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Abstract: In this study, sustainable, low-cost, and environmentally friendly biomass (Terminalia
chebula) was employed as a precursor for the formation of nitrogen-doped carbon dots (N-CDs). The
hydrothermally assisted Terminalia chebula fruit-derived N-CDs (TC-CDs) emitted different bright
fluorescent colors under various excitation wavelengths. The prepared TC-CDs showed a spherical
morphology with a narrow size distribution and excellent water dispensability due to their abundant
functionalities, such as oxygen- and nitrogen-bearing molecules on the surfaces of the TC-CDs.
Additionally, these TC-CDs exhibited high photostability, good biocompatibility, very low toxicity,
and excellent cell permeability against HCT-116 human colon carcinoma cells. The cell viability of
HCT-116 human colon carcinoma cells in the presence of TC-CDs aqueous solution was calculated by
MTT assay, and cell viability was higher than 95%, even at a higher concentration of 200 µg mL−1

after 24 h incubation time. Finally, the uptake of TC-CDs by HCT-116 human colon carcinoma cells
displayed distinguished blue, green, and red colors during in vitro imaging when excited by three
filters with different wavelengths under a laser scanning confocal microscope. Thus, TC-CDs could
be used as a potential candidate for various biomedical applications. Moreover, the conversion of
low-cost/waste natural biomass into products of value promotes the sustainable development of the
economy and human society.

Keywords: Terminalia chebula; carbon dot; fluorescence; cell viability; bioimaging

1. Introduction

In recent years, carbon-based nanomaterials have been attracting increasing attention
from scientists due to their attractive physical and chemical properties, including their
optical, electrical, and electronic properties [1–3]. Carbon dots are fluorescent nanopar-
ticles with sizes in the range below 10 nm [4–6]. The fluorescent nature of carbon dots
increases their applicability in a number of fields, including as sensors, and in fluorescence
cell imaging and electrochemistry [7–9]. It is well documented that fluorescent carbon
dots are better replacement materials for organic dyes and heavy-metal-based quantum
dots, owing to their lower cytotoxicity, good water solubility, biocompatibility, and low
photo-bleaching [10–12]. Furthermore, fluorescent carbon dots possess up-converting
excitation-dependent emission properties. Therefore, the emission wavelength can be ad-
justed according to requirements, giving them good applicability in bio-imaging and flow
cytometry. Generally, carbon dots can be synthesized using various methods, including
hydrothermal carbonization, electrochemical exfoliation, solvothermal, and laser ablation
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techniques [13–15]. The hydrothermal carbonization of plant carbon sources is attracting
a great deal of attention due to the simple, cost-effective, and easy experimental setup of
this process. Plants/fruits are rich in secondary metabolites such as simple sugars, organic
acids, tannins, and polyphenols, serving as good carbon sources for synthesizing carbon
dots [16]. The formation of carbon dots mainly depends on the acidic, basic, and neutral
constituents present in the plant source. Highly acidic phytoconstituents such as citric
acid, tannic acid, tartaric acid, and neutral sugars yield good-quality carbon dots with
high fluorescence quantum yield [17]. Many plant sources, such as Prunus avium fruit,
Phyllanthus acidus fruit, Prunus mume fruit, Chionanthus retusus fruit, Piper beetle (Betel)
leaf, etc., have been reported by our laboratory for the synthesis of carbon dots for use in
sensors, cell imaging and electrochemical applications [18–22]. Generally, undoped carbon
dots are less/non-fluorescent materials, whereas doping with electron-rich nitrogen, sulfur,
and boron improves the fluorescent quantum yield due to the increase in surface defects.
Moreover, the carbon precursor, doping agent, solvent, and size also influence the quantum
yield of carbon dots [23].

