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Abstract: Rabbit haemorrhagic disease virus 2 (RHDV2) is a lagovirus in the family Caliciviridae. The
closely related Rabbit haemorrhagic disease virus (RHDV, termed RHDV1 throughout this manuscript
for clarity) has been used extensively as a biocontrol agent in Australia since the mid-1990s to manage
wild rabbit populations, a major economic and environmental pest species. Releasing RHDV1 into
populations with a high proportion of rabbits less than 8–10 weeks of age leads to non-lethal infection
in many of these young animals, with subsequent seroconversion and long-term immunity against
reinfection. In contrast, RHDV2 causes lethal disease even in young rabbits, potentially offering
substantial benefits for rabbit management programs over RHDV1. However, it is not clear how
acquired resistance from maternal antibodies may influence immunity after RHDV2 infection. In this
study, we assessed serological responses after RHDV2 challenge in young rabbits of three different
ages (5-, 7-, or 9-weeks-old) that were passively immunised with either high- (titre of 2560 by RHDV
IgG ELISA; 2.41 mg/mL total protein) or low- (titre of 160–640 by RHDV IgG ELISA; 1.41 mg/mL
total protein) dose RHDV2 IgG to simulate maternal antibodies. All rabbits treated with a high dose
and 75% of those treated with a low dose of RHDV2 IgG survived virus challenge. Surviving animals
developed robust lagovirus-specific IgA, IgM, and IgG responses within 10 days post infection. These
findings demonstrate that the protection against RHDV2 conferred by passive immunisation is not
sterilising. Correspondingly, this suggests that the presence of maternal antibodies in wild rabbit
populations may impede the effectiveness of RHDV2 as a biocontrol.
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1. Introduction

Two lagoviruses are known to be pathogenic in European rabbits (Oryctolagus cu-
niculus)—RHDV1 (genotype GI.1) and RHDV2 (genotype GI.2) [1]. Both cause an acute
fulminant hepatitis leading to disseminated intravascular coagulation, multi-organ failure,
and death in susceptible rabbits within 24–72 h post infection. However, unlike RHDV1,
RHDV2 can also infect several Lepus (hares and jackrabbits) and Sylvilagus (cottontails)
species [2–8]. RHDV2 also causes disease in young rabbits, which show an age-dependent
innate resistance to lethal disease caused by RHDV1 despite being permissive to infec-
tion [9]. RHDV2 is antigenically distinct from RHDV1, overcoming both infection-induced
and vaccinal immunity [10,11].

Wild European rabbits are one of Australia’s most significant agricultural and environ-
mental vertebrate pest species [12,13]. Lagoviruses, because of their high virulence, species
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specificity, and capacity to transmit at a landscape scale, are used as biocontrol agents to
help manage overabundant wild rabbit populations. Currently, two RHDV1 variants, v351
(genotype GI.1c) and RHDVa-K5 (genotype GI.1a), are approved for use in Australia. A
significant limitation of these variants is that they should not be used in populations with
a high proportion of young rabbits, which is rarely practical or achievable. While young
animals may become infected, intrinsic age-dependent resistance to lethal disease with
these variants leads to many surviving and acquiring life-long immunity against reinfec-
tion [14,15]. The mechanism underlying this innate resistance to RHDV1 in young rabbits
is not fully understood, but it is known to be independent of maternal antibody status [16],
can be abrogated by immunosuppression [17], and correlates with constitutively height-
ened innate immune responses, particularly those associated with major histocompatibility
class II molecules, natural killer cells, macrophages, and cholangiocytes [18,19].

This innate resistance to disease is further complicated by the presence of benign,
typically enterotropic, rabbits caliciviruses (RCV) that induce partial immunological cross-
protection against virulent variants [20–27], and by maternal antibodies in populations
where RHDV1 is endemic. Maternal antibodies are known to attenuate the immune
response to both natural infection and vaccination for pathogens such as canine parvovirus,
leading to vaccine failure [28]. When considering lagoviruses as biocontrol agents, the
presence of maternal antibodies could theoretically result in two potential outcomes:
(1) ‘sterilising’ immunity (i.e., protection from both disease and infection), resulting in
neutralisation of challenge virus without seroconversion and no protection against re-
infection, or (2) ‘attenuating immunity’ (i.e., protection from disease but not infection),
leading to seroconversion and long-term protection against subsequent re-infection. These
contrasting outcomes dramatically influence the use of lagoviruses as biocontrol agents.
Robinson et al. [16] confirmed that RHDV1 maternal antibodies were protective against
lethal disease. The survival of young rabbits after intramuscular (IM) challenge (1500 rabbit
infectious doses (RID) as determined from in vivo titrations) was dependent on both kitten
age and the antibody titre of the doe but not of the kitten, which in many cases were too
low to be reliably detected in serological assays. While some kittens seroconverted after
virus challenge (30/41), notably those from does with low antibody titres, 27% remained
seronegative [16]. Parkes et al. [29] additionally showed that 9-week-old (wo) rabbits
born to seropositive does survived ultra-low dose RHDV1 challenge (1.5 RID and 2.5 RID;
oral inoculation), most without seroconverting (11/12), and remained fully susceptible
when rechallenged eight weeks later. This may suggest that maternal antibody-mediated
protection is less significant than innate age-dependent resistance for driving population
immunity against RHDV1 in wild rabbits.

In rabbits, maternal antibodies are acquired from the doe via active transport across the
placenta in the final days of pregnancy [30,31]. Unlike ruminant species, rabbits do not ac-
quire antibodies via colostrum, and while antibodies can be acquired through lactation, this
route plays only a minor role [31]. Maternal antibodies in rabbits are exclusively of the IgG
isotype and decline with age and, correspondingly, with increasing bodyweight [16,22,32].
For non-pathogenic lagoviruses, maternal antibodies wane between 4 and 7 weeks of age,
depending on the titre of the doe [22]. Similarly, maternal antibodies against RHDV2 de-
cline between 28 and 58 days (4 and 8.3 weeks) of age [31]. In contrast, maternal antibodies
against RHDV1 persist for up to 12 weeks in some animals, although typically they wane
by eight weeks of age [32]. In Australian wild rabbits, maternal antibodies against RHDV1
were detectable in most animals of <500 g bodyweight, half of the animals around 800 g
bodyweight, and in very few individuals >1 kg [32].

