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Abstract: Smart materials with light-actuated shape memory effects are developed from renewable
resources in this work. Bio-based benzoxazine resin is prepared from vanillin, furfurylamine, and
paraformaldehyde by utilizing the Mannich-like condensation. Vanillin-furfurylamine-containing
benzoxazine resin (V-fa) is subsequently copolymerized with epoxidized castor oil (ECO). When the
copolymer is reinforced with multiwalled carbon nanotubes (MWCNTs), the resulting composite
exhibits shape memory effects. Molecular characteristics of V-fa resin, ECO, and V-fa/ECO copolymers
are obtained from Fourier transform infrared (FT-IR) spectroscopy. Curing behavior of V-fa/ECO
copolymers is investigated by differential scanning calorimetry. Dynamic mechanical properties
of MWCNT reinforced V-fa/ECO composites are determined by dynamic mechanical analysis.
Morphological details and distribution of MWCNTs within the copolymer matrix are characterized
by transmission electron microscopy. Shape memory performances of MWCNT reinforced V-fa/ECO
composites are studied by shape memory tests performed with a universal testing machine. After a
significant deformation to a temporary shape, the composites can be recovered to the original shape
by near-infrared (NIR) laser actuation. The shape recovery process can be stimulated at a specific site
of the composite simply by focusing NIR laser to that site. The shape recovery time of the composites
under NIR actuation is four times faster than the shape recovery process under conventional thermal
activation. Furthermore, the composites possess good shape fixity and good shape recovery under
NIR actuation.

Keywords: bio-based benzoxazine; multiwalled carbon nanotubes; shape memory polymers; NIR
actuation; composites; renewable materials

1. Introduction

Petroleum and their products from refining processes are employed as energy resources and raw
materials for industrial production of plastics, cosmetics, fuel, and rubber [1]. Considerably rapid
rate of petroleum consumption have inevitably led to a shortage of petroleum supply, air pollution

Nanomaterials 2019, 9, 881; doi:10.3390/nano9060881 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0001-9359-3252
https://orcid.org/0000-0002-9531-2300
http://www.mdpi.com/2079-4991/9/6/881?type=check_update&version=1
http://dx.doi.org/10.3390/nano9060881
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2019, 9, 881 2 of 17

problems generated from petroleum refining, global warming, and other related environmental
issues [2]. Therefore, renewable starting materials from bio-based resources are increasingly
employed as alternatives to petroleum-based materials. Bio-based materials are attractive due
to their biodegradability, renewability, and low ecotoxicity [3]. Recently, bio-based materials have been
utilized for producing food packaging [4], implantable medical devices, bioactive substances, textiles,
paints, pharmaceuticals, automotive, ink, nail care, and cosmetics [5].

Polybenzoxazines are a novel kind of thermosetting phenolic resin derived from ring-opening
polymerization of their precursors [6]. Benzoxazine monomers could be prepared from limitless choices
of phenolic compounds, primary amines, and formaldehyde through the Mannich-like condensation,
due to their wide molecular design flexibility [7–9]. The monomers exhibit near-zero volumetric
shrinkage or expansion upon polymerization. Cross-linked polybenzoxazines possess exceptionally
high glass transition temperature (Tg) and high thermal stability. Even though polybenzoxazines
contain polar functional groups, these thermosetting polymers exhibit low water absorption due
to complex hydrogen bond formation within their polymeric networks [9,10]. Furthermore, high
performance materials could be obtained by alloying polybenzoxazines with various resins [11].
Benzoxazine resins could act as a latent curing agent for epoxy and benzoxazine/epoxy copolymers
exhibiting synergism in Tg [12,13]. Moreover, the resins could also act as a permanent segment in
benzoxazine/epoxy shape memory polymers [14]. Polybenzoxazines possess unique supramolecular
structures and functionality that could be potentially employed for developing smart materials [15].
Polybenzoxazine-based smart materials including shape memory polymers, self-healable polymers,
electrochemically activated coatings, and electrochromic resins were successfully fabricated [16].