The Terminalia chebula fruit belongs to the Combretaceae family and is native to India.
This tree is widely available in India. Terminalia chebula fruit has excellent nutritional and
medicinal value, and is applied directly in ancient Tamil Siddha medicinal systems. The
main phytoconstituents of Terminalia chebula fruit are tannin, β-sitosterol, anthraquinones of
about 20–40%, palmitic ester, oleic acid, linoleic acid, gallic acid, chebulinic acid, chebulagic
acid, phenolic compounds, and polyphenols [24,25]. These phenolic compounds have
antioxidant activities [25], and tannin and anthraquinone can be used to control the cathartic
action [24]. Furthermore, the aqueous fruit extract of Terminalia chebula can be used as an
anticaries agent, inhibiting the glycolysis of salivary bacteria [26]. As Terminalia chebula is
widely available, and incorporates numerous constituents, including acids, flavonoids, and
glycosides [27], it has been suggested that Terminalia chebula could act as an excellent carbon
source for synthesizing carbon dots [28,29]. HCT-116 human colon carcinoma cells are an
essential cell line that has been used extensively in therapeutic research and drug screening.
HCT116 cells have been used in a variety of biomedical studies involving colon cancer
proliferation and corresponding inhibitors. In order to understand the mechanism of cell
growth, fluorescent dyes are important in tumorigenicity studies [30]. Therefore, this study
describes the synthesis of nitrogen-doped carbon dots (N-CDs) using Terminalia chebula
fruit extract by the hydrothermal carbonization method. Standard optical and surface tools
are used to characterize the synthesized N-CDs. Finally, the Terminalia chebula-derived
N-CDs are applied as fluorescent agents for cell imaging HCT-116 human colon carcinoma
cells.

2. Results and Discussion
2.1. Structural Properties of Synthesized TC-CDs

The TC-CDs were successfully synthesized by a hydrothermally assisted carboniza-
tion route using sustainable, low-cost, and environmentally friendly biomass (Terminalia
chebula) as a carbon source and water as a solvent. The surface morphology and elemental
composition of the prepared TC-CDs were examined by field emission scanning electron
microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDS). As seen in the FE-
SEM images (Figure 1a–e), carbon particles are formed into a fine surface because of the
tiny size of the synthesized TC-CDs. This aggregation is due to the occurrence of a large
number of functional groups. The hydrophilic surface functionalities form dangling bonds
between the functional groups, resulting in a wrinkle-like surface morphology. The elemen-
tal composition of the samples from EDS mapping illustrates the uniform distribution of
carbon (C), oxygen (O), and nitrogen (N) atoms in the synthesized TC-CDs (Figure 1f–i).
Notably, heteroatoms, such as O and N atoms, are evenly distributed over the surface
of the TC-CDs, confirming the successful incorporation of heteroatoms into the TC-CDs
(Figure 1i). This result reveals that the surface of the synthesized TC-CDs is enriched with
oxygen- and nitrogen-containing functional groups.
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Figure 1. (a–e) FESEM images with different magnifications of the synthesized TC-CDs and the
corresponding (f) carbon, (g) nitrogen, (h) oxygen, and (i) overlapping elemental maps of the
presented elements.

Furthermore, the morphology and crystallinity/graphitic nature of the synthesized TC-
CDs were determined by analysis using high-resolution transmission electron microscopy
(HRTEM). It can be observed from Figure 2a–c that the synthesized TC-CDs had a nearly
spherical shape and uniform dispersity. Additionally, the HRTEM images demonstrate
that the TC-CDs possessed a moderately crystalline/graphitic nature in the inner core,
with a lattice spacing of ~0.21 nm, which is consistent with the (100) faces of graphitic
sheets, while the outer shell of the spherical TC-CDs had a nearly amorphous nature [31].
The amorphous structure of the outer shell of the spherical TC-CDs might be due to the
presence of functional groups on the surface of the TC-CDs. The particle size distribution
range between 1 nm and 4 nm, with an average size of around 2.5 nm, was obtained from
the particle-size histogram of the synthesized TC-CDs (Figure 2d).
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Figure 2. (a–c) HRTEM images with different magnifications and (d) the corresponding particle-size
histogram of the synthesized TC-CDs.