Unlike RHDV1, RHDV2 can lethally infect rabbits of all ages, making it an attractive
prospect as an additional biocontrol agent for potential use year-round, irrespective of
the breeding season and changes in population age profiles. However, the impact of
maternal antibodies on subsequent viral challenge has not yet been investigated for RHDV2
in this context. In this study, we aimed to determine whether maternal immunity to
RHDV2 was sterilising or attenuating by challenging passively immunised rabbit kittens
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(to simulate maternal antibodies) and monitoring for survival and seroconversion. If
passive immunisation against RHDV2 were to induce sterilising immunity, kittens would
become susceptible once maternal antibodies have waned and could then be targeted with
repeat applications. In contrast, should maternal immunity be attenuating, care would
need to be taken during the breeding season to minimise potential adverse long-term
outcomes for rabbit biocontrol programs.

2. Materials and Methods
2.1. Production and Purification of RHDV2 IgG

All work was conducted in accordance with the ‘Australian code for the care and use
of animals for scientific purposes’ and was approved by the institutional animal ethics com-
mittee (CWLA-AEC #2018-06 and #2016-01). Animals were confirmed to be seronegative
to known lagoviruses prior to inclusion in experiments by the RHDV IgG isotype ELISA
(which is highly cross-reactive between all lagoviruses and does not distinguish between
RHDV1 and RHDV2) [22,33] and the RCV blocking ELISA [34].

Three adult female New Zealand white (NZW) rabbits were used for the production
of RHDV2 hyperimmune serum. These rabbits were vaccinated subcutaneously with
1 mL of an experimental formalin-inactivated RHDV2 vaccine produced as previously
described [35], and were orally challenged six days post vaccination (dpv) with 1 × 108

capsid gene copies of the RHDV2 (genotype GI.1bP-GI.2) isolate BlMt-1 (passage 1) (Gen-
Bank accession number KT280060) [36,37]. The rabbits were humanely killed 22 days post
challenge (28 dpv) by intravenous (IV) barbiturate injection, following IM sedation with
5 mg/kg xylazine and 30 mg/kg ketamine. Sera were collected and stored at −20 ◦C.

Sera were pooled, clarified at 10,000× g for 30 min at 4 ◦C, and filtered sequentially
through 0.8 µM mixed cellulose ester filters and 0.45 µM polyvinylidene fluoride (PVDF)
filters. Filtered serum was diluted in PBS (between 1/10 to 1/40, dependent on batch) so
that the final pH was between 7 and 8. IgG was purified from diluted serum by fast protein
liquid chromatography (FPLC) using 5 mL of CaptureSelect IgG-Fc (rabbit) affinity resin
(Thermo Fisher Scientific, Waltham, MA, USA) packed into a Cytiva XK 16/40 column
(GE Healthcare). FPLC was performed at room temperature using an AKTA Purifier
system with the following conditions: 5 column volumes (CV) equilibration with PBS pH
7.2–7.4, direct sampling loading (50–150 mL aliquots), 10 CV wash with PBS pH 7.2–7.4,
7–10 CV elution with 0.1 M glycine pH 3.0, and 5 CV re-equilibration with PBS pH 7.2–7.4.
Elution fractions were neutralised with 0.1 volume tris-HCl pH 8.0. Elution fractions
were pooled and dialysed against PBS overnight at 4 ◦C and were filter-sterilised prior
to in vivo use using a 0.2 µM PVDF syringe filter. A portion of the final RHDV2 IgG
preparation was concentrated 5-fold using Amicon Ultra-15 centrifugal filter units with
100 KDa nominal molecular weight limit (Merck Millipore, Burlington, MA, USA). The neat
(low-dose) and concentrated (high-dose) RHDV2 preparations were aliquoted into single-
use vials and stored at −80 ◦C. Quality of the RHDV2 IgG preparations were assessed
using the Qubit protein assay (Thermo Fisher Scientific), RHDV IgG isotype ELISA [22,33],
RHDV2 IgA and IgM isotype ELISAs [35], and reducing SDS-PAGE with Coomassie stain
(Supplementary Figure S1).

2.2. Pharmacokinetics of Rabbit Polyclonal Serum

To assess the pharmacokinetics of rabbit polyclonal serum, we treated 12 wo NZW
rabbits with 0.1 mL/kg, 0.3 mL/kg, or 0.5 mL/kg of hyperimmune RHDV2 polyclonal
serum by either IM or IV injection (n = 1 per group). The hyperimmune serum was
produced as part of a previous study [35]. The serum was filtered sequentially through
0.8 µM, 0.45 µM, and 0.2 µM syringe filters to ensure sterility prior to injection. For IV
injections, animals were first sedated with 5 mg/kg xylazine and 30 mg/kg ketamine
administered IM. To monitor RHDV IgG levels over time, serum (50–250 µL) was collected
prior to treatment (baseline), 5 min post injection (D0), and then twice daily for 4.5 days
(D0.5, D1, D1.5, D2, D2.5, D3, D3.5, D4, D4.5).
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2.3. Passive Immunisation Trials