Recently, benzoxazine resins have been successfully prepared from renewable materials including
vanillin [17,18], eugenol [19], cardonol [20], furfurylamine [21,22], stearylamine [23], and guaiacol [22].
In this work, vanillin and furfurylamine were selected as starting materials for bio-based benzoxazine
resin preparation. Vanillin-furfurylamine-containing benzoxazine (V-fa) showed a low onset of curing
temperature (179 ◦C), very high Tg due to highly cross-linked structures of the cured polymer, and high
char yield compared to petroleum based benzoxazines [17]. Vanillin could be synthesized from
lignin and other renewable resources including eugenol, iso-eugenol, ferulic acid, and sugar [24].
Aldehyde groups in vanillin offered additional chemical functionality to vanillin-based benzoxazine
monomers [18]. Furfural derived from byproducts of agriculture including corncobs and wheat bran
were employed as the starting material for producing furfurylamine [3]. Furfurylamine possessed
methylene elasticity and crosslinkable furan rings that could be employed for enhancing Tg and
thermal stability of high performance benzoxazine thermosets through the formation of furfurylamine
Mannich bridge networks during polymerization [25].

Shape memory polymers (SMPs) are smart materials possessing the ability to recover their original
permanent shape after significant deformation by exposing to an appropriate stimulus [26], such as
light induction [27–31], temperature change [32–34], magnetic field [35,36], or pH variation [37].
SMPs have been demonstrated in several potential applications including switches and sensors,
shrinkable tubes, auto repairing and self-healing polymers, biomedical sensors and devices, smart
textiles, and deployable structures for aircraft and spacecraft [38]. Furthermore, SMPs have been
used to substitute shape memory metallic alloys (SMAs) because they possess distinctive advantages
including excellent processing, light weight, low cost, easy control of activation temperature, and great
flexibility [39]. Light-triggered shape memory effects have become increasingly attractive due to the
spatially controlled and remote activation at low operating temperatures. In addition, light-triggered
processes can be paused and resumed as needed by turning the light off or tuning the light on.
Light-triggered SMPs should contain specific kinds of fillers or additives that are capable of converting
optical energy to heat to generate the photothermal effect, for example organic dyes, gold nanoparticles
(AuNPs), gold nanorods (AuNRs), and carbon nanotubes (CNTs) [40]. Recently, photothermal effects
utilizing carbon nanotubes as a NIR light absorber have been increasingly employed as an external
stimulus for triggering shape memory behavior. Yi et al. [41] developed NIR-triggered SMPs based
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on hyperbranched polyurethane composites containing 1D thin-walled carbon nanotubes and 2D
reduced graphene oxide. They found that the optically active 1D thin-walled carbon nanotubes
efficiently transferred the laser-induced thermal energy to the polymer matrix. Koerner et al. [42]
demonstrated a very fast strain recovery within 5 seconds of MWCNT-Morthane nanocomposites with
NIR light triggering. Anisotropy of carbon nanotubes might effectively enhance shape memory effects
of polymer composites [40]. In addition, MWCNTs could effectively transform NIR radiation into
thermal energy when compared to single-walled carbon nanotubes (SWCNTs), resulting in higher
temperature enhancement at the same mass concentrations [43].

It is the purpose of this study that renewable resources are utilized as raw materials for
light-stimulated shape memory composite fabrication. Bio-based benzoxazine resin is synthesized
from the Mannich-like condensation of vanillin, furfurylamine, and paraformaldehyde. The bio-based
benzoxazine resin is further copolymerized with epoxidized castor oil. To impart light-actuated
shape memory effects, the resulting copolymer is filled with MWCNTs. MWCNTs play a role as
NIR-laser absorber, transforming electromagnetic energy to thermal energy. Shape memory effects of
MWCNT reinforced bio-based benzoxazine/epoxy composites can be remotely activated with NIR
laser. Furthermore, the shape recovery process of the MWCNT reinforced composites can be selectively
activated at specific sites, demonstrating the high level of controllability. The MWCNT reinforced
composites show good shape fixity up to 93% and good shape recovery up to 98%.

