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Abstract

Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem
cells (hiPSCs), are capable of differentiating into any cell type in the human body and thus can be used in studies of early
human development, as cell models for different diseases and eventually also in regenerative medicine applications. Since
the first derivation of hESCs in 1998, a variety of culture conditions have been described for the undifferentiated growth of
hPSCs. In this study, we cultured both hESCs and hiPSCs in three different culture conditions: on mouse embryonic
fibroblast (MEF) and SNL feeder cell layers together with conventional stem cell culture medium containing knockout serum
replacement and basic fibroblast growth factor (bFGF), as well as on a Matrigel matrix in mTeSR1 medium. hPSC lines were
subjected to cardiac differentiation in mouse visceral endodermal-like (END-2) co-cultures and the cardiac differentiation
efficiency was determined by counting both the beating areas and Troponin T positive cells, as well as studying the
expression of OCT-3/4, mesodermal Brachyury T and NKX2.5 and endodermal SOX-17 at various time points during END-2
differentiation by q-RT-PCR analysis. The most efficient cardiac differentiation was observed with hPSCs cultured on MEF or
SNL feeder cell layers in stem cell culture medium and the least efficient cardiac differentiation was observed on a Matrigel
matrix in mTeSR1 medium. Further, hPSCs cultured on a Matrigel matrix in mTeSR1 medium were found to be more
committed to neural lineage than hPSCs cultured on MEF or SNL feeder cell layers. In conclusion, culture conditions have a
major impact on the propensity of the hPSCs to differentiate into a cardiac lineage.
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Introduction

Human pluripotent stem cells (hPSCs) include human embry-

onic stem cells (hESCs) and human induced pluripotent stem cells

(hiPSCs). hPSCs are able to self-renew and to differentiate into any

human cell type; therefore, they can be used as a cell model to

study embryology and disease pathophysiology. hPSCs have

additional utility in drug screening applications and as a cell

source for regenerative medicine in the future. Since the first

derivation of a hESC line in 1998 on a mouse embryonic

fibroblast (MEF) feeder cell layer [1], many hPSC culture methods

based on different human feeder cell layers [2,3], autologous

feeder cells [4,5], feeder cell-free [6–10] and suspension culture

techniques [11] have been developed and described. Feeder cells

provide appropriate cell contacts, various growth factors and

extracellular matrix (ECM) proteins that are required for the

undifferentiated growth of hPSCs. Animal-derived feeder cells and

other animal components used in hPSC culture conditions contain

animal proteins and other nonhuman molecules which could be

transmitted to hPSCs during culture [12,13]. Because the ultimate

aim of hPSC research is to use the cells in regenerative medicine

applications, culture conditions are being optimized in the xeno-

free direction. In addition, culturing feeder cells is very laborious

and time-consuming, and for the regenerative medicine applica-

tions, a large number of hPSCs are needed. Therefore the research

is aiming at developing both xeno- and feeder cell-free cultures. In

feeder cell-free culture methods, the feeder cells are replaced by

Matrigel, which is a basement membrane extract from mouse

tumor cells, or by ECM proteins such as laminin, collagen and

fibronectin [6–10]. Despite the tremendous effort made to

optimize hPSC culture conditions, a universal and reliable, xeno-

and feeder-free culture method remains to be discovered.

Each individual hESC line has a unique gene expression profile

[14,15] and thus the self-renewal and differentiation capabilities

vary among the different cell lines [16,17]. According to recent

reports, hiPSC lines are even more variable and more prone to

genomic alterations than hESCs [18–21]. In addition to the

differences among individual hPSC lines, differences in culture

conditions also have a considerable influence on the gene

expression profile and subsequent characteristics of hPSCs. For

example, serum- and feeder cell-free culture conditions, as well as

the processes of enzymatic passaging and culturing of hPSCs in

physiological normoxia (2%), have been found to alter the gene

expression profile and epigenome of hPSCs [22–24].
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Efficient cardiac differentiation methods are needed to produce

large numbers of human cardiomyocytes for research purposes

and for future regenerative medicine applications. Due to the

unique gene expression profile and variable differentiation

potential of each individual hPSC line, it may be challenging to

develop a universal cardiac differentiation protocol that is

applicable and efficient for all or even the majority of hPSC lines.

Thus, it has been proposed that individual hPSC lines may require

optimization of the cardiac differentiation conditions [25]. We

hypothesized that in addition to cardiac differentiation methods,

the hPSC culture method, in which cell lines are cultured prior to

differentiation, may also have a significant impact on the cardiac

differentiation potential of individual hPSC lines. In this study, the

impact of three different culture methods for cardiac differentia-

tion of hPSCs were compared: MEF and SNL feeder cell layers

combined with conventional stem cell culture medium containing

knockout serum replacement (ko-SR) and basic fibroblast growth

factor (bFGF), and a Matrigel matrix combined with commercial

mTeSR1 medium.

Results

The morphology of the pluripotent stem cell colonies
varies with the culture conditions

In this study, a single hESC line (H7) and four hiPSC lines

(UTA.00112.hFF, UTA.04602.WT, UTA.00525.LQT2 and

UTA.00106.hFF) were cultured with three different culture

methods: MEF and SNL feeder cell layers combined with

conventional stem cell culture medium and Matrigel matrix

combined with mTeSR1 medium, and subjected into cardiac

differentiation in mouse visceral endodermal-like cell (END-2) co-

cultures. The experimental design is presented in Figure 1A. hPSC

lines cultured in different conditions were characterized by the

morphology of the colonies, immunocytochemical staining and

embryoid body (EB) formation (Figure 1). All cell lines attached

well to both MEF and SNL feeder cell layers and to Matrigel

matrix after passaging, while the morphology of the colonies

varied under different culture conditions. On MEF feeder cells, the

colonies were thick and small, while on SNL feeders and on

Matrigel the colonies were large and thin and thus needed to be

passaged more often than hPSCs cultured on MEF feeders

(Figure 1B). It was difficult to adapt the H7 and UTA.00112.hFF

cell lines to the Matrigel matrix in mTeSR1 medium because of

the spontaneous neural differentiation. The H7 cell line was lost

once and the adaptation had to be started from the beginning, and

the UTA.00112.hFF cell line had to be cultured for 12 passages on

Matrigel before enough cells were generated for the cardiac

differentiation. However, all hPSC lines cultured at least for 14

passages in all three conditions expressed markers typical of

undifferentiated hPSCs (Nanog, octamer-binding transcription

factor 3/4 (OCT-3/4) and stage-specific embryonic antigen 4

(SSEA-4)), which were detected by immunocytochemical staining

(Figure 1B). The pluripotency of the H7, UTA.00106.hFF and

UTA.00525.LQT2 cell lines, cultured in all three conditions, was

verified by EB formation and the EBs expressed at least one

marker from all three germ layers (Figure 1C).