Rabbits (NZW) aged 5-, 7-, or 9-wo were passively immunised IM with 0.5 mL/kg
of either ‘low dose’ (titre of 160–640 by RHDV IgG ELISA) or ‘high dose’ (titre of 2560 by
RHDV IgG ELISA) purified RHDV2 IgG (four animals per age group per dose); control
animals were included with each age group and received PBS (Figure 1). Sample sizes were
determined in consultation with a biostatistician based on a power calculation with assump-
tions of <5% survival probability in infected kittens with no antibody protection, a 20%
survival probability with low levels of maternal antibodies, a 50% survival probability with
moderate levels of maternal antibodies, and an 80% survival probability with high levels
of maternal antibodies. The IM route was selected based on our findings from the ‘Pharma-
cokinetics of rabbit polyclonal serum’ experiments described above. The RHDV IgG ELISA is
highly cross-reactive between all lagoviruses and does not distinguish between RHDV1
and RHDV2. Twenty-four hours after passive immunisation, rabbits were challenged orally
with 50 times the 50% rabbit infectious dose (RID50 as determined by in vivo titration;
equivalent to 3 × 105–6 × 106 capsid copies [37]) of a genotype GI.1bP-GI.2 RHDV2, MEN-1
(GenBank accession number MW467791) [9]. This variant is homologous to that used for
the preparation of the RHDV2 IgG, described above, sharing 98.3% nucleotide identity
across the genome. The release of RHDV1 as a rabbit biocontrol agent in Australia is regu-
lated as an oral bait, which utilises the natural oral route of infection. The 50 RID50 dose
was estimated to be what a rabbit may reasonably consume on carrot or oat bait when the
virus is reconstituted as directed. Rabbits were housed individually in a climate-controlled,
insect-proof facility with ad libitum access to food (Ol’ Jack Rabbit premium pellets, Laucke
Mills) and water, and were provided with environmental enrichment.
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Figure 1. Experimental design. Rabbits aged 5-, 7-, or 9-weeks old were passively immunised with either a high (pink)
or low (blue) dose of RHDV2 IgG or PBS (white) by intramuscular injection in groups of 4 animals per treatment group.
They were challenged 24 h later with 50 RID50 of RHDV2 and were monitored for the development of terminal rabbit
haemorrhagic disease. Sera were collected for serological analyses at baseline, at the time of passive immunisation (day −1),
at the time of infection (day 0), and at the end of the trial (day 10). Liver samples were collected on day 10 for viral RNA
quantification using RT-qPCR.

Rabbits were monitored twice daily and those with terminal rabbit haemorrhagic
disease (RHD), indicated by a rectal temperature less than 38 ◦C with concurrent weight
loss and lethargy, were humanely killed by IV barbiturate overdose after sedation with IM
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xylazine (5 mg/kg) or medetomidine (130 µg/kg), and ketamine (30 mg/kg). To continu-
ously monitor activity levels and external body temperature profiles, rabbits were fitted
with collars comprising a FitBark2 activity monitor (FitBark Inc., Kansas City, MO, USA)
and SubCue-Mini temperature datalogger (Canadian Analytical Technologies Inc., Calgary,
Canada), as previously described [9]. Trials were terminated once humane endpoints were
reached or at 10 days post infection (dpi), allowing sufficient time for seroconversion to
occur [35].

Serum was collected at the time of passive immunisation, at the time of infection, and
at post-mortem to monitor for seroconversion. Liver samples were collected to look for
evidence of viral replication after challenge. All samples were stored at −80 ◦C.

2.4. RNA Extraction and RT-qPCR

RNA was extracted from 20 mg of liver using the SimplyRNA Tissue kit and Maxwell
RSC16 instrument (Promega, Madison, WI, USA), as per the manufacturer’s instruc-
tions. Absolute quantification of viral RNA was performed in duplicate using a universal
lagovirus SYBR Green-based RT-qPCR assay targeting a conserved region of VP60 and
calibrated against a standard curve prepared using RNA in vitro transcripts, as previously
described [37].

2.5. Serological Analyses

A series of lagovirus-specific ELISAs were used to investigate the immune responses
to virus challenge after passive immunisation. These assays have been described previ-
ously [33,35]. The characteristics of the different assays are presented in Table 1; impor-
tantly, the RHDV IgG ELISA is broadly cross-reactive and detects all lagoviruses, including
RHDV2, with high sensitivity. Results are reported either as the corrected optical density
(OD) (the ratio of the OD of the sample to the OD of the negative control sera measured at
492 nm for sera diluted 1/40) or as a titre. For the RHDV2 IgM, RHDV2 IgA, and RHDV
IgG assays the titres were calculated as the reciprocal of the highest serum dilution with an
OD reading at least two times that of the negative control serum at the same dilution. For
analytical purposes, titres less than 1/40 are reported as “0”.

Table 1. Characteristics of the different ELISAs used in this study.

Assay Sensitivity Cross-Reactivity with Other Lagoviruses Reference

RHDV2 IgM High Moderate [35]
RHDV2 IgA High Moderate [35]
RHDV IgG High High [33]

2.6. Data Analysis

SubCue-Mini temperature logger data and Fitbark2 activity data were downloaded
from their respective software applications and analysed in Microsoft Excel and R version
4.0.5 [38]. Plots were generated using ggplot2 [39] and ggpubr [40]. Survival analyses were
done using survminer [41]. Other R packages used during this study for data manipulation
and statistical analyses include readxl [42], cowplot [43], pracma [44], and those in the
tidyverse [45].

3. Results
3.1. Production and Purification of RHDV2 IgG

RHDV2 IgG was purified from hyperimmune rabbit serum using FPLC, dialysed
against PBS, and filter sterilised. An aliquot of this was concentrated to generate a ‘high
dose’ preparation. FPLC was selected as the purification method of choice after trialing
several alternative approaches. Briefly, purification of rabbit IgG using ammonium sulphate
precipitation (at 35%, 40%, 45%, or 50%) or the Nab Protein A Plus spin kit (Thermo
Scientific) led to increased IgM and IgA co-purification and reduced purity of the IgG
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preparation compared to FPLC purification (methods and data available on request). The
total protein concentration of the purified IgG (by FPLC) was 2.41 mg/mL for the ‘high
dose’ concentrated preparation and 1.41 mg/mL for the ‘low dose’ preparation.