X-ray Powder Diffraction (XRD) patterns revealed the crystalline/graphitic character
of the synthesized TC-CDs. In the XRD spectrum (Figure 3a), a broad diffraction peak
centered at 24◦ corresponded to the (002) plane, a plane that is responsible for typical
graphene. The corresponding interplanar space was calculated as being 0.37 nm, which
is higher than the regular d-spacing of graphene/graphite. The increment in interplanar
spacing suggests that the synthesized TC-CDs possessed moderate graphitic characteristics,
with considerable amorphous behavior [32]. This amorphous characteristic might be a
result of the damaged/disordered outer part and or the occupied functional groups on
the surface/edges of the synthesized TC-CDs. Additionally, the noisier broad peak might
be attributed to the very smaller size of the carbon particles or the disordered carbon
atoms and amorphous graphitic structure [33,34]. The second minor peak at around 42.5◦

was ascribed to the (100) plane of standard graphene, and the corresponding interplanar
spacing was calculated to be nearly 0.21 nm. This result for interlayer distance coincides
nicely with the HRTEM results. Furthermore, the Raman spectrum revealed the crys-
talline/graphitic character of the TC-CDs. The Raman spectrum of the synthesized TC-CDs
(Figure 3b) presented two broad absorption bands without clear separation at around 1360
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cm−1, which was attributed to the D-band (sp3 hybrid carbon), hybrid vibration (A1g)
mode of the disordered edges associated with amorphous carbon in the TC-CDs, and at
1590 cm−1, which was ascribed to the G band (sp2 hybrid carbon), in-plane vibration E2g
mode of the graphitic domains associated with crystalline carbon core in the TC-CDs [35–38].
The coexistence of the two bands indicated that the TC-CDs had a graphitic structure with
a disordered cross-section. The intensity ratio of the Raman D-band and G-band is com-
monly used to determine the quality of graphene sheets or carbon nanomaterials/carbon
dots [39,40]. The D-band and G-band (ID/IG) intensity ratio of the TC-CDs was 0.73,
characterizing the permissible degree of order in the core and the percentage of sp3/sp2

