the efficiency in yield estimation. In rain-fed areas, the
yield estimation model constructed by the assimilated both LAI and soil moisture had the
highest R2 and the smallest RMSE and ARE. The model constructed by the assimilated soil
moisture had a lower R2 and higher RMSE and ARE, but the model constructed by the
assimilated LAI had the lowest R2 and the largest RMSE and ARE.

Table 1. Models of yield estimation for wheat using different assimilation strategies.

Wheat Planting Areas Assimilation Strategy Estimation Model R2 p

Irrigated area of wheat
DA with LAI Y = 1041.9 × LAI + 1031.4 0.61 ***

DA with soil moisture Y = 24,505.0 × θ + 2567.6 0.59 *
DA with soil moisture + LAI Y = 967.2 × LAI + 4922.6 × θ + 688.6 0.61 ***

Rain-fed area of wheat
DA with LAI Y = 2105.0 × LAI − 3396.4 0.42 *

DA with soil moisture Y = 240,614.0 × θ − 24126.0 0.43 **
DA with soil moisture + LAI Y = 540.3 × LAI + 192,186.8 × θ – 20,233.8 0.49 ***

Note: DA represents data assimilation; LAI represents leaf area index; * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 2. Accuracy verification of the assimilation model in yield estimation of winter wheat.

Winter Wheat Planting Areas Assimilation Strategy RMSE
(kg ha−1)

ARE
(%)

Irrigated area of wheat
DA with LAI 427.57 6.07

DA with soil moisture 533.64 8.49
DA with soil moisture + LAI 436.71 6.16

Rain-fed area of wheat
DA with LAI 612.93 12.47

DA with soil moisture 467.37 11.44
DA with soil moisture + LAI 424.75 9.55

Note: RMSE and ARE represent the root mean square error and absolute relative error, respectively; DA represents
data assimilation.

For the yield estimation of winter wheat across the study area, the model constructed by
assimilating LAI alone was used in irrigated areas, and the model constructed by assimilated
LAI and soil moisture simultaneously was used in rain-fed areas (Figure 8). Due to water
stress, the yield in rain-fed areas was significantly lower than in the irrigated areas.

Figure 8. Yield distribution of winter wheat in Xiangfen, Xinjiang, and Wenxi county in 2019.
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4. Discussion
4.1. Effects of Remote Sensing Data with High Spatial-Temporal Resolution from Multiple Sources
on the Accuracy of Assimilation Parameters

A previous study showed that the error from remotely sensed LAI was <1 m2 m−2,
and the error from remotely sensed moisture was <0.05 cm3 cm−3. When the frequency was
<2 wk, the accuracy of yield estimation using data assimilation-crop modeling improved
significantly [13]. Therefore, the assimilation of remote sensing data with high spatial-
temporal resolution into crop models improves the estimation accuracy of crop yield
significantly [15].

In this study, we used multi-source Sentinel data to derive LAI and soil moisture.
The Sentinel-1 radar data had a temporal resolution of 12 d and a spatial resolution of
5 m × 20 m. It was not affected by cloudy and rainy weather because of its ability to
penetrate through those conditions. Highly accurate soil moisture values were derived
without the effects of vegetation coverage based on Sentinel 1 data and the water cloud
model [41,43]. The red and infrared bands of Sentinel-2 images that were used to derive
LAI had a spatial resolution of 10 m and a temporal resolution of 5 d. Compared with
the commonly used LAI derived from MODIS or Landsat products, LAI derived from
Sentinel-2 images had higher accuracy [40,41,44].

In addition, in this study, we chose seven Sentinel-1 images during the main winter
wheat growth stages (from the green-up stage to the maturity stage). The accuracy of the
derived soil moisture was RMSE = 0.0305 cm3 cm−3. We only obtained seven images in
total from Sentinel-2 images with cloud content <10%. The RMSE of the derived LAI was
<1 m2 m−2. This met the requirements proposed by Pauwels [13] for the accuracy and
frequency of remote sensing information in “estimating crop yield based on remote sensing
information and crop model assimilation”.

4.2. The Effects of Applying Different Assimilation Strategies on the Prediction Accuracy of Crop
Yield in Arid and Semi-Arid Regions

Many researchers have used MODIS and Landsat image to estimate crop yields and
achieved high yield estimation accuracy [45–49]. Becker et al. [45] used MODIS data and
applied a generalized regression-based model to predict winter wheat yields in Kansas
and Ukraine, with an error of 7 to 10%, compared with statistical yields. Ahmad et al. [49]
used Landsat imagery and applied machine learning algorithms to predict and assess the
interannual variability of maize in Pakistan. The accuracy of the estimate was greater than
90%. In this study, LAI and soil moisture obtained from assimilation Sentinel images with
the CERES-Wheat model were used to construct the yield estimation model.