While we observed some co-purification of IgM and IgA isotypes, enrichment for IgG
reduced the RHDV2 IgM titres from 40,960 in the unpurified sample to 2560 in the ‘high
dose’ preparation and to 40 in the ‘low dose’ preparation. Similarly, the RHDV2 IgA titres
reduced from 10,240 in the unpurified sample to 2560 in the ‘high dose’ preparation and
to 640 in the ‘low dose’ preparation. The RHDV IgG titre of the purified RHDV2 IgG was
2560 for the ‘high dose’ preparation and between 160 to 640 (accounting for interassay
variation) for the ‘low dose’ preparation. Note that equivalent titres do not imply that the
isotypes are present in the same absolute concentrations [46]. Reducing SDS-PAGE showed
that the RHDV2 IgG was highly purified compared to the unpurified hyperimmune serum
(Supplementary Figure S1).

3.2. Pharmacokinetics of Rabbit Polyclonal Serum

Prior to assessing the effects of passive immunization on virus challenge, we first
assessed the pharmacokinetics of different doses of RHDV2 IgG and compared the IM
and IV routes of administration. A clear dose-dependent increase in RHDV IgG ELISA
reactivity was observed 5 min post IV RHDV2 polyclonal serum administration, but not
after IM administration (Figure 2). This initial peak in reactivity immediately began to
decline, while in animals treated IM, the reactivity gradually increased over time. By one
day, post treatment reactivity was comparable between rabbits treated by the IV or IM
routes and remained stable until at least 4.5 days post treatment for both IM and IV treated
animals and at all doses tested. Thus, for subsequent experiments, rabbits were passively
immunised by the IM route 24 h prior to virus challenge.
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Figure 2. RHDV IgG ELISA reactivity after administration of RHDV2 hyperimmune polyclonal
serum. Rabbits were given RHDV2 polyclonal serum by either intravenous (IV) or intramuscular
(IM) injection. RHDV IgG reactivity was measured in serum collected prior to treatment (baseline),
5 min post injection (D0), and then twice daily for 4.5 days (D0.5, D1, D1.5, D2, D2.5, D3, D3.5, D4,
D4.5). Results are expressed as the corrected optical density (OD) (the ratio of the OD of the sample
to that of the negative control sera).

3.3. Effect of Passive Immunisation on Disease and Infection

All rabbits treated with a high dose of RHDV2 IgG (independent of age group) sur-
vived virus challenge without showing obvious clinical signs in the 10 days following
infection and had negligible amounts of viral RNA in the liver at post-mortem (Figure 3,
Supplementary Figures S2 and S3, Supplementary Table S1). In contrast, all rabbits that
did not receive RHDV2 IgG developed terminal RHD between 37 and 95 h (x = 51 h)
post infection (hpi) and had very high viral RNA levels in the liver (Figure 3). These
animals showed pyrexia and a reduction in activity levels as the disease progressed
(Supplementary Figures S2 and S3). Of the animals treated with a low dose of RHDV2
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IgG, all nine-week-old rabbits survived virus challenge, while 75% (3/4) 7 wo and 50%
(2/4) five-week-old rabbits survived (Figure 3A). Animals that developed terminal disease
had very high viral RNA loads in the liver, comparable to the ‘no antibody’ treatment
groups, while low to moderate levels of viral RNA were detected in the livers of surviving
rabbits (Figure 3B). The mortalities in the ‘low antibody’ treatment group (x = 121 hpi)
occurred later than those in the ‘no antibody’ group (x = 53.2 hpi; p = 0.006, Welch two
sample t-test), but characteristic clinical signs such as fever and lethargy were observed. A
short episode of pyrexia and mild lethargy was observed in one of the three seven-week-old
surviving rabbits in the ‘low antibody’ group; all other survivors remained healthy for the
duration of the experiment (Supplementary Figures S2 and S3).
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Figure 3. Survival curves and viral RNA loads of passively immunised rabbits after RHDV2 infection.
Rabbits aged 5-, 7-, or 9-weeks old were passively immunised with either a high (pink) or low
(blue) dose of RHDV2 IgG or PBS (white) by intramuscular injection in groups of four animals per
treatment group. They were challenged 24 h later with 50 RID50 of RHDV2 and were monitored
for the development of terminal rabbit haemorrhagic disease. (A) Survival time was obtained from
continuous temperature monitors. Survival analysis was performed using the survminer package.
(B) Total RNA was extracted from post-mortem liver samples and viral RNA was quantified by
SYBR-based RT-qPCR. Individual data points and summary boxplots are shown, coloured by dose
of RHDV2 IgG. Triangles represent rabbits that developed terminal disease while dots represent
animals that survived infection (liver samples collected 10 days post infection). Plots are faceted
by age.

To determine whether passively immunised animals were protected against disease
or infection, we characterised the serological responses following RHDV2 IgG treatment
and virus challenge (Figure 4). All surviving rabbits seroconverted after virus challenge,
developing strong RHDV2 IgM and IgA responses. RHDV IgG titres at 10 dpi ranged
from 0 to 2560, although even in animals with a titre of 0 an increase in corrected OD
from baseline was detectable (Figure 4A). Two rabbits with terminal RHD (both ‘low dose’



Vaccines 2021, 9, 1197 8 of 12

treatment, one five-weeks-old and one seven-weeks-old wo) had IgA titres of 160 at post-
mortem, but no IgM or IgG responses were detectable. Both these animals had prolonged
survival times of 130 hpi.
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Figure 4. Serological responses of rabbits to RHDV2 passive immunisation and homologous virus
challenge. Sera were collected at baseline, at the time of passive immunisation, at the time of infection
(24 h after immunisation), and at post-mortem. Serological responses were evaluated with RHDV2
IgM, RHDV2 IgA, and RHDV IgG ELISAs. Results are expressed as the corrected optical density
(OD) (the ratio of the OD of the sample to that of the negative control sera) (A), and as titres (B). Titres
were calculated as the reciprocal of the highest serum dilution with an OD reading at least two times
that of the negative control serum at the same dilution. Plots are faceted by age and serological assay.