carbon atoms in the TC-CDs. Compared to the G-band of the TC-CDs, the broadening of
the D-band suggests smaller graphitic domain sizes, leading to smaller distributions. A
broad 2D-band at around 2800 cm−1 indicates the double resonance of the D-band. The
shape and position of the 2D-band provide information about the number of layers in
the graphene sheet [41]. The small size and low intensity of the 2D-band suggests that
the synthesized TC-CDs are probably smaller in size and thinner in structure. Notably,
the bands (D and G) have unclear separations in this spectrum. Therefore, it is a little
difficult to judge the degree of order (degree of graphitization/crystallinity) on the basis
of the intensity ratio of the D-band and the G-band of the synthesized TC-CDs. Thus, the
degree of graphitization/crystallinity was further demonstrated using the area ratio of
the D-band and the G-band of the synthesized TC-CDs. The D-band and G-band were
deconvoluted with the same width to quantify the D-area (AD) and G-area (AG), as shown
in Supplementary Materials: Figure S1. The calculated ratio of AD/AG was around 0.81,
indicating a graphitic carbon core with disordered domains associated with the smaller
amount of amorphous carbon on the edges of the TC-CDs. These results strongly suggest
that the synthesized TC-CDs exhibited a satisfactory degree of order.
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The surface functional groups and chemical composition of the synthesized TC-CDs
were investigated using the attenuated total reflection Fourier-transform infrared (ATR-
FTIR) spectroscopy technique (Figure 4a). The broad absorption band centered around
3400–3000 cm−1 can be attributed to the characteristic stretching vibrations of the O–H/N–H
groups, which originated from the natural biomass and or physically adsorbed water
molecules [42,43]. The FTIR spectrum showed weak shoulder peaks at around 2958 and
1698 cm−1, affirming the existence of C–H symmetric/asymmetric and carboxyl/carbonyl
(C=O) stretching vibrations, respectively [44–46]. The strong and distinct absorption signals
at 1565, 1475, 1315, and 1200 cm−1 were attributed to the presence of the C=C stretching,
C–N stretching, O–H/N–H bending, and C–OH stretching vibrations, respectively [47,48].
The absorption signal at 1005 cm−1 corresponds to the C–O–C stretching mode in the
carbon framework [49]. The sharp absorption bands at 767 cm−1 can be attributed to teh
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out-plane aromatic –CH2 bending vibration on the surface of the TC-CDs [50]. The presence
of a C=C peak indicates that the TC-CDs are made of graphitic structure, whereas the O–H,
C=O, and C–H vibration peaks suggest that the surfaces of TC-CDs were fully covered by
the presence of hydroxyl, carbonyl, and amine moieties [51]. These hydrophilic functional
groups are probably responsible for the excellent dispersibility of TC-CDs in water.
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To further reveal the elemental composition, elemental state, and functional moieties
on the surface of the TC-CDs, X-ray photoelectron spectroscopy (XPS) studies were per-
formed. As shown in Figure S2, the synthesized TC-CDs were primarily composed of C,
N, and O, with atomic percentages of 70, 5, and 25, respectively. The absence of other
residual elements highlighted the purity of the synthesized TC-CDs. The high-resolution
XPS spectrum of C 1s could be deconvoluted into four prominent peaks at 284.5, 285.9,
286.8, and 288.3 eV, corresponding to sp3/sp2 carbons (C–C/C=C), C–N/C–O, C=O, and
HO–C=O, respectively [52–54]. The characteristic peak of C=C indicates that distinctive
graphite structures might be presented in the synthesized TC-CDs. The deconvolution
of the nitrogen peak is displayed in Figure 4c, and the high-resolution spectrum for N 1s
exhibits three significant peaks at 399.0, 400.0, and 401.8 eV, which can be attributed to
C–N–C, C–N–H, and (C)3–N, respectively [55]. The high-resolution XPS spectrum for the
O 1s level shows three peaks at 531.3, 532.6, and 533.3 eV, which can be attributed to the
C=O, C–OH/C–O–C, and HO–C=O functional groups, respectively [56,57]. One-fourth of
oxygen carbon atoms were functionalized with carbon, indicating that the TC-CDs have a
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large number of oxygen moieties. The XPS and FTIR results showed that the TC-CDs were
highly functionalized with oxygen- and nitrogen-containing moieties. This could be the
main reason for which the TC-CDs possess excellent water dispersibility and long-term
colloidal stability.