Pluripotent stem cells from all culture conditions
differentiate into cardiomyocytes

hPSC lines cultured in all three culture conditions were

differentiated into cardiomyocytes at least twice in END-2 co-

cultures (See Table 1 for the number of independent experiments).

hPSCs from MEF feeder cell layers formed uniform structures on

END-2 cells, while hPSCs from SNL feeder cells formed irregular

structures consisting of both cystic structures and uniform areas.

Cells, which were cultured on Matrigel in mTeSR1 medium prior

the differentiation, formed large, thick and uniform structures on

END-2 cells (data not shown). Interestingly, microtubule associ-

ated protein 2 (MAP-2) expressing neural-like cells and bundles of

nerve fibers were occasionally observed in END-2 co-cultures of all

cell lines previously cultured on Matrigel in mTeSR1 medium.

These structures were not detected in hPSCs originally cultured on

MEF or SNL feeder cell layers.

hPSC lines cultured in all three culture conditions differentiated

into cardiomyocytes and expressed Troponin T, myosin ventric-

ular heavy chain a/b (MHC) and a-actinin (Figure 2A). Differ-

entiation efficiency was evaluated by determining the amount of

Troponin T positive cells in cytospin experiments on day 20 and

by determining the number of beating areas at the end of

differentiation on day 30. There was considerable variability

observed in cardiac differentiation efficiency among the different

hPSC lines. The highest number of beating areas was found in the

H7 and UTA.00106.hFF cell lines while UTA.04602.WT,

UTA.00525.LQT2 and UTA.00112.hFF produced fewer beating

areas (Figure 2B).

Two hPSC lines (H7 and UTA.00525.LQT2) produced the

highest number of beating areas when they were cultured on a

MEF feeder cell layer prior to differentiation and one hPSC line

(UTA.00106.hFF) when cultured on an SNL feeder cell layer

(Figure 2B). In the H7 cell line, the number of beating areas was

significantly lower on Matrigel when compared to SNL (p = 0.002)

or MEF (p,0.001) feeder cell layers. UTA.00525.LQT2 produced

the highest number of beating areas when cultured on a MEF

feeder cell layer, and the number was significantly higher that on

Matrigel (p = 0.017) (Figure 2B). In the UTA.00106.hFF cell line,

the number of beating areas was highest in cells cultured on an

SNL feeder cell layer prior to differentiation (p,0.001). Taken

together, three cell lines produced the highest number of beating

areas when cultured on mouse feeder cell layers prior the

differentiation. The UTA.04602.WT cell line was an exception,

and the number of beating areas was significantly higher in cells

taken from Matrigel cultures than from MEF feeder cell cultures

(p = 0.015). The UTA.00112.hFF cell line had a very poor

differentiation capacity and produced only a few beating areas

overall, and there were no significant differences among the

different culture conditions.

The highest number of Troponin T positive cells was found in

cells originating on MEF feeder cell layers, while the number of

Troponin T positive cells was lowest in cells originating on

Matrigel (p = 0.012) (Figure 2C). The amount of Troponin T

positive cells for each hPSC line is presented in Figure 2D.

Although the total number of cytospin experiments was quite low,

the results were consistent with the number of beating areas

counted.

The expression of developmental markers varies in cells
cultured in different conditions

RNA samples were collected from undifferentiated cells at the

beginning of cardiac differentiation (day 0) and from END-2 co-

cultures on days 3, 6, 12 and 30 during two individual

differentiation experiments of the H7, UTA.00112.hFF and

UTA.04602.WT cell lines. The expression of the marker for

pluripotent stem cells (OCT-3/4), the mesodermal markers (T,

brachyury homolog (Brachyury T) and NK2 homeobox 5 (NKX2.5)), and

the endodermal marker (Sex determining region Y-box 17 (SOX-17))

were analyzed in the samples.

OCT-3/4 expression progressively declined during END-2 co-

culture in all culture conditions (Figure 3A). On Matrigel, the

Culture Conditions Affect Cardiac Differentiation
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OCT-3/4 expression was significantly higher than on MEF and

SNL feeder cell layers on day 0 (MEF vs. Matrigel, p = 0.003; and

SNL vs. Matrigel, p = 0.009) and on day 3 (MEF vs. Matrigel,

p = 0.004; SNL vs. Matrigel, p = 0.018). On day 6, the expression

of OCT-3/4 was significantly higher in cells taken from Matrigel

than those from MEF feeder cell layers (p = 0.007). Thus, the

Figure 1. hPSCs were cultured with three different culture methods. A) Schematic presentation of cardiac differentiation in END-2 co-culture
and the experimental design. hPSC = human pluripotent stem cell, END-2 = mouse visceral endodermal-like cells. Scale bars, 200 mm. B) All five hPSC
lines cultured on MEF and SNL feeder cell layers in conventional stem cell culture medium and on Matrigel in mTeSR1 medium at least for 14
passages formed undifferentiated colonies, which expressed pluripotency markers Nanog, OCT-3/4 and SSEA-4. Representative images of
UTA.00112.hFF (phase contrast microscope images) and H7 (immunofluorescence images) cell lines are presented. Scale bars, 200 mm. C) H7,
UTA.00106.hFF and UTA.00525.LQT2 cell lines cultured in all three culture conditions (in figure: first band MEF, second band SNL, third band Matrigel)
formed embryoid bodies (EBs) expressing markers from all germ layers: ectoderm (PAX-6 and SOX-1), endoderm (AFP and SOX-17) and mesoderm (a-
cardiac actin and KDR).
doi:10.1371/journal.pone.0048659.g001
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expression of OCT-3/4 persisted for a longer time in hPSCs

cultured on Matrigel as opposed to MEF or SNL feeder cell layers

(Figure 3A).