2. Materials and Methods

2.1. Materials

Vanillin (99%) and furfurylamine (99%) were purchased from Sigma-Aldrich Pte. Ltd. (St. Louis,
MO, USA). Paraformaldehyde (AR grade) was purchased from Merck Co., Ltd. (Darmstadt, Germany).
Epoxidized castor oil (ECO) was supplied by Aditya Birla Chemicals Thailand Ltd. (Rayong, Thailand).
MWCNTs with the outer diameter of 12.9 nm and the tube length of 3 to 12 µm were purchased from
Nano Generation Company Limited. (Chiang Mai, Thailand). All chemicals were used as received.

2.2. Synthesis of Benzoxazine Monomer

Benzoxazine monomer (V-fa) was synthesized using vanillin, furfurylamine, and paraformaldehyde
at a 1:1:2 molar ratio based on the solventless method [17]. The three reactants were mixed at 105 ◦C for
1 h. The V-fa resin was a transparent yellow viscous liquid at room temperature.

2.3. Preparation of V-fa/ECO Copolymer Reinforced with MWCNTs

The benzoxazine monomer (V-fa) was blended with ECO to provide V-fa/ECO copolymer.
The mass concentration of ECO was fixed at 50 wt%. The mixture was preheated at 105 ◦C in an
aluminum pan and thoroughly mixed until a homogeneous mixture was obtained. MWCNTs at 0, 0.1,
0.3, and 0.5 wt% might be gradually added to the homogeneous mixture while stirring to fabricate
the MWCNT reinforced V-fa/ECO composite. The molten resin mixture dispersed with 0, 0.1, 0.3,
and 0.5 wt% MWCNTs were poured into an aluminum mold and step-cured in an air-circulated oven
at 150 ◦C for 1 h, 160 ◦C for 1 h, 170 ◦C for 2 h, and 180 ◦C for 2 h. The samples were finally left to cool
down to room temperature and were ready for material characterizations.

2.4. Characterization Methods

2.4.1. Differential Scanning Calorimetry

Curing behavior of the V-fa/ECO copolymer was obtained from differential scanning calorimeter
(DSC, model DSC1 module from Mettler-Toledo (Thailand) Ltd. (Bangkok, Thailand)). Each sample
with a mass in a range of 5 to 10 mg was sealed in an aluminum pan covered with a lid. The sample
was dynamically scanned from 25 to 300 ◦C with a heating rate of 10 ◦C min−1 under a nitrogen flow
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rate of 50 mL min−1. The degree of conversion (%) of a sample was determined according to the
relationship in Equation (1):

conversion (%) = (1−
Hrxn

Ho
) × 100 (1)

where Hrxn is the heat of reaction of the partially cured sample and Ho is the heat of reaction of the
uncured resin mixture. The heat of reaction was determined from the area under the exothermic peak
of DSC thermograms.

2.4.2. FT-IR Spectroscopy

Molecular characteristics and network formation of all samples were studied by a Spectrum GX
FT-IR spectrometer from Perkin Elmer with an ATR accessory (Waltham, MA, USA). All spectra were
taken as a function of time with 64 scans at a resolution of 4 cm−1 and wavenumber ranging from 4000
to 650 cm−1. For viscous liquid V-fa/ECO mixtures, a small amount of mixture was casted as a thin
film on a potassium bromide (KBr) window and its FT-IR spectrum was obtained.

2.4.3. Dynamic Mechanical Analysis

Dynamic mechanical analyzer (DMA) model DMA242 from Netzsch, Inc. (Bavaria, Germany)
was used to determine a storage modulus (E′) and loss tangent (tan δ) of the V-fa/ECO copolymer
reinforced with various mass concentrations of MWCNTs in the range from 0 to 0.5 wt%. The sample
in rectangular shape with dimensions of 5 mm × 50 mm × 2 mm was tested using a tension mode
at the frequency of 1 Hz, a strain amplitude of 5 µm, and a heating rate of 2 ◦C/min from −100 ◦C to
200 ◦C under nitrogen atmosphere with a gas purging rate of 80 mL min−1. The gauge length was
approximately 10 mm for all samples. Tg was taken as the peak maximum on the loss tangent curve in
the DMA spectrum.