2.2. Optical Properties of Synthesized TC-CDs

To examine the optical properties of the synthesized TC-CDs, the ultraviolet–visible
(UV–vis) absorption and fluorescence spectra were recorded in aqueous solution. The
absorption spectrum of the TC-CDs (Figure 5a) displays three peaks, a narrow peak around
205 nm and a broad shoulder hump around 270 and 360 nm, which could be associated with
the π–π* transition (C=C) and n–π* transition (C=O) of the nanocarbon, respectively [58–60].
Figure 5b displays the fluorescence excitation and emission spectra of the synthesized TC-
CDs in water. It can be seen from the spectra that the maximum fluorescence excitation and
emission were observed at 320 and 395 nm, respectively, which indicates that the maximum
fluorescence emission occurred at 395 nm upon excitation at 320 nm. The full width at
half maximum of the fluorescence emission spectrum was around 81 nm, which confirms
the narrow size distribution of the synthesized TC-CDs [58]. To examine the excitation-
dependent emission properties, the fluorescence emissions were recorded at different
excitation wavelengths from 290 to 400 nm, as illustrated in Figure 5c. The fluorescence
emission intensity increased progressively when the excitation wavelength was increased
from 290 to 320 nm, while further increasing the excitation wavelength to 400 nm caused a
decline in the fluorescence intensity. The fluorescence spectra of the synthesized TC-CDs
clearly display excitation-wavelength-dependent fluorescence emissions upon changing
the excitation wavelength, which is more common in carbon dots due to the presence of
surface defects and different functional groups [18,61,62]. In addition, it can be seen that
the fluorescence emission peak shifted to higher wavelengths (redshift) with increasing
excitation wavelengths. The redshift in the fluorescence emission can be clearly observed
in Figure 5d. These fluorescence emission properties, which are tunable by excitation
wavelength, represent valuable characteristics of TC-CDs, making them applicable as
fluorescent nanoprobes for multicolor imaging. The fluorescence quantum yield of the
TC-CDs at an excitation wavelength of 320 nm was calculated to be 15%, using quinine
sulphate as a reference, and this quantum yield is comparable to carbon dots originating
from other biomass (natural resources). The reasonable quantum yield obtained might be
due to the presence of a high degree of oxygen- and nitrogen-containing functional groups
on the surface of the TC-CDs. To support the fluorescence emission of synthesized TC-CDs,
the TC-CDs solution in water was exposed under daylight (normal light) and UV light
(365 nm) (Figure 6). The TC-CDs aqueous solution appeared transparent and pale yellow
under daylight. However, the TC-CDs aqueous solution emitted a bright cyan-blue color
(fluorescence) under UV light that could be easily observed with the naked eye.

Furthermore, their photostability is well known, and this photostability of the syn-
thesized TC-CDs is intrinsic to their real-time (practical) applications. Hence, the TC-CDs
aqueous solution was continuously exposed to UV light illumination for 120 min, and the
stability (fluorescence intensity) of the TC-CDs was investigated. The fluorescence intensity
of the TC-CDs remained almost the same, even after continuous UV light irradiation for
120 min (Figure S3). The digital photographs of the TC-CDs aqueous solution under 365 nm
UV light before and after UV light irradiation provide further support for the photostability
of the synthesized TC-CDs. In the photographic image (inset Figure S3), insignificant
changes can be observed by the naked eye under continuous exposure to UV light excita-
tion for 120 min. These results confirm that the TC-CDs have anti-photobleaching (excellent
photostability) properties, making them promising fluorescence candidates for practical
applications [44,63].
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2.3. Bioimaging Applications of Synthesized TC-CDs

The synthesized TC-CDs were used directly as a staining agent (fluorescent nanoprobe)
for cellular imaging due to their ideal properties, such as tunable fluorescence emission,
reasonable quantum yield, excellent water dispersibility, durable anti-photobleaching,
low cytotoxicity, and good biocompatibility. A cell viability test was conducted before
performing cellular imaging because the cell viability assay was essential for cellular
imaging [64]. Hence, the cytotoxicity of the TC-CDs against human colon carcinoma cells
(HCT-116) was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) assay. The resulting bar graph of the cytotoxicity of TC-CDs at different
concentrations (0–200 µg mL−1) against HCT-116 cells is presented in Figure S4. These
results demonstrated that the synthesized TC-CDs exhibited insignificant cytotoxicity
towards HCT-116 cells, even at a high concentration of 200 µg mL−1. The cell viability was
greater than 95%, even after 24 h incubation. The outstanding viability of HCT-116 cells in
the presence of the TC-CDs confirmed that the synthesized TC-CDs exhibit excellent good
biocompatibility with HCT-116 cells. Thus, the synthesized TC-CDs were used directly as a
fluorescent nanoprobe for the imaging of HCT-116 cells.