In cells originating on MEF or SNL feeder cell layers, the peak

level of Brachyury T expression was observed on day 3, while cells

originating on Matrigel showed peak Brachyury T expression later

on day 6 (Figure 3B). The highest expression level of Brachyury T

was observed on day 3 in cells cultured on a MEF feeder cell layer

prior to differentiation (MEF vs. SNL, p = 0.004; MEF vs.

Matrigel, p,0.001). On day 3, the expression of Brachyury T in

cells originating on Matrigel was significantly lower than the

expression level in cells cultured on MEF (p,0.001) or SNL

(p = 0.016) feeder cell layers. On day 6 and 12, the expression of

Brachyury T was significantly higher in cells cultured on Matrigel

than those cultured on MEF (day 6, p = 0.040; day 12, p = 0.001)

or SNL (day 6, p = 0.009; day 12, p = 0.001) feeder cell layers

prior to differentiation.

The expression of endodermal SOX-17 was similar when

compared to mesodermal Brachyury T expression (Figure 3C).

The highest level of SOX-17 expression was found in cells

originating on MEF feeder cell layers on day 3. SOX-17 peaked

on day 3 in cells cultured on MEF and SNL feeder cell layers,

whereas the peak level of SOX-17 expression in cells cultured on

Matrigel was observed on day 6. On day 3, SOX-17 expression in

cells originating on Matrigel was significantly lower than in cells

cultured on MEF (p,0.001) or SNL (p = 0.001) feeder cell layers,

while on day 6, SOX-17 expression was significantly higher in cells

originating on Matrigel than on an SNL feeder cell layer

(p = 0.016).

The highest expression of NKX2.5 was observed on day 3 in

cells from SNL feeder cells, and it was significantly higher

(p = 0.047) than expression levels in cells cultured on Matrigel. On

day 12, the situation was just the opposite, in that the expression of

NKX2.5 was higher in cells originating on Matrigel than on MEF

(p = 0.018) or SNL (p,0.001) feeder cell layers. On day 30,

NKX2.5 expression was significantly higher in cells originating on

MEF than on SNL feeder cell layers or Matrigel (p,0.001 for both

conditions).

PSA-NCAM positive cells can be detected in all culture
conditions

All five hPSC lines cultured in all three conditions were

analyzed with cytometric analysis of pluripotency marker tumor-

related antigen (TRA)-1-81 and polysialylated-neural cell adhesion

molecule (PSA-NCAM), which is mainly expressed in embryonic

and neonatal neural tissue. PSA-NCAM positive cells could be

detected from all hPSC culture conditions (Figure 4A–B). The

lowest amount of PSA-NCAM positive cells about 2.5% was found

in MEF cultures, while in SNL and Matrigel cultures the amount

of PSA-NCAM positive cells was about 11%. H7 and

UTA.00112.hFF cell lines had the highest amount of PSA-NCAM

positive cells in Matrigel cultures, UTA.00106.hFF and

UTA.00525.LQT2 in SNL cultures and UTA.04602.WT cell

line in MEF cultures. In general, the amount of TRA-1-81 positive

cells positive cells correlated with the amount of PSA-NCAM

positive cells. It was highest in MEF cultures and lowest in SNL

and Matrigel cultures (Figure 4A). In all hPSC lines, the amount of

TRA-1-81 positive cells was highest in MEF cultures indicating the

superiority of MEF feeder layer over SNL feeders and Matrigel in

maintaining the pluripotency of hPSCs. PSA-NCAM positive cells

were not detected in MEF cultures in immunocytochemical

stainings, while on SNL feeder cell layers and on Matrigel cultures

PSA-NCAM positive cells were detected. Example of TRA-1-81

and PSA-NCAM positive cells and immunocytochemical staining

with PSA-NCAM antibody are presented in Figure 4C for H7 cell

line. H7 cell line is widely used in cardiac differentiation

Table 1. Cell lines and their passages used in this study.

Passage during differentiation experiments

Culture

Cell line condition 1. 2. 3. 4. 5. 6. TNE TNW

H7 MEF 44 51 55 47 51 57 6 105

H7 SNL 44(6)* 53(15) – 49(6) 53(10) 63(20) 5 67

H7 Matrigel 50(6) 59(15) – 48(5) 53(10) 60(17) 5 89

UTA.00112.hFF MEF – – – 15 18 22 3 48

UTA.00112.hFF SNL – – – 16(5) 21(10) 25(14) 3 42

UTA.00112.hFF Matrigel – – – 23(12) 26(15) 29(18) 3 54

UTA.04602.WT MEF – – – 35 40 44 3 51

UTA.04602.WT SNL – – – 37(5) 48(16) 52(20) 3 46

UTA.04602.WT Matrigel – – – 37(5) 47(15) 51(19) 3 45

UTA.00525.LQT2 MEF 45 33 37 – – – 3 36

UTA.00525.LQT2 SNL 44(6) 53(15) – – – – 2 18

UTA.00525.LQT2 Matrigel 44(6) 53(15) – – – – 2 30

UTA.00106.hFF MEF 24 30 34 – – – 3 40

UTA.00106.hFF SNL 23(6) 32(15) – – – – 2 25

UTA.00106.hFF Matrigel 23(6) 32(15) – – – – 2 31

*The passages, indicating for how long hPSCs were cultured in SNL and Matrigel conditions, are given in parenthesis.
TNE = Total number of experiments.
TNW = Total number of wells from which the beating areas were counted.
doi:10.1371/journal.pone.0048659.t001
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experiments and it had the best cardiac differentiation efficiency of

all hPSC lines used in this experiment.

Neural cells are more abundant in Matrigel cultures than
in feeder cultures

On Matrigel matrix combined with mTeSR1 medium, hPSCs

tended to differentiate into neural-like cells, which was observed

primarily along the edges of the undifferentiated hPSC colonies

(Figure 5A). Neural-like cells were observed occasionally in all cell

lines cultured on Matrigel in mTeSR1 medium and two hPSC

lines H7 and UTA.00112.hFF were hard to adapt on Matrigel

because of the neural differentiation. The H7 cell line was hard to

maintain on Matrigel in mTeSR1 medium, and as a result of

differentiation into neural-like cells, the H7 cell line was lost after 7

passages in culture. At first, there were only a few neural-like cells

observed in the culture, but the number of neural cells expanded

during the culture period, even though the differentiated areas

were carefully removed before passaging the cells. Finally, only

colonies with MAP-2 expressing, rosette-like structures (Figure 5A–

B) and neural-like cells (Figure 5C) were observed in the cultures.