Comparative analysis of the accuracy of the yield estimation models constructed
using different assimilation strategies suggested that using assimilated LAI indepen-
dently in irrigated areas produced the highest accuracy of winter wheat yield estima-
tions (RMSE = 427.57 kg ha−1, ARE = 6.07%) (Table 1). For rain-fed areas, using as-
similated LAI and soil moisture simultaneously had the most accurate yield estimates
(RMSE = 424.75 kg ha−1, ARE = 9.55%). In the irrigated areas, LAI assimilation led to
enhanced canopy growth. At the same time, because of the abundant availability of soil
moisture, the assimilated yield increased, and the estimated yield accuracy was high
(RMSE = 427.57 kg ha−1, ARE = 6.07%). When assimilating soil moisture, winter wheat
growth was not water-limited. Therefore, the improvement in winter wheat canopy growth
was limited, which resulted in little improvement in yield simulation and poor accuracy of
yield estimation (RMSE = 533.64 kg ha−1, ARE = 8.49%). The assimilation of LAI and soil
moisture improved the winter wheat canopy growth and adjusted the soil water balance.
The yield estimation accuracy increased (RMSE = 436.71 kg ha−1, ARE = 6.16%) but was
slightly lower than that of the assimilated LAI method.

For rain-fed winter wheat areas, assimilating LAI alone did not capture the increase in
water demand caused by the increase in assimilated LAI due to low soil water content in the
root zone. Not only did LAI assimilation not increase simulated yield, but it also increased
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water stress, which resulted in poor accuracy in yield estimates (RMSE = 612.93 kg ha−1,
ARE = 12.47%). Assimilated soil moisture reduced water stress and increased soil moisture
near the surface. It also had a better correction on the soil water balance process, which
resulted in high accuracy of yield estimation (RMSE = 467.37 kg ha−1, ARE = 11.44%).
When assimilating both LAI and soil moisture, assimilated soil moisture reduced the
simulated crop water stress, and assimilated LAI corrected the LAI profile, which resulted
in the most accurate yield estimate (RMSE = 424.75 kg ha−1, ARE = 9.55%).

In the arid and semi-arid regions of the southeastern Loess Plateau, assimilation of
LAI independently produced high-precision yield estimation of winter wheat in irrigated
areas, although it required assimilation of LAI and soil moisture simultaneously to achieve
high-precision yield estimation in rain-fed areas. Ines et al. [18] found that assimilating LAI
alone into a crop model produced highly accurate yield estimates for maize in years with
abundant precipitation (under extremely humid conditions), but in the years with normal
precipitation, the model needed assimilation of both LAI and soil moisture to be accurate.
Mishra et al. [25] confirmed that estimating agricultural production in arid regions needed
to assimilate both soil moisture and LAI into the crop model framework. That is, water
stress limits the choice of assimilation variables. Therefore, the selection of assimilation
variables in the assimilation estimation of remote sensing information and crop models
should consider whether or not the soil in the area is water-stressed.

5. Conclusions

In this study, we chose three counties that grew winter wheat in the southeast of the
arid and semiarid Loess Plateau in China as the study area. We assimilated the multi-source
Sentinel remote sensing data that has a high spatial and temporal resolution (i.e., Sentinel-1
radar data were used for deriving soil moisture, Sentinel-2 data were used for deriving
LAI) into the CERES-Wheat model. This model was used to estimate winter wheat yields
by developing different assimilation strategies in different areas that had different water
stress conditions.

We have three main conclusions:

(1) The RMSE of LAI derived from Sentinel-2 was 0.9955 m2 m−2, and the RMSE of
soil moisture derived from Sentinel-1 was RMSE = 0.0305 cm3 cm−3. Sentinel data
provided high temporal and spatial resolution for deriving LAI and soil moisture in
the study area.

(2) The advantages of the CERES-Wheat model in temporal continuity and remote sens-
ing in spatial continuity were integrated by the assimilation method using Sentinel
data and the CERES-Wheat model. The RMSE of LAI and soil water obtained by the
assimilation method was lower than those simulated by the CERES-Wheat model,
which were reduced by 0.4458 m2 m−2 and 0.0244 cm3 cm−3, respectively.

(3) LAI in the irrigated areas of winter wheat fully described the growth and development
of the canopy. The assimilation of LAI alone produced high-precision yield estimation
in irrigated areas (RMSE = 427.57 kg ha−1, ARE = 6.07%). Because of the water
stress on the growth of winter wheat in rain-fed areas, assimilation of LAI and soil
moisture simultaneously adjusted the growth and development of the canopy and
promoted soil water balance and, therefore, produced accurate estimates of yield
(RMSE = 424.75 kg ha−1, ARE = 9.55%).

In further studies, we will compare the accuracies of yield estimation, assimilating
the Sentinel, Landsat, and MODIS into the crop model. We will also explore the use of the
Google Earth Engine (GEE) platform in conducting research on remote sensing and crop
model data assimilation systems, aiming to improve the calculation efficiency of remote
sensing assimilation models at a regional scale.
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