2.4.4. Transmission Electron Microscopy

The morphology and dispersion of MWCNTs in the polymer matrix was investigated by a JEM-2100
transmission electron microscope (JEOL Ltd. (Tokyo, Japan)) operated at 200 kV. Pure MWCNTs were
sonicated in water and a droplet of the suspension was put onto a 200-mesh carbon-coated copper
grid for observation. Dimensions of MWCNTs were measured directly from transmission electron
micrographs using ImageJ software (a Java program developed by the National Institute of Mental
Health) [44]. An ultra-thin film of a composite specimen was prepared by an ultramicrotome Leica EM
UC7 (Leica Microsystems (SEA) Pte. Ltd. (Singapore)) at room temperature with a section thickness of
100 nm and placed onto a copper grid.

2.4.5. Shape Memory Performances

The shape memory properties were tested by a universal testing machine (Model 5567 from Instron
Co. Ltd. (Bangkok, Thailand)) with a thermal chamber (Figure 1). The samples with dimensions of
5 mm × 50 mm × 2 mm were tested in a three-point bending mode with a supporting span of 32 mm
and a crosshead speed of 1.0 mm/min. Firstly, the temporary shape (Figure 1a) was deformed by
applying a bending load of 10% to a sample at Tg + 20 ◦C (Figure 1b). The load was continuously
applied at Tg + 20 ◦C for 20 min. Then, the sample was cooled down to room temperature. The load
was then completely removed and a temporary shape was obtained (Figure 1c). The deflection after
unloading was then measured and the shape fixity (Rf) of each sample was determined according to
Equation (2).

Rf(%) =
ε
εload

× 100 (2)

where εload represents the strain under bending load and ε is the fixed strain of the sample upon
completion of the deformation step.
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In the shape recovery process, the sample was irradiated with a NIR radiation (808 nm) (Hong Kong,
China) at the bending edge (Figure 1d). The laser intensity was 500 mW. The distance between the
sample and the light source was 60 cm. The fixed shape was subsequently recovered (Figure 1e).
The shape recovery (Rr) value was calculated by Equation (3).

Rr(%) =
ε− εrec

ε
× 100 (3)

where εrec is the strain after completion of the recovery step.
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3. Results and Discussion

FT-IR spectra of bio-based benzoxazine resin (V-fa), ECO, uncured V-fa/ECO binary mixture,
and cured V-fa/ECO copolymer are shown in Figure 2.