H7, UTA.00112.hFF, UTA00525.LQT2 and UTA.04602.WT

cell lines cultured in all three culture conditions were characterized

by immunocytochemical staining with MAP-2. Only a few MAP-2

positive cells were found in SNL and MEF cultures, but none were

found to the same extent as in cells cultured on Matrigel in

mTeSR1 medium (Figure 5E). On SNL feeders, the only MAP-2

positive cells were found from H7 cell line and on MEF feeders

from UTA.00525.LQT2 cell line (Figure 5E).

The expression of ectodermal PAX-6, Musashi and Neurofilament

68 (NF-68) was measured by q-RT-PCR in cells cultured for 0, 3,

Figure 2. All hPSC lines cultured with different culture methods differentiated into cardiomyocytes with varying efficiencies. A)
Cardiomyocytes derived from hPSCs cultured in all three culture conditions expressed Troponin T, myosin ventricular heavy chain a/b (MHC) and a-
actinin. Representative images from H7 and UTA.00112.hFF cell lines. Scale bars, 200 mm. B) The columns show the average amount of beating areas
in one well with different hPSC lines cultured in all three culture conditions. The number of wells from which beating areas were counted in different
conditions for each cell line can be found in Table 1. In figure where all hPSC lines are collected into one histogram, the columns show the average
amount of beating areas in one well of all cell lines (MEF n = 280, SNL n = 198, Matrigel n = 249). Error bars show the standard error of the mean (SEM).
** p,0.01, * p,0.05. Representative image of secondary antibody control is from H7 cell line cultured on Matrigel prior differentiation. Scale bar,
200 mm. C) Scatter plot show the amount of Troponin T positive cells in one well of all hPSC lines collected together in different conditions. The
amount of Troponin T positive cells was significantly higher on MEF feeder cell layers than on Matrigel (p = 0.012). D) The scatter plot show the
amount of Troponin T positive cells in one well separately for each cell line cultured in all three culture conditions.
doi:10.1371/journal.pone.0048659.g002

Figure 3. The expression profiles of OCT-3/4, Brachyury T, SOX-17 and NKX2.5 in END-2 co-cultures. A) The expression of OCT-3/4 in END-2
co-cultures originating from Matrigel decreased slower than in MEF and SNL feeder cell layer. B) The expression of Brachyury T peaked on day 3 in
END-2 co-cultures originating from MEF and SNL feeder cell layers, while from Matrigel the peak was delayed to day 6. C) The expression of SOX-17
behaved in the same way than Brachyury T expression. SOX-17 peaked on day 3 in END-2 co-cultures originating from MEF and SNL feeders, while in
co-cultures originating from Matrigel, the SOX-17 peak was delayed to day 6. D) The expression of NKX2.5 was highest on MEF feeder cell layers in the
end of END-2 co-culture. The data is collected from two individual differentiation experiments of H7, UTA.00112.hFF and UTA.04602.WT hPSC lines
(n = 6 in all three conditions). Error bars show the standard error of the mean (SEM). ** p,0.01, * p,0.05.
doi:10.1371/journal.pone.0048659.g003
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6, 12 and 30 days in END-2 co-cultures (Figure 5F–H). Samples

were collected during two individual differentiation experiments of

the H7, UTA.00112.hFF and UTA.04602.WT cell lines. The

expression of PAX-6 increased in all conditions from day 0 to

day 30 (Figure 5F). However, the expression of PAX-6 in cells

originating from Matrigel was significantly higher than on MEF of

SNL feeder layers on day 3 (Matrigel vs. MEF p,0.001, Matrigel

vs. SNL p,0.001), 6 (Matrigel vs. MEF p,0.001, Matrigel vs.

Figure 4. The amount of TRA-1-81 and PSA-NCAM positive cells in hPSC cultures. A) The amount of TRA-1-81 positive cells was higher and
the expression of PSA-NCAM positive cells was lower in MEF feeder cultures than in SNL or Matrigel cultures. Columns show the average of TRA-1-81
and PSA-NCAM positive cells of all hPSC lines cultured in three different conditions (MEF n = 16, SNL n = 20 and Matrigel n = 15). Error bars show the
standard error of the mean (SEM). B) The amount of TRA-1-81 and PSA-NCAM cells for each hPSC lines cultured in all three conditions. C) Examples of
TRA-1-81 and PSA-NCAM expressions in H7 cell line in all three conditions. Dot plots show the determination of hPSC population and histograms
show the percentage of TRA-1-81 and PSA-NCAM positive cells. Unstained cells were used for background determination (white). The highest amount
of PSA-NCAM positive cells in immunocytochemical stainings were found on Matrigel. PSA-NCAM positive cells were not detected on MEF feeder cell
cultures. Scale bars, 200 mm.
doi:10.1371/journal.pone.0048659.g004
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Figure 5. The expression of neural markers was highest in hPSCs originating from Matrigel. A) H7 cell line was hard to adapt on Matrigel
combined with mTeSR1 medium. At first, the neural differentiation was observed primarily along the edges of the colonies on Matrigel in mTeSR1
medium. Finally, uneven neural rosette-like structures were formed in the colonies and the cell line was lost. B) Uneven neural rosette-like structures

Culture Conditions Affect Cardiac Differentiation
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SNL p,0.001) and 30 (Matrigel vs. MEF p,0.001, Matrigel vs.

SNL p,0.001). On day 30 the expression of PAX-6 was about

7 times higher in cells originating from Matrigel than from feeder

cell layers. The expression of Musashi (Figure 5G) and NF-68

(Figure 5H) remained stable in cells originating on MEF and SNL

feeder cell layers. The expression of Musashi was significantly

higher in all time points in cells originating from Matrigel than

from MEF or SNL feeder cell layers (p,0.001) (Figure 5G). There

were no significant differences between MEF and SNL feeder cell

layers in the expression of Musashi. The expression of NF-68

increased steadily from day 0 to day 30 (Figure 5H): day 0

(Matrigel vs. MEF, p,0.001; Matrigel vs. SNL, p = 0.003); day 3

and day 6 (p,0.001 for both conditions); day 12 (Matrigel vs.