While RHDV IgG antibody titres were not detectable 24 h after passive immunisation
(i.e., at the time of infection), the ‘high dose’ group had significantly higher IgG corrected
ODs than the controls in the seven-week-old and nine-week-old age groups (p = 0.015 and
p = 0.002, respectively, Welch two sample t-test), reflective of the higher treatment dose.
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4. Discussion

We hypothesised that passive immunisation against RHDV2, representative of ma-
ternal antibodies, would prevent both disease and infection after virus challenge. To test
this, we passively immunised four 5-, 7-, and 9-week-old NZW rabbits with either low or
high dose purified RHDV2 IgG. We orally challenged the rabbits with a highly virulent
RHDV2 variant 24 h later. Although passive immunisation was not reliably detected by
serology, all animals treated with a high dose of antibody and some of those treated with
a low dose survived subsequent virus challenge. This confirms that passive immunity
confers protection against lethal RHDV2 disease and that the level of immunity required
for protection appears to be below the limit of detection, at least in the RHDV IgG ELISA.
This concurs with previous findings for RHDV1 [14,16]. All surviving kittens developed a
robust antibody response after virus challenge, demonstrating that the protection conferred
by passive immunisation is not sterilising (i.e., attenuating). This differs from the findings
of Robinson et al. [16] for RHDV1, who reported that, while most kittens from immune does
seroconverted after virus challenge, some with higher maternal antibody levels developed
neutralising responses to infection. It is unclear if these discrepancies are due to different
experimental protocols (e.g., IM vs. oral route of challenge), or if our passive immunisation
protocol did not result in titres sufficient to achieve neutralisation. Additional work would
be required to test if higher doses of RHDV2 IgG may protect against RHDV2 oral infection.

While there was a trend towards increased mortality in younger animals after low
dose passive immunisation, our study was insufficiently powered to assess the effects
of age with confidence. If substantiated, this could be directly related to physiological
changes associated with age, or it is possible that this is an artefact of the weight-based
dosing regimen used here [47]. Potentially, a surface area-based dosing regimen would be
more appropriate for RHDV2 IgG.

In the context of rabbit biocontrol, these findings suggest that young rabbits with
maternal antibodies will not only survive the RHDV2 challenge but will also seroconvert,
leading to long-term protection against re-infection. Indeed, even low doses of RHDV2
IgG appear to be protective; therefore, a negative result in the RHDV IgG ELISA may
not indicate susceptibility, as has previously been reported for RHDV1 [16]. If RHDV2
was approved as a biological control, any release would need to account for the presence
of maternal antibodies in the target population. Clearly, the development of new sero-
logical assays that can more sensitively detect meaningful antibody levels in individuals
are warranted, and more research is needed to understand the correlates of immunity
to RHDV2.

In the context of endemic circulation of the virus, RHDV2 appears to enter populations
as soon as new susceptible animals are present [48]. This susceptible cohort is likely to be
young rabbits, and therefore maternal antibodies are likely to be present. The results from
our study suggest that this would rapidly lead to an increase in RHDV2 seropositivity in
the population, since exposed, maternally protected kittens will likely survive infection
and seroconvert. Interestingly, rabbits of less than two-to-four weeks old are typically
unable to mount normal specific immune responses to antigens [30]. Therefore, if RHDV2
enters a population with a large proportion of very young kittens, then high mortality may
still be observed. Additional studies would be required to verify this experimentally.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9101197/s1, Figure S1: Reducing SDS-PAGE of purified RHDV2 IgG preparations,
Figure S2: Temperature changes in passively immunised rabbits following RHDV2 infection, Figure
S3: Activity changes in passively immunised rabbits following RHDV2 infection. Table S1: Daily
mean clinical scores following virus challenge.

https://www.mdpi.com/article/10.3390/vaccines9101197/s1
https://www.mdpi.com/article/10.3390/vaccines9101197/s1


Vaccines 2021, 9, 1197 10 of 12

Author Contributions: Conceptualization, R.N.H. and T.S.; data curation, R.N.H.; methodology,
R.N.H. and T.S.; formal analysis, R.N.H.; investigation, R.N.H., T.K., T.W.O., S.V., M.P.; writing—
original draft preparation, R.N.H.; writing—review and editing, R.N.H., T.W.O., A.J.R., M.P., T.S.;
project administration, T.S.; funding acquisition, T.S. and R.N.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This research and the APC was funded by the Centre for Invasive Species Solutions, grant
number P-01-B-001.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
‘Australian code for the care and use of animals for scientific purposes’, and approved by the CSIRO
Wildlife and Large Animal Institutional Animal Ethics Committee (CWLA-AEC #2018-06, approved
18 June 2018, and #2016-01, approved 19 March 2016).

Informed Consent Statement: Not applicable.

Data Availability Statement: All supporting data are included in this manuscript.

Acknowledgments: We wish to acknowledge Tony Rowe and Omid Fakhri for critical revision of
the manuscript. Our figures used graphical icons that were made by monkik, Freepik, Pixel perfect,
and prettycons from www.flaticon.com (accessed 26 May 2021).

Conflicts of Interest: Funding for this work was provided through the Centre for Invasive Species
Solutions to investigate RHDV2 as a potential additional biocontrol agent to manage invasive wild
rabbits in Australia. The funding body and project lead did not have input into the experimental
design, data analysis, or preparation of this manuscript.

References
1. Le Pendu, J.; Abrantes, J.; Bertagnoli, S.; Guitton, J.S.; Le Gall-Recule, G.; Lopes, A.M.; Marchandeau, S.; Alda, F.; Almeida, T.;

Celio, A.P.; et al. Proposal for a unified classification system and nomenclature of lagoviruses. J. Gen. Virol. 2017, 98, 1658–1666.
[CrossRef] [PubMed]

2. Camarda, A.; Pugliese, N.; Cavadini, P.; Circella, E.; Capucci, L.; Caroli, A.; Legretto, M.; Mallia, E.; Lavazza, A. Detection of the
new emerging rabbit haemorrhagic disease type 2 virus (RHDV2) in Sicily from rabbit (Oryctolagus cuniculus) and Italian hare
(Lepus corsicanus). Res. Vet. Sci. 2014, 97, 642–645. [CrossRef]