The V-fa monomer exhibited IR absorption peaks at 905, 923, and 1229 cm−1 (C–O–C) of an oxazine
ring (Figure 2a) [17]. The furan group of V-fa monomer displayed IR absorption peaks spectra at 760,
997, and 1583 cm−1 [25]. The IR absorption peak at 1686 cm−1 confirmed the presence of carbonyl (C=O)
group of vanillin [18]. The spectrum also showed a band at 1364 cm−1, attributing to tetra-substituted
benzene ring of V-fa [19]. ECO (Figure 2b) exhibited IR absorption peaks of oxirane ring at 1245,
913, and 847 cm−1 [14]. The absorption band at 1744 cm−1 and 1096 cm−1 were assigned to C=O
stretching and C–O–C stretching mode of ethers, respectively [14,45]. The IR absorption spectrum
of uncured V-fa/ECO mixture (Figure 2c) possessed IR absorption characteristics contributed from
both V-fa and ECO. The network formation between V-fa and ECO after thermal curing was also
monitored by FT-IR spectroscopy. Figure 2d shows IR absorption spectrum of cured V-fa/ECO copolymer.
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The polymerization profile employed for thermal curing of V-fa/ECO binary mixture was 150 ◦C for 1 h,
160 ◦C for 1 h, 170 ◦C for 2 h, and 180 ◦C for 2 h. V-fa underwent thermal ring-opening polymerization
and the oxazine ring was opened by the breakage of a C–O bond. V-fa molecules were transformed from
a ring structure and interconnected to a three-dimensional network structure as depicted in Figure 3.
Electrophilic substitution of carbocation intermediates with another V-fa monomer might occur at the
aromatic ring (pathway I) or the furan moiety (pathway II). The absorption bands corresponding to
oxazine ring at 905, 923, 1229 cm−1 were disappeared, confirming the ring-opening polymerization
of V-fa [17]. Poly(V-fa) possessed in situ generated phenolic hydroxyl groups that could be employed
to copolymerize with ECO [46]. The copolymerization of poly(V-fa) and ECO is schematically drawn
as shown in Figure 4. The copolymerization of ring-opened V-fa and ECO was evidenced by the
disappearance of IR absorption peaks of oxirane ring at 1245, 913 and 847 cm−1. Epoxide groups can
react with the phenolic hydroxyl group of the ring opened V-fa monomers to form new ether linkages
and hydroxyl groups in epoxy moieties as clearly seen from the emerging absorption bands at 1091 and
3406 cm−1, respectively [14]. Kimura et al. [47] and Rimdusit et al. [48] reports that benzoxazine resin
could be employed as a curing agent for epoxy. These results confirmed that V-fa could be synthesized
from vanillin, furfurylamine, and paraformaldehyde by the solventless method. In addition, poly(V-fa)
could be copolymerized with ECO through the reaction between phenolic hydroxy groups of poly(V-fa)
and epoxide groups of ECO.Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 18 
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Curing behavior of V-fa monomer and V-fa/ECO mixtures were studied by differential scanning
calorimetry (DSC). The DSC thermogram of V-fa monomer is shown in Figure 5. There was a curing
exotherm in the range from 181 to 216 ◦C. The onset and peak exothermic temperatures of V-fa
monomer were 181 and 199 ◦C, respectively. The enthalpy of reaction was 168 J g−1. The exothermic
peak was assigned to the ring-opening polymerization of V-fa monomer [17]. V-fa monomer exhibited
a rather low curing temperature due to the presence of carboxylic groups catalyzing the ring-opening
polymerization [14].
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Curing behavior of V-fa/ECO copolymer at V-fa mass concentration of 50 wt% at various curing
conditions was also investigated by DSC (Figure 5). DSC thermograms of V-fa/ECO copolymer revealed
two exothermic peaks, implying that there were two major reactions between V-fa and ECO. The first
reaction at the lower temperature was attributed to the thermal ring-opening polymerization reaction
of V-fa monomers [17]. The second exothermic peak at a higher temperature was the reaction between
phenolic hydroxyl groups of polybenzoxazine (poly(V-fa)) and epoxide groups of the ECO [14]. Curing
conversions of the V-fa/ECO copolymer were determined from the partial disappearance of the area
under the exothermic peaks in DSC thermograms (Equation (1)). The heat of reactions of the uncured
sample was measured to be 160 J/g. After the step curing at 150 ◦C/1 h, 160 ◦C/1 h, 170 ◦C/2 h,
and 180 ◦C/2 h, the heat of reactions decreased to 77.4, 29.9, 17.4, and 8.30 J/g, respectively. The degree of
conversions of V-fa/ECO copolymers were 51.7, 81.3, 89.1, and 94.8% after the step curing at 150 ◦C/1 h,
160 ◦C/1 h, 170 ◦C/2 h, and 180 ◦C/2 h, respectively. The curing conversion of 94.8% was selected for
further investigation. Partially bio-based systems of epoxy phenolic novolac (EPN)/cashew nut shell
liquid composites reinforced with MWCNTs at curing conversions of 80 to 98% exhibited good shape
memory performances as reported by Kasemsiri et al. [49].
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after a step thermal curing: (�) uncured binary mixture, (�) 150 ◦C/1 h, (N) 160 ◦C/1 h, (H) 170 ◦C/2 h,
and ( ) 180 ◦C/2 h.

Morphology of MWCNTs and their distribution within composite specimens were observed by a
transmission electron microscope. Transmission electron micrographs of pure MWCNTs and MWCNT
reinforced V-fa/ECO composites at 0.1 to 0.5 wt% of MWCNTs are shown in Figure 6.