MEF, p = 0.002; Matrigel vs. SNL, p = 0.005) and day 30

(p,0.001 for both conditions). Interestingly, MAP-2 expressing

neural-like cells and nerve bundles could also be detected in END-

2 co-cultures when hPSCs were cultured on Matrigel prior to

differentiation (Figure 5D). These structures were not found in

END-2 co-cultures originating from mouse feeder cell layers.

Discussion

Several studies have evaluated the pluripotent and undifferen-

tiated growth of hPSCs in serum-, xeno- and feeder cell-free

conditions [26–29]. Previously we have shown that MEF feeder

cells support cardiac differentiation better than human foreskin

fibroblast (hFF) feeder cells [30]. In this study, we cultured hPSCs

with three different culture methods: on MEF [1] and on SNL

[31] feeder cell layers combined with conventional ko-SR and

bFGF containing stem cell culture medium and on Matrigel with

mTeSR1 medium [9], and evaluated the influence of the culture

method on the cardiac differentiation potential of hPSCs. The

cardiac differentiation efficiency varied between hPSC lines and

separate differentiation experiments. In general our results suggest

that hPSCs cultured on MEF and SNL feeder cell layers together

with conventional stem cell culture medium are more prone to

cardiac differentiation than hPSCs cultured on Matrigel combined

with mTeSR1 medium, with one cell line UTA.04602.WT as an

exception.

In this study, all hPSC lines differentiated into cardiomyocytes,

but the differentiation efficiency varied considerably depending on

the individual cell line, separate differentiation experiments and on

the conditions under which the cell lines had been cultured prior

to differentiation. Each hPSC line has a unique gene expression

profile and thus vary in their cardiac differentiation potential [32].

In addition, it has been shown that hPSC lines change over time in

culture due to genomic alterations [20]. For example enzymes

used in hPSC passaging might have an effect to the pluripotent

growth of hPSCs [22]. In our study the same enzymes which were

used as in the original publications of the culture methods. The

highest cardiac differentiation efficiency was observed in cells

cultured on MEF or SNL feeder cell layers together with stem cell

culture medium and the lowest in cells cultured on Matrigel in

mTeSR1 medium. However, one cell line UTA.04602.WT was an

exception and produced the highest amount of beating areas when

cultured previously on Matrigel in mTeSR1. We characterized the

starting population of hPSCs in all three conditions with flow

cytometric analysis of TRA-1-81 and PSA-NCAM to determine

the amount of pluripotent cells and if more cells were already

committed to ectodermal lineages in some culture condition. The

amount of PSA-NCAM positive cells was lower and the amount of

TRA-1-81 positive cells was higher on MEF feeder cell cultures

than in SNL feeder cell cultures and Matrigel cultures, indicating

the superiority of MEF feeders in maintaining the pluripotency of

hPSCs.

Mouse feeder cells express high levels of Activin A and low

levels of bone morphogenetic protein 4 (BMP-4), which together

have been reported to induce cardiac differentiation [33–35].

Normally, the peak Brachyury T expression is observed on day 3 in

END-2 co-cultures [36]. Previously, we showed that peak Brachyury

T expression was delayed to day 6 in cells cultured on hFF feeder

cell layers [30]. The delayed peak of Brachyury T expression has

been shown to lead to poor cardiac differentiation efficiency [37].

In this study, the expression peak of Brachyury T in cells cultured on

Activin A expressing MEF and SNL feeder cells prior the

differentiation was observed on day 3 and the peak Brachyury T

expression was delayed to day 6 in cells cultured on Matrigel in

mTeSR1 medium. Furthermore, endodermal SOX-17 expression

has been shown to enhance the cardiac differentiation and should

peak on the same day on day 3 as Brachyury T [36,37]. The peak

SOX-17 expression was observed on day 3 in co-cultures

originating from MEF and SNL feeder cell layers while the

expression peak of SOX-17 in END-2 co-cultures originating on

Matrigel was delayed to day 6 in the same way than the expression

peak of Brachyury T. The delayed expression of Brachyury T and

SOX-17 might indicate that hPSCs grown on Matrigel in mTeSR1

medium need more time to the initiation of the differentiation to

mesodermal lineages. However, we counted the Troponin T

positive cells 20 days and the beating areas 30 days after the

initiation of END-2 co-culture and all our data suggest that hPSCs

cultured on MEF and SNL feeder cell layers were more prone to

cardiac differentiation than hPSCs cultured on Matrigel. The

delayed expression of Brachyury T and SOX-17 may be one reason

for differences in cardiac differentiation efficiencies. However, to

explain this phenomenon additional experiments are required.

Matrigel matrix together with mTeSR1 medium is widely used

in different laboratories, and several research groups have

reported this culture condition to maintain the undifferentiated

growth of hPSCs [8,9,26,27,38]. In these studies, the pluripotency

of hPSCs was confirmed by teratoma and EB formation and

analysis of the expression of markers specific to all three germ

layers present in these structures. Recently, Hudson and co-

workers adapted hESCs to Matrigel in mTeSR1 medium and

demonstrated that passaging the cells as single-cells prior to their

cardiac differentiation reduced the heterogeneity of the cell

population and enhanced cardiac differentiation [39]. However,

they cultured hESCs on Matrigel in mTeSR1 medium for only

one passage. To our knowledge, this is the first study reporting the

long-term effects of this culture method on cardiac differentiation.

found in colonies of H7 cell line cultured on Matrigel in mTeSR1 medium stained with MAP-2. C) MAP-2 expressing neural-like cells and structures
were found on Matrigel in mTeSR1 medium in all hPSC lines. Representative image of UTA.04602.WT cell line. D) MAP-2 expressing neural structures
appeared also in END-2 co-cultures when hPSCs originated from Matrigel and mTeSR1 cultures with all hPSC lines. Representative image of H7 cell
line. Scale bars, 200 mm. E) The highest amount of MAP-2 positive cells were found in Matrigel cultures. Scale bars, 200 mm. The expression of PAX-6
(F), Musashi (G) and Neurofilament (NF-68) (H) in END-2 co-cultures was significantly higher in cells originating from Matrigel and mTeSR1 medium
than from MEF or SNL feeder cell layers almost in all time points. The data is collected from two individual differentiation experiments of H7,
UTA.00112.hFF and UTA.04602.WT hPSC lines (n = 6 in all three conditions). Error bars show the standard error of the mean (SEM). ** p,0.01, *
p,0.05.
doi:10.1371/journal.pone.0048659.g005