3. Hall, R.N.; Peacock, D.E.; Kovaliski, J.; Mahar, J.E.; Mourant, R.; Piper, M.; Strive, T. Detection of RHDV2 in European brown
hares (Lepus europaeus) in Australia. Vet. Rec. 2017, 180, 121. [CrossRef] [PubMed]

4. Lankton, J.S.; Knowles, S.; Keller, S.; Shearn-Bochsler, V.I.; Ip, H.S. Pathology of Lagovirus europaeus GI.2/RHDV2/b (Rabbit
hemorrhagic disease virus 2) in native North American lagomorphs. J. Wildl. Dis. 2021, 57, 694–700. [CrossRef] [PubMed]

5. Le Gall-Recule, G.; Lemaitre, E.; Bertagnoli, S.; Hubert, C.; Top, S.; Decors, A.; Marchandeau, S.; Guitton, J.S. Large-scale lagovirus
disease outbreaks in European brown hares (Lepus europaeus) in France caused by RHDV2 strains spatially shared with rabbits
(Oryctolagus cuniculus). Vet. Res. 2017, 48, 70. [CrossRef] [PubMed]

6. Neimanis, A.S.; Ahola, H.; Larsson Pettersson, U.; Lopes, A.M.; Abrantes, J.; Zohari, S.; Esteves, P.J.; Gavier-Widen, D. Overcoming
species barriers: An outbreak of Lagovirus europaeus GI.2/RHDV2 in an isolated population of mountain hares (Lepus timidus).
BMC Vet. Res. 2018, 14, 367. [CrossRef]

7. Puggioni, G.; Cavadini, P.; Maestrale, C.; Scivoli, R.; Botti, G.; Ligios, C.; Le Gall-Recule, G.; Lavazza, A.; Capucci, L. The new
French 2010 rabbit hemorrhagic disease virus causes an RHD-like disease in the Sardinian Cape hare (Lepus capensis mediterraneus).
Vet. Res. 2013, 44, 96. [CrossRef]

8. Velarde, R.; Cavadini, P.; Neimanis, A.; Cabezon, O.; Chiari, M.; Gaffuri, A.; Lavin, S.; Grilli, G.; Gavier-Widen, D.; Lavazza,
A.; et al. Spillover events of infection of Brown hares (Lepus europaeus) with rabbit haemorrhagic disease type 2 virus (RHDV2)
caused sporadic cases of an European Brown Hare syndrome-like disease in Italy and Spain. Transbound. Emerg. Dis. 2017, 64,
1750–1761. [CrossRef] [PubMed]

9. Hall, R.N.; King, T.; Connor, T.; Read, A.J.; Arrow, J.; Trought, K.; Duckworth, J.; Piper, M.; Strive, T. Age and infectious dose
significantly affect disease progression after RHDV2 infection in naïve domestic rabbits. Viruses 2021, 13, 1184. [CrossRef]

10. Le Gall-Recule, G.; Lavazza, A.; Marchandeau, S.; Bertagnoli, S.; Zwingelstein, F.; Cavadini, P.; Martinelli, N.; Lombardi, G.;
Guerin, J.L.; Lemaitre, E.; et al. Emergence of a new lagovirus related to Rabbit haemorrhagic disease virus. Vet. Res. 2013, 44, 81.
[CrossRef] [PubMed]

11. Peacock, D.; Kovaliski, J.; Sinclair, R.; Mutze, G.; Iannella, A.; Capucci, L. RHDV2 overcoming RHDV immunity in wild rabbits
(Oryctolagus cuniculus) in Australia. Vet. Rec. 2017, 180, 280. [CrossRef]

12. Commonwealth of Australia. Threat Abatement Plan for Competition and Land Degradation by Rabbits; 2016. Available online:
https://www.awe.gov.au/sites/default/files/documents/tap-rabbit-2016.pdf (accessed on 17 September 2021).

www.flaticon.com
http://doi.org/10.1099/jgv.0.000840
http://www.ncbi.nlm.nih.gov/pubmed/28714849
http://doi.org/10.1016/j.rvsc.2014.10.008
http://doi.org/10.1136/vr.104034
http://www.ncbi.nlm.nih.gov/pubmed/28154218
http://doi.org/10.7589/JWD-D-20-00207
http://www.ncbi.nlm.nih.gov/pubmed/33961043
http://doi.org/10.1186/s13567-017-0473-y
http://www.ncbi.nlm.nih.gov/pubmed/29080562
http://doi.org/10.1186/s12917-018-1694-7
http://doi.org/10.1186/1297-9716-44-96
http://doi.org/10.1111/tbed.12562
http://www.ncbi.nlm.nih.gov/pubmed/27615998
http://doi.org/10.3390/v13061184
http://doi.org/10.1186/1297-9716-44-81
http://www.ncbi.nlm.nih.gov/pubmed/24011218
http://doi.org/10.1136/vr.104135
https://www.awe.gov.au/sites/default/files/documents/tap-rabbit-2016.pdf


Vaccines 2021, 9, 1197 11 of 12

13. Kearney, S.G.; Carwardine, J.; Reside, A.E.; Fisher, D.O.; Maron, M.; Doherty, T.S.; Legge, S.; Silcock, J.; Woinarski, J.C.Z.; Garnett,
S.T.; et al. The threats to Australia’s imperilled species and implications for a national conservation response. Pac. Conserv. Biol.
2019, 25, 231–244. [CrossRef]

14. Ferreira, P.G.; Dinis, M.; Costa, E.S.A.; Aguas, A.P. Adult rabbits acquire resistance to lethal calicivirus infection by adoptive
transfer of sera from infected young rabbits. Vet. Immunol. Immunopathol. 2008, 121, 364–369. [CrossRef]

15. Matthaei, M.; Kerr, P.J.; Read, A.J.; Hick, P.; Haboury, S.; Wright, J.D.; Strive, T. Comparative quantitative monitoring of rabbit
haemorrhagic disease viruses in rabbit kittens. Virol. J. 2014, 11, 109. [CrossRef]