MWCNTs possessed an average diameter of 10.1 ± 2.3 nm as directly measured from micrographs.
Multiwalled characteristics of carbon nanotubes were also confirmed with observed fringe patterns as
shown in the inset of Figure 6a [50]. MWCNTs were uniformly dispersed within V-fa/ECO matrix when
MWCNT mass concentrations were 0.1 wt% (Figure 6b) and 0.3 wt% (Figure 6c). At high MWCNT
mass concentration of 0.5 wt%, some MWCNTs were aggregated within V-fa/ECO matrix (Figure 6d).

Dynamic mechanical properties of MWCNT reinforced V-fa/ECO composites, i.e., storage modulus
(E′) and loss tangent (tan δ) were investigated by a dynamic mechanical analyzer (DMA). Figure 7
presents the storage modulus as a function of temperature of MWCNT reinforced V-fa/ECO composites.
The glassy state modulus at −100 ◦C of MWCNT reinforced V-fa/ECO composites at MWCNT
contents of 0, 0.1, 0.3, and 0.5 wt% were 1.33, 1.44, 2.01, and 1.03 GPa, respectively. The storage
modulus values of MWCNT reinforced V-fa/ECO composites reached the maximum value when
MWCNT mass concentration was 0.3 wt% due to the homogeneous dispersion of nanofiller within
the polymer matrix [49]. During the V-fa/ECO binary mixture preparation, V-fa monomer might be
adsorbed onto the surfaces MWCNTs, facilitating the dispersion of MWCNTs within the mixture [51].
The storage modulus value of the composite at 0.5 wt% drastically reduced due to an aggregation of
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MWCNTs [52,53]. This phenomena was also observed in MWCNT/polypropylene composites [54].
Kord et al. found that the storage modulus of polyprolypene/reed flour composites decreased when
MWCNT contents were 3 to 5 phr because of the agglomeration of MWCNTs [55].Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 18 
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Figure 7. Storage modulus of MWCNT reinforced V-fa/ECO composites at various MWCNT contents
of (�) 0 wt%, (N) 0.1 wt%, (�) 0.3 wt%, and (�) 0.5 wt%.

Figure 8 shows loss tangent curves as a function of temperature. Tg values of the composites were
determined from the peak maxima of the tan δ curves. Tg is an important parameter determining the
switching transition temperature of chemically cross-linked amorphous polymer networks. The original
shape of polymer specimen could be deformed to the temporary shape with an applying load when the
temperature is above Tg. The temporary shape of SMP specimen could be fixed at the temperature below
Tg. After exposing to the temperature above Tg, the original shape of SMP specimen could be recovered
from the fixed temporary shape [56]. All samples showed tan δ curves possessing two peak maxima,
indicating the existence of two-phase structures [57]. The first peak maxima located approximately
at 4 ◦C, attributing to Tg of the ECO-rich phase of the composites. The other peak maxima in tan δ
curves of V-fa/ECO composite reinforced with 0, 0.1, 0.3, and 0.5 wt% of MWCNTs were at 96, 102, 107,
and 97 ◦C, respectively. Fully cured poly(V-fa) exhibited Tg of 110 ◦C as determined from the baseline
shift of DSC thermogram. Therefore, these peaks should attribute to the V-fa-rich phase. Similar phase
behavior was also observed in benzoxazine/DGEBA blending systems [58]. The ECO-rich phase and
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V-fa-rich phase played a role as the soft segment or the reversible switching phase and the permanent
netpoints of MWCNT reinforced V-fa/ECO composites, respectively [14]. The highest Tg was observed
for V-fa/ECO composites reinforced with 0.3 wt% MWCNT due to the uniform dispersion of reinforcing
fillers within the copolymer matrix. An optimal addition of MWCNTs to V-fa/ECO copolymer could
limit the molecular chain mobility and enhance the Tg [59]. The small drop in Tg of the composite with
0.5 wt% of MWCNT was due to the agglomeration of MWCNTs.
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Figure 8. Loss tangent curves of MWCNT reinforced V-fa/ECO composites at MWCNT contents of
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Shape memory performances of MWCNT reinforced V-fa/ECO composites were evaluated utilizing
three principal parameters, i.e., shape fixity, shape recovery, and shape recovery time. Shape fixity (Rf)
indicates the ability of SMPs to memorize the fixed or temporary shape. The shape fixity of specimens
was examined by a universal testing machine with a three-point bending mode (flexural mode). The
original rectangular shape of MWCNT reinforced V-fa/ECO composites (Figure 9a) could be deformed
under a three-point bending load (10% bending) at Tg + 20 ◦C (Figure 9b). The temporary shape of
MWCNT reinforced V-fa/ECO composites could be fixed when the temperature of the specimen was at
room temperature (Figure 9c).Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 18 
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Figure 9. Photographs showing shape fixity process under a three-point bending load for MWCNT
reinforced V-fa/ECO composites: (a) the original rectangular shape, (b) deformed temporary shape at
Tg + 20 ◦C with 10% bending, and (c) fixed temporary shape at room temperature.