Culture Conditions Affect Cardiac Differentiation

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e48659



In this study, more MAP-2 positive cells could be detected in

long-term culture of hPSCs on Matrigel matrix together with

mTeSR1 medium than in MEF and SNL feeder cell cultures. The

expression of PAX-6, Musashi and NF-68 increased during END-2

co-culture in cells cultured on Matrigel in mTeSR1 medium prior

to differentiation, and the emergence of neuronal cells in END-2

co-cultures was confirmed by MAP-2 staining. Beqqali and co-

workers have reported that the expression of ectodermal genes in

the END-2 co-culture method is low when compared to

endodermal and mesodermal genes [36]. Erceg and co-workers

have described the efficient differentiation of hESCs into neural

lineages, using a mixed ECM protein (collagen IV, vitronectin and

fibronectin) coating together with TeSR1 [8] medium, in which

human serum albumin was replaced by Voluven [40]. In addition,

laminin is one of the major constituents of Matrigel [41,42], and

both Matrigel [43] and laminin are widely used as a matrix when

generating neuronal cells and their derivatives from hPSCs [44–

46]. In fact, Ma and co-workers tested five substrates, including

poly-D-lysine, fibronectin, laminin, collagen and Matrigel; and

they observed that laminin and laminin-rich Matrigel significantly

enhanced directed differentiation into neural progenitors and

neurons [44]. Axell and co-workers reported that hESCs cultured

on Matrigel were more efficient source of neural progenitors than

hESCs cultured on MEF feeder cell layers [45]. They assumed

that this was due to the fact that cells cultured on Matrigel were

already adapted to feeder cell-free cultures for 6–12 passages

before their transfer to neural differentiation conditions. In

addition to the neural differentiation inducing properties of

Matrigel, mTeSR1 medium contains high concentrations of

bFGF, transforming growth factor beta (TGF-b), gamma amino-

butyric acid (GABA), pipecolinic acid and lithium chloride [9].

Further, mTeSR1 medium contains a higher concentration of

insulin (0.023 g/l) than conventional stem cell culture medium

(0.01 g/l) and insulin has been suggested to inhibit cardiac

differentiation in END-2 co-cultures and actually redirecting the

differentiation from cardiac mesoderm and endoderm into

neuroectoderm [47]. The concentration of bFGF in mTeSR1

medium (100 ng/ml) is extremely high when compared to basic

stem cell culture medium (4 ng/ml), and mouse feeder cells do not

express bFGF [33]. In neural precursor media, the concentration

of bFGF is normally 10–20 ng/ml [43,48–51] and bFGF has been

found to play a role in the derivation, proliferation and

maintenance of the neural progenitor state [43,45,52]. Thus, it

is possible that, together with the laminin found in Matrigel, some

of these factors: bFGF, TGF-b, GABA, pipecolinic acid, lithium

chloride and insulin somehow induce more neural differentiation

of hPSCs than differentiation to mesoendodermal lineages.

In our study, the expression of OCT-3/4 was significantly higher

in hPSCs cultured on Matrigel in mTeSR1 medium than on MEF

or SNL feeder cell layers. Retention of OCT-3/4 expression has

been observed in neural progenitor populations, and the rapid loss

of OCT-3/4 expression during neural progenitor differentiation

has been reported to induce hPSCs to develop into flattened

extraembryonic cells rather than neural cells [45,53,54]. In fact,

prolonged expression of OCT-3/4 could be required for the neural

differentiation while the rapid downregulation of OCT-3/4 may be

required to promote the formation of primitive endoderm that is

essential for mesodermal differentiation [53]. Our results suggest

that hPSCs cultured on Matrigel in mTeSR1 medium are more

prone to neural lineages as to mesoendodermal lineages after long-

term culture, and thus, the cardiac differentiation efficiency

remains low.

Here, we have studied the effects of hPSC culture methods on

the cardiac differentiation efficiency of hPSCs. Five hPSC lines

cultured in three different culture conditions differentiated into

beating cardiomyocytes, but the differentiation efficiency varied

depending on the cell line, the specific differentiation experiment

conducted and most importantly on the different culture

conditions used. Mouse feeder cell layers (MEF and SNL) were

found to be superior to the Matrigel matrix used together with

mTeSR1 medium in inducing cardiac differentiation with one cell

line as an exception out of all five hPSC lines. In fact, more MAP-

2 expressing cells could be found in Matrigel and mTeSR1

cultures than from MEF and SNL feeder cell cultures. Our

suggestion is that, in addition to the specific differentiation

method, the hPSC culture method should also be optimized when

differentiating hPSCs into specific lineages. In addition, the

combination of culture conditions and differentiation conditions

might be important for cardiac differentiation. At least our results

show that mouse feeder cells should be used instead of Matrigel

and mTeSR1 medium in combination of END-2 differentiation

method.

Materials and Methods

Ethical issues
The study was conducted in accordance with the Ethics

Committee of Pirkanmaa Hospital District to establish, culture

and differentiate hESC and hiPSC lines (R08070, R05116). Skin

biopsies for hiPSC establishment were received from the Heart

Center, Tampere University Hospital. Patients donating skin

biopsies signed an informed consent form after receiving both an

oral and written description of the study.

Cell lines and cell culture
The hESC line H7 (46, XX) (WiCell Research Institute,

Madison, WI, USA) [1] and four hiPSC lines including

UTA.00112.hFF (46, XY) and UTA.00106.hFF from hFFs, and

UTA.04602.WT (46, XX) and UTA.00525.LQT2 (46, XY) from

adult human dermal fibroblasts were used in this study. hiPSC

lines were reprogrammed with four retroviral vectors (SOX-2,

OCT-3/4, KLF4 and C-MYC) as described previously [55,56]. The

UTA.00106.hFF cell line was found to be karyotypically abnormal

with inversion in chromosome 12 (46, XY inv(12)). All five cell

lines were cultured for at least for 14 passages at +37uC and 5%

CO2 in three different culture conditions, as described below.