16. Robinson, A.J.; So, P.T.M.; Müller, W.J.; Cooke, B.D.; Capucci, L. Statistical models for the effect of age and maternal antibodies on
the development of rabbit haemorrhagic disease in Australian wild rabbits. Wildl. Res. 2002, 29, 663–671. [CrossRef]

17. Marques, R.M.; Teixeira, L.; Aguas, A.P.; Ribeiro, J.C.; Costa-e-Silva, A.; Ferreira, P.G. Immunosuppression abrogates resistance of
young rabbits to Rabbit Haemorrhagic Disease (RHD). Vet. Res. 2014, 45, 14. [CrossRef] [PubMed]

18. Marques, R.M.; Costa, E.S.A.; Aguas, A.P.; Teixeira, L.; Ferreira, P.G. Early inflammatory response of young rabbits attending
natural resistance to calicivirus (RHDV) infection. Vet. Immunol. Immunopathol. 2012, 150, 181–188. [CrossRef] [PubMed]

19. Neave, M.J.; Hall, R.N.; Huang, N.; McColl, K.A.; Kerr, P.; Hoehn, M.; Taylor, J.; Strive, T. Robust innate immunity of young
rabbits mediates resistance to Rabbit hemorrhagic disease caused by Lagovirus europaeus GI.1 but not GI.2. Viruses 2018, 10, 512.
[CrossRef] [PubMed]

20. Forrester, N.L.; Trout, R.C.; Gould, E.A. Benign circulation of rabbit haemorrhagic disease virus on Lambay Island, Eire. Virology
2007, 358, 18–22. [CrossRef] [PubMed]

21. Nicholson, L.J.; Mahar, J.E.; Strive, T.; Zheng, T.; Holmes, E.C.; Ward, V.K.; Duckworth, J.A. Benign rabbit calicivirus in New
Zealand. Appl. Environ. Microbiol. 2017, 83, e00090-17. [CrossRef] [PubMed]

22. Capucci, L.; Nardin, A.; Lavazza, A. Seroconversion in an industrial unit of rabbits infected with a non-pathogenic rabbit
haemorrhagic disease-like virus. Vet. Rec. 1997, 140, 647–650. [CrossRef]

23. Cooke, B.D.; Duncan, R.P.; McDonald, I.; Liu, J.; Capucci, L.; Mutze, G.J.; Strive, T. Prior exposure to non-pathogenic calicivirus
RCV-A1 reduces both infection rate and mortality from rabbit haemorrhagic disease in a population of wild rabbits in Australia.
Transbound. Emerg. Dis. 2018, 65, e470–e477. [CrossRef] [PubMed]

24. Le Gall-Recule, G.; Zwingelstein, F.; Fages, M.P.; Bertagnoli, S.; Gelfi, J.; Aubineau, J.; Roobrouck, A.; Botti, G.; Lavazza, A.;
Marchandeau, S. Characterisation of a non-pathogenic and non-protective infectious rabbit lagovirus related to RHDV. Virology
2011, 410, 395–402. [CrossRef]

25. Lemaitre, E.; Zwingelstein, F.; Marchandeau, S.; Le Gall-Recule, G. First complete genome sequence of a European non-pathogenic
rabbit calicivirus (lagovirus GI.3). Arch. Virol. 2018, 163, 2921–2924. [CrossRef] [PubMed]

26. Strive, T.; Elsworth, P.; Liu, J.; Wright, J.D.; Kovaliski, J.; Capucci, L. The non-pathogenic Australian rabbit calicivirus RCV-A1
provides temporal and partial cross protection to lethal Rabbit Haemorrhagic Disease Virus infection which is not dependent on
antibody titres. Vet. Res. 2013, 44, 51. [CrossRef]

27. Forrester, N.L.; Boag, B.; Moss, S.R.; Turner, S.L.; Trout, R.C.; White, P.J.; Hudson, P.J.; Gould, E.A. Long-term survival of New
Zealand rabbit haemorrhagic disease virus RNA in wild rabbits, revealed by RT-PCR and phylogenetic analysis. J. Gen. Virol.
2003, 84, 3079–3086. [CrossRef] [PubMed]

28. Decaro, N.; Buonavoglia, C.; Barrs, V.R. Canine parvovirus vaccination and immunisation failures: Are we far from disease
eradication? Vet. Microbiol. 2020, 247, 108760. [CrossRef] [PubMed]

29. Parkes, J.P.; Norbury, G.L.; Heyward, R.P.; Sullivan, G. Epidemiology of rabbit haemorrhagic disease (RHD) in the South Island,
New Zealand, 1997–2001. Wildl. Res. 2002, 29, 543–555. [CrossRef]

30. Knight, K.L.; Crane, M.A. Generating the antibody repertoire in rabbit. Adv. Immunol. 1994, 56, 179–218. [CrossRef]
31. Baratelli, M.; Molist-Badiola, J.; Puigredon-Fontanet, A.; Pascual, M.; Boix, O.; Mora-Igual, F.X.; Woodward, M.; Lavazza, A.;

Capucci, L. Characterization of the maternally derived antibody immunity against RHDV-2 after administration in breeding does
of an inactivated vaccine. Vaccines 2020, 8, 484. [CrossRef]

32. Cooke, B.D.; Robinson, A.J.; Merchant, J.C.; Nardin, A.; Capucci, L. Use of ELISAs in field studies of rabbit haemorrhagic disease
(RHD) in Australia. Epidemiol. Infect. 2000, 124, 563–576. [CrossRef] [PubMed]

33. Liu, J.; Kerr, P.J.; Wright, J.D.; Strive, T. Serological assays to discriminate rabbit haemorrhagic disease virus from Australian
non-pathogenic rabbit calicivirus. Vet. Microbiol. 2012, 157, 345–354. [CrossRef] [PubMed]

34. Liu, J.; Kerr, P.J.; Strive, T. A sensitive and specific blocking ELISA for the detection of rabbit calicivirus RCV-A1 antibodies. Virol.
J. 2012, 9, 182. [CrossRef]