Shape fixity values under a three-point bending load of MWCNT reinforced V-fa/ECO composites
are shown in Figure 10. The shape fixity values of MWCNT reinforced V-fa/ECO composites at 0, 0.1,
0.3, and 0.5 wt% MWCNTs were 86, 92, 93, and 91, respectively. Shape fixity values were significantly
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enhanced with increasing MWCNT contents up to 0.5 wt%. MWCNTs possibly possessed good
interaction with V-fa/ECO matrix and functioned as an additional fixed phase, improving the shape
fixity of the composites [51,60]. Similar behavior was also observed in MWCNT-filled shape memory
polyurethane nanocomposites [61]. The shape fixity value of MWCNT reinforced V-fa/ECO composites
at 0.5 wt% MWCNTs was dropped to 91% because the excess MWCNT mass concentration could
induce aggregation of the MWCNTs [62].
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Shape recovery (Rr) is the parameter that used to reflect how well an original shape of SMP specimen
is memorized. Shape recovery under NIR-actuation of MWCNT reinforced V-fa/ECO composites at
various weight percentages are shown in Figure 11. Shape recovery of MWCNT reinforced V-fa/ECO
composites at MWCNT weight percentages of 0, 0.1, 0.3, and 0.5 were 80, 96, 98, and 92%, respectively.
MWCNTs efficiently enhanced shape recovery of V-fa/ECO composites when compared to the unfilled
specimen because MWCNTs could effectively absorb light and transform into heat distributed within the
polymer matrix [16,63]. Addition of 0.3 wt% of MWCNTs maximized shape recovery of the composites
to 98%. MWCNTs might possess good interaction with permanent netpoints consisting of V-fa-rich
phase, enhancing the storage of internal stress during shape deformation and providing high recovery
force during the shape recovery process [64]. However, the shape recovery value of MWCNT reinforced
V-fa/ECO composite was dropped to 92% when the MWCNT weight percentage was 0.5 wt% due to the
aggregation of the MWCNTs. Similar behavior was also observed in MWCNT-filled shape memory
epoxy phenolic novolac and cashew nut shell liquid [49] and polyurethane/MWCNT composites [64].
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Snapshots of shape recovery process under NIR-actuation and thermal heating of 0.3 wt% MWCNT
reinforced V-fa/ECO composites are shown in Figure 12. The temporary shape was formed by bending
the original rectangular shape of shape memory composite at 90◦. The shape recovery process was
recorded with a digital camera. The temporary shape of MWCNT reinforced V-fa/ECO composite
could be recovered to the original shape under NIR actuation (Figure 12a–d) and thermal heating
(Figure 12e–h). With NIR laser triggering, shape recovery time of MWCNT reinforced V-fa/ECO
composites at MWCNT contents of 0, 0.1, 0.3, and 0.5 wt% were 51, 36, 16, and 13 s, respectively
(Figure 13). These results demonstrated that NIR laser actuation could be employed for triggering
shape memory effects of MWCNT reinforced V-fa/ECO composites fabricated based on renewable
resources. MWCNTs played a role as efficient NIR light absorber, transforming absorbed light into
heat and distributed to the polymer matrix [16,63]. MWCNTs at 0.3 wt% could raise temperature
of MWCNT-poly (lactic acid) up to 100 ◦C within 16 s under NIR lamp illumination of 275 W [65].
In our system, MWCNTs could induce the thermal heating up to 120 ◦C within the V-fa/ECO matrix
at 0.3 wt% MWCNT as measured with a thermocouple. The temperature induced by photothermal
heating with NIR laser exceeded the transition temperature of 0.3 wt% MWCNT reinforced V-fa/ECO
composites (107 ◦C), triggering the shape recovery process. In addition, shape recovery time of
MWCNT reinforced V-fa/ECO composites decreased with increasing MWCNT mass concentrations.
The addition of MWCNTs could accelerate the shape recovery process due to the enhanced thermal
conductivity of MWCNT reinforced composites [66]. Yu et al. [67] also reported that Veriflex-S®