All hPSC lines used in this study were normally cultured on

mitomycin C treated MEF feeder cell layers (26000 cells/cm2)

(Millipore Corporate, Billerica, MA, USA) in stem cell culture

medium consisting of ko-DMEM (Invitrogen, Carlsbad, CA, USA)

supplemented with 20% ko-SR (Invitrogen), 1% non-essential

amino acids (NEAA, Cambrex Bio Science Inc., Walkersville,

MD, USA), 2 mM GlutaMax (Invitrogen), 50 U/ml penicillin/

streptomycin (Lonza Group Ltd, Basel, Switzerland), 0.1 mM 2-

mercaptoethanol (Invitrogen) and 4 ng/ml bFGF (R&D Systems

Inc., Minneapolis, MN, USA). The medium was changed three

times per week, and the cells were passaged enzymatically onto a

new MEF feeder cell layer once per week. The MEF feeder cell

layer was removed manually with a pipette tip before detaching

the hPSC colonies with 1 mg/ml Collagenase IV (Invitrogen).

All hPSC lines were cultured on irradiated (40 Gy) SNL 76/7

(HPA Culture Collections, Salisbury, UK) feeder cell layers (29000

cells/cm2) in stem cell culture medium. The medium was changed

6 times per week and hPSCs were passaged mostly in every five

days (range 4–7 days) onto new SNL feeder cell layers. Before

passaging, SNL feeder cells were removed with the previously

described CTK solution [56] with a minor modification: ko-SR

was replaced by stem cell culture medium without bFGF. CTK
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solution consisted of 10% Trypsin (10x, Lonza), 0.1 mg/ml

Collagenase IV (Invitrogen), 0.001 M CaCl2 and 20% stem cell

culture medium in H2O. After CTK treatment, the remaining

SNL feeder cells were carefully rinsed with ko-DMEM (Invitro-

gen), and colonies were scraped into stem cell culture medium with

a pipette tip and plated onto new SNL feeder cell layers.

All hPSC lines were cultured on hESC-qualified Matrigel (BD

Biosciences, Franklin Lakes, NJ, USA) in mTeSR1 medium

(StemCell Technologies Inc., Vancouver, Canada) supplemented

with 50 U/ml penicillin/streptomycin (Lonza). MEF feeder cell

layer was manually removed as described above; colonies were

scraped into mTeSR1 medium and plated onto Matrigel-coated 6-

well culture plates. Plates were coated with Matrigel for at least

1 hour at room temperature (RT) following manufacturer’s

instructions. mTeSR1 medium was changed 6 times per week,

and the cells were passaged using 1 mg/ml dispase (Invitrogen)

mostly in every 5 days (range 4–6 days). Differentiated areas were

carefully removed before passaging.

The growth of hPSC lines in different conditions was monitored

daily under Nikon Eclipse TS100 phase contrast microscope

(Nikon Instruments Europe B.V. Amstelveen, The Netherlands)

and pictured with Altra-Cell-D-Bundle camera (Olympus Corpo-

ration, Tokyo, Japan).

Cardiac differentiation
Differentiation experiments were performed 2 to 6 times in

hPSC lines cultured in all three conditions. hPSC lines and their

passages in 6 separate differentiation experiments are presented in

Table 1 and the cardiac differentiation experiments are outlined in

Figure 1A. Altogether differentiation experiments were performed

18 times from MEF feeder cell layers and 15 times from both SNL

feeder cell layers and Matrigel. All differentiation experiments with

the UTA.00106.hFF cell line were performed with karyotypically

abnormal (46, XY inv(12)) cells. To initiate cardiac differentiation,

hPSCs were co-cultured in 12-well culture plates with Mitomycin

C (Sigma-Aldrich, St. Louis, MO, USA) treated END-2 cells

(50000 cells/cm2), which were a kind gift from Professor

Mummery (Humbrecht Institute, Utrecht, The Netherlands)

[57]. MEF feeder cell layers were removed manually, and SNL

feeder cells enzymatically with CTK solution before differentia-

tion. Cell colonies cultured in all three conditions were detached

with a cell scraper or pipette tip. Approximately 30 colony pieces

per well were transferred onto END-2 cells in stem cell culture

medium without ko-SR or bFGF and supplemented with 3 mg/ml

ascorbic acid (Sigma-Aldrich). Medium was changed after 5, 8 and

12 days of culturing. After 15 days of culturing, 10% ko-SR was

included and ascorbic acid was excluded from the culture

medium; subsequently, the medium was changed three times per

week.

Cardiac differentiation efficiency
Cardiac differentiation efficiency was determined by cytospin

analysis on day 16–21 (herein on day 20) and by counting the

number of beating areas on day 28–35 (herein day 30). Cytospin

analysis was performed and beating areas were counted from all

five hPSC lines cultured in all three conditions. The total number

of wells from which the beating areas were counted is presented in

Table 1. For cytospin analysis, the whole differentiating pool of

cells from three wells (A1, B1 and C1), and a replicate sample of all

cells from another three wells (A2, B2 and C2) were treated with

trypsin (Lonza) at 37uC for 45 minutes. After the incubation, the

aggregates were pipetted into a single-cell suspension and

resuspended in EB medium, consisting of ko-DMEM supplement-

ed with 20% fetal bovine serum (FBS, PAA Laboratories GmbH,

Pasching, Austria), 1% NEAA (Cambrex Bio Science), 2 mM

GlutaMax (Invitrogen) and 50 U/ml penicillin/streptomycin

(Lonza). Approximately 16106 cells were centrifuged at 800–

1000 rpm for 5 minutes onto polysine slides (Thermo Scientific,

Rochester, NY) using the cytospin system (Sakura Finetek, Alphen

aan den Rijn, The Netherlands). Adherent cells on slides were

fixed with 4% paraformaldehyde (Sigma-Aldrich) at RT for

20 minutes, permeabilized and blocked with 0.1% Triton X-100

(Sigma-Aldrich), 1% bovine serum albumin (BSA, Sigma-Aldrich)

and 10% normal donkey serum (Sigma-Aldrich) in phosphate-

buffered saline (PBS, Lonza) for 45 min at RT, and stained with

mouse or goat anti-cardiac Troponin T primary antibodies

(Table S1) diluted in 1% normal donkey serum, 0.1% TritonX-

100, and 1% BSA in PBS (Lonza) over night at +4uC. The next

day, the cells were probed with Alexa Fluor 568 secondary

antibody (Invitrogen) diluted in 1% BSA (Sigma-Aldrich) in PBS

(Lonza) for 1 h at RT in the dark. Finally, cells were mounted with

Vectashield (Vector Laboratories Inc., Burlingame, CA, USA)

containing 40,6-diamidino-2-phenylindole (DAPI) for nuclear

staining, and the percentage of Troponin T positive cells versus

the total cell number was determined. Counted areas were

randomly selected in the DAPI channel using 20 x magnification,

and a total of 1500 cells was counted. Cells were pictured with

Olympus IX51 phase contrast microscope with fluorescence optics

and Olympus DP30BW camera (Olympus Corporation).