35. Strive, T.; Piper, M.; Huang, N.; Mourant, R.; Kovaliski, J.; Capucci, L.; Cox, T.E.; Smith, I. Retrospective serological analysis
reveals presence of the emerging lagovirus RHDV2 in Australia in wild rabbits at least five months prior to its first detection.
Transbound. Emerg. Dis. 2020, 67, 822–833. [CrossRef]

36. Hall, R.N.; Mahar, J.E.; Read, A.J.; Mourant, R.; Piper, M.; Huang, N.; Strive, T. A strain-specific multiplex RT-PCR for Australian
rabbit haemorrhagic disease viruses uncovers a new recombinant virus variant in rabbits and hares. Transbound. Emerg. Dis. 2018,
65, e444–e456. [CrossRef] [PubMed]

37. Hall, R.N.; Mahar, J.E.; Haboury, S.; Stevens, V.; Holmes, E.C.; Strive, T. Emerging Rabbit hemorrhagic disease virus 2 (RHDVb),
Australia. Emerg. Infect. Dis. 2015, 21, 2276–2278. [CrossRef]

http://doi.org/10.1071/PC18024
http://doi.org/10.1016/j.vetimm.2007.09.005
http://doi.org/10.1186/1743-422X-11-109
http://doi.org/10.1071/WR00119
http://doi.org/10.1186/1297-9716-45-14
http://www.ncbi.nlm.nih.gov/pubmed/24490832
http://doi.org/10.1016/j.vetimm.2012.09.038
http://www.ncbi.nlm.nih.gov/pubmed/23092749
http://doi.org/10.3390/v10090512
http://www.ncbi.nlm.nih.gov/pubmed/30235853
http://doi.org/10.1016/j.virol.2006.09.011
http://www.ncbi.nlm.nih.gov/pubmed/17049958
http://doi.org/10.1128/AEM.00090-17
http://www.ncbi.nlm.nih.gov/pubmed/28363968
http://doi.org/10.1136/vr.140.25.647
http://doi.org/10.1111/tbed.12786
http://www.ncbi.nlm.nih.gov/pubmed/29250929
http://doi.org/10.1016/j.virol.2010.12.001
http://doi.org/10.1007/s00705-018-3901-z
http://www.ncbi.nlm.nih.gov/pubmed/29978262
http://doi.org/10.1186/1297-9716-44-51
http://doi.org/10.1099/vir.0.19213-0
http://www.ncbi.nlm.nih.gov/pubmed/14573812
http://doi.org/10.1016/j.vetmic.2020.108760
http://www.ncbi.nlm.nih.gov/pubmed/32768213
http://doi.org/10.1071/WR00108
http://doi.org/10.1016/s0065-2776(08)60452-6
http://doi.org/10.3390/vaccines8030484
http://doi.org/10.1017/S0950268899003994
http://www.ncbi.nlm.nih.gov/pubmed/10982081
http://doi.org/10.1016/j.vetmic.2012.01.018
http://www.ncbi.nlm.nih.gov/pubmed/22333288
http://doi.org/10.1186/1743-422X-9-182
http://doi.org/10.1111/tbed.13403
http://doi.org/10.1111/tbed.12779
http://www.ncbi.nlm.nih.gov/pubmed/29226567
http://doi.org/10.3201/eid2112.151210


Vaccines 2021, 9, 1197 12 of 12

38. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2020. Available online: https://www.R-project.org/ (accessed on 26 May 2021).

39. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. Available online: https://ggplot2
.tidyverse.org (accessed on 26 May 2021).

40. Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. 2020. Available online: https://CRAN.R-project.org/package=
ggpubr (accessed on 26 May 2021).

41. Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves Using ‘ggplot2’. 2020. Available online: https:
//CRAN.R-project.org/package=survminer (accessed on 26 May 2021).

42. Wickham, H.; Bryan, J. Readxl: Read Excel Files. 2019. Available online: https://CRAN.R-project.org/package=readxl (accessed
on 26 May 2021).

43. Wilke, C. Cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. 2020. Available online: https://CRAN.R-project.
org/package=cowplot (accessed on 26 May 2021).

44. Borchers, H.W. Pracma: Practical Numerical Math Functions. 2019. Available online: https://CRAN.R-project.org/package=
pracma (accessed on 26 May 2021).

45. Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’Agostino McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.;
Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [CrossRef]

46. Lavazza, A.; Capucci, L.; Cavadini, P. Chapter 3.7.2. Rabbit Haemorrhagic Disease. Manual of Diagnostic Tests and Vaccines for
Terrestrial Animals. 2021. Available online: https://www.oie.int/en/what-we-do/standards/codes-and-manuals/terrestrial-
manual-online-access/ (accessed on 15 September 2021).

47. Zehnder, A.M.; Hawkins, M.G.; Trestrail, E.A.; Holt, R.W.; Kent, M.S. Calculation of body surface area via computed tomography-
guided modeling in domestic rabbits (Oryctolagus cuniculus). Am. J. Vet. Res. 2012, 73, 1859–1863. [CrossRef]

48. Taggart, P.L.; Hall, R.N.; Cox, T.E.; Kovaliski, J.; McLeod, S.R.; Strive, T. Changes in virus transmission dynamics following the
emergence of RHDV2 shed light on its competitive advantage over previously circulating variants. Transbound. Emerg. Dis. 2021.
[CrossRef]

https://www.R-project.org/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=pracma
http://doi.org/10.21105/joss.01686
https://www.oie.int/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/
https://www.oie.int/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/
http://doi.org/10.2460/ajvr.73.12.1859
http://doi.org/10.1111/tbed.14071

	Introduction 
	Materials and Methods 
	Production and Purification of RHDV2 IgG 
	Pharmacokinetics of Rabbit Polyclonal Serum 
	Passive Immunisation Trials 
	RNA Extraction and RT-qPCR 
	Serological Analyses 
	Data Analysis 

	Results 
	Production and Purification of RHDV2 IgG 
	Pharmacokinetics of Rabbit Polyclonal Serum 
	Effect of Passive Immunisation on Disease and Infection 

	Discussion 
	References