VF62/CNTs composites exhibited shorter recovery time when CNTs mass concentration increased due
to the minimized thermal conduction pathway within the composites. Even though the shape recovery
process of MWCNT reinforced V-fa/ECO composites could be triggered under thermal heating, the
shape recovery time was significantly longer. The shape recovery time of MWCNT reinforced V-fa/ECO
composites under thermal heating were 86, 71, 63, and 50 s when MWCNT mass concentrations were
0, 0.1, 0.3, and 0.5 wt%, respectively (Figure 13).Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 18 
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shape recovery process under NIR actuation (Figure 14). The original shape of the composite was
deformed into “U” shape with two separated creases (Figure 14a). NIR laser could be employed for
stepwise recovery of the composites simply by irradiating at the specified point (Figure 14b–f) without
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Multiwalled carbon nanotube reinforced vanillin-furfurylamine-containing benzoxazine (V-
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Figure 14. Snapshots of site-selective shape recovery process of MWCNT reinforced V-fa/ECO composite
at 0.3 wt% of MWCNTs: (a) the deformed “U” shape of the composite, (b,c) initial irradiation of the
deformed composite with NIR laser at the first crease, (d,e) subsequent irradiation of the partially
recovered composite with NIR laser at the other crease, and (f) the fully recovered original shape of
the composite.
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4. Conclusions

Multiwalled carbon nanotube reinforced vanillin-furfurylamine-containing benzoxazine
(V-fa)/epoxidized castor oil (ECO) composites with NIR laser actuated shape memory effects were
successfully prepared. V-fa monomer was successfully synthesized from vanillin, furfurylamine,
and paraformaldehyde using the solventless approach as confirmed by FT-IR spectroscopy. The curing
behavior as determined from differential scanning calorimetry of MWCNT reinforced V-fa/ECO
composites exhibited two exothermic peaks corresponding to the thermal ring-opening polymerization
reaction of V-fa monomers and copolymerization of in situ generated phenolic hydroxyl groups of
polybenzoxazine (poly(V-fa)) and epoxide groups of ECO. MWCNT reinforced V-fa/ECO composites
exhibited shape memory effects and NIR laser actuation could be employed to stimulate the shape
recovery process of the composites. An addition of MWCNTs from 0.1 to 0.3 wt% significantly
improved thermal, dynamic mechanical, and shape memory properties of MWCNT reinforced
V-fa/ECO composites. The composites exhibited shape fixity from 92 to 93%, shape recovery from 96
to 98%, and shape recovery time from 36 to 16 s after an addition of MWCNTs from 0.1 to 0.3 wt%.
The temporary shape of MWCNT reinforced V-fa/ECO composite was efficiently recovered to the
original shape under NIR actuation when compared to the shape recovery process under thermal
triggering. Reinforcing MWCNTs could effectively convert the absorbed NIR light into thermal energy
and distribute the energy within the polymer matrix. Furthermore, remote activation and site-specific
shape recovery process under NIR irradiation could be realized for MWCNT reinforced V-fa/ECO
shape memory composites.
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