Dissociation of beating areas and immunocytochemistry
Beating areas were cut out manually and dissociated into a

single-cell suspension using Collagenase A (Roche Diagnostics

GmbH, Mannheim, Germany) treatment, as previously described

[58]. Dissociated cells were plated onto 0.1% gelatin coated 24-

well plates in EB medium.

The undifferentiated growth and neural differentiation of

hPSCs under different culture conditions was judged by the

morphology of the cells. The morphologic characterization was

confirmed by immunocytochemical stainings for hPSCs cultured

at least for 14 passages in three different culture conditions. hPSC

colonies were stained with primary antibodies specific for

undifferentiated hPSCs including Nanog, OCT-3/4 and SSEA-

4. Neural progenitor cells and neuronal cells were detected from

undifferentiated cultures by staining cells for PSA-NCAM and

MAP-2. Dissociated cardiomyocytes were stained for connexin-43,

a-actinin, Troponin T and MHC. The primary antibodies are

summarized in Table S1 and staining was performed as described

above. All Alexa Fluor 568 or 488-conjugated secondary

antibodies were from Invitrogen.

In vitro analysis of pluripotency
The pluripotency of the H7, UTA.00106.hFF and

UTA.00525.LQT2 cell lines cultured in all three culture

conditions was verified by the formation of EBs. To form EBs,

feeder cells were removed mechanically (MEF) or enzymatically

(SNL), and hPSCs were scraped with a cell scraper and placed into

suspension culture in EB medium. Media was changed every 2 to

3 days, and EBs were cultured for 5 weeks. Total RNA was

extracted from EBs and 200 ng of cDNA was transcripted. The

expression of the three germ layers, ectoderm (Paired box 6 (PAX-6)

and SRY-box 1 (SOX-1)), endoderm (Alpha-fetoprotein (AFP) and SOX-

17) and mesoderm (a-cardiac actin and Kinase insert domain receptor

(KDR)) was studied in the EBs using RT-PCR primers. b-actin was

used as housekeeping control. Primer sequences are presented in

Table S2.
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Quantitative-RT-PCR
Quantitative RT-PCR was performed on H7, UTA.00112.hFF

and UTA.04602.WT cell samples collected from the fourth and

sixth differentiation experiments (Table 1). Each of two replicate

samples were collected from two wells of co-cultures and lysed into

RA1 buffer supplemented with b-mercaptoethanol at time points

of 3, 5–6, 12–13 and 28–35 days, herein reported as 3, 6, 12 and

30 days. Undifferentiated cells were used as day 0 samples.

Samples were stored at 270uC until the total-RNA was extracted

with the NucleoSpinH RNA II kit, which included DNAase

treatment (Macherey-Nagel, Duren, Germany) as described in the

manufacturer’s instructions. The concentration and quality of

RNA was measured using a NanoDrop 1000 spectrophotometer

(NanoDrop Technologies, Wilmington, DE). Biological replicates

were pooled into one sample during cDNA transcription, and

250 ng of RNA from both biological replicates (totaling 500 ng)

were transcribed into cDNA in a total volume of 20 ml with a

High-Capacity cDNA Reverse-Transcription kit (Applied Biosys-

tems, Foster City, CA, USA) in the presence of RiboLock RNase

inhibitor (Thermo Scientific). The expression of Brachyury T,

NKX2.5 and SOX-17 were studied with SYBR chemistry and

Ribosomal protein large p0 (RPLP0), OCT-3/4, PAX-6, Musashi and

NF-68 were studied with Taqman chemistry. The PCR reaction

for SYBR primers consisted of 1 ml of cDNA at a 1:3 dilution,

14 ml of 26 SYBR green PCR mastermix (Applied Biosystems)

and 300 nM of each primer. The following Taqman assays were

used: NM_053275.3 for RPLP0, Hs00999632_g1 for OCT-3/4

(POU5F1), Hs00240871_m1 for PAX-6, Hs01045894_m1 for

Musashi and Hs00196245_m1 for NF-68. SYBR primer sequences

are presented in Table S2. All samples were analyzed in triplicate,

Ct values were determined, and the fold changes were calculated

by the 22DDCt method [59]. The data were normalized to the

expression of the endogenous control RPLP0. The average of d0

samples from MEF feeder cell layers were used as a calibrator.

Flow cytometric analysis
All five hPSC lines cultured in all three conditions were

analyzed by flow cytometry using antibodies against TRA-1-81-

FITC (BD Biosciences) and PSA-NCAM-APC (Miltenyi Biotec,

Teterow, Germany). Samples were collected from one day before

or same day as passaging was done. MEF and SNL feeder cells

were removed prior the sample collections. FITC mouse IgM

isotype control antibody (BD Biosciences) was used as isotype

control. Labeled hPSCs were analyzed using BD FACSAriaTM

(BD Biosciences). The samples were analyzed as duplicates and the

acquisition was set for 10000 events per sample. The data were

analyzed using FACSDiva Software version 6.1.3 (BD Bioscienc-

es).

Statistical analysis
The number of beating areas is presented as the mean value

over all differentiation experiments; error bars represent the

standard error of the mean (SEM). The number of the Troponin T

positive cells in one well detected in cytospin analysis and are

presented in scatter blots. Quantitative RT-PCR data are

presented as the mean value 6 SEM. For beating areas, cytospin

and q-RT-PCR results statistical significance was determined

using one-way ANOVA with Bonferroni’s correction for multiple

comparisons. Results were confirmed by Poisson regression

analysis. However, for the sake of simplicity, only the ANOVA

results are reported. A p-value ,0.05 was considered statistically

significant.

Supporting Information

Table S1 Primary antibodies used in this study.

(DOC)

Table S2 RT-PCR and quantitative RT-PCR primers
used in this study.

(DOC)
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