Figure 7 presents the confocal microscopy images of HCT-116 cells with and without
the conjugation of TC-CDs after 24 h incubation. Various filters, such as blue, green, and
red, with wavelengths of 405, 488, and 555 nm, respectively, were used for the imaging of
the HCT-116 cells. Figure 7 demonstrates that the HCT-116 cells did not show any emission
signal without the conjugation of TC-CDs under different excitation wavelengths. TC-CDs
with the conjugation of HCT-116 cells displayed bright emissions in blue, green, and red
colors when varying the filter wavelengths to 405, 488, and 555 nm, respectively. The
bright multicolor emission of HCT-116 cells is due to the excitation-dependent emission
of synthesized TC-CDs. The overlapped image displays multiple colors, also revealing
that the TC-CDs have fluorescence behavior that is tunable by varying the excitation
wavelengths. TC-CDs are easily internalized and homogenously distributed in the entire
body of the HTC-116 cells because of the smaller size of the TC-CDs. Furthermore, this
quick internalization and homogenous distribution might be due to the hydrophilic nature
of the TC-CDs; the hydrophilicity is because of the hydroxyl, carbonyl, carboxylic acid, and
amine/amide groups on the surface of TC-CDs. Ultimately, these results revealed that the
synthesized TC-CDs have potential as fluorescent nanoprobes for the imaging of HTC-116
cells [65,66]. Additionally, these results demonstrate that the synthesized TC-CDs can act
as nanocarriers for cell labeling and drug delivery.
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3. Conclusions

In summary, novel and highly efficient TC-CDs were successfully synthesized from
Terminalia chebula fruit via an eco-friendly one-step hydrothermal method. The resulting
TC-CDs had a uniform particle size distribution with an average diameter of 2.5 nm.
Various combinations of nitrogen and oxygen moieties were present on the surfaces of
the TC-CDs, leading to their having enhanced optical properties. The prepared TC-CDs
were highly dispersible in water because of their high degree of hydrophilicity. The
as-synthesized TC-CDs possessed a redshifted excitation-dependent emission behavior,
with intensity gradually decreasing with increases in excitation beyond 320 nm. The
TC-CDs showed durable photostability. Additionally, the TC-CDs exhibited extremely
low cytotoxicity, even at high concentrations (200 µg mL−1), and good biocompatibility
against human colon carcinoma cells (HCT-116), as verified by MTT assay. The synthesized
TC-CDs were used as a staining agent for cell imaging as a result of their small size,
multicolor emissions, high water dispersibility, low cytotoxicity, and good biocompatibility.
The TC-CDs were efficiently internalized into the HCT-116 cells and emitted multicolor
fluorescence, demonstrating tremendous potential applications in the fields of bioimaging
and biolabeling. Moreover, this work offers a new platform for multicolor cell imaging
and a biocompatible fluorescent probe to replace harmful organic dyes, while additionally
transforming cheap biomass into a high value-added product through the conversion of
waste biomass.

4. Materials and Methods
4.1. Materials

Terminalia Chebula fruits were collected from Tamil Nadu, India. Aqueous ammo-
nia (NH4OH, 25%) was purchased from Sigma-Aldrich, Republic of Korea. Phosphate-
buffered saline (PBS), N-(2-hydroxyethyl)piperazine-N’-(2-ethane sulfonic acid) (HEPES),
p-formaldehyde, quinine sulfate, and dimethyl sulfoxide (DMSO) were purchased from
Sigma-Aldrich, Seoul, Republic of Korea. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) was purchased from Generay Biotech, Shanghai, China. HCT-116 human
colon cancer cells were purchased from ATCC, CCL-247, Manassas, VA, USA. All the
chemicals were used as purchased, and distilled water was used throughout this study.

4.2. Synthesis of TC-CDs

Fluorescent TC-CDs were synthesized from Terminalia chebula fruit using an economical
one-step hydrothermal route (Scheme 1). In a typical synthesis, 500 mg of Terminalia chebula
powder was mixed with 50 mL of distilled water and stirred well. The solution of pH was
adjusted from 3.5 to 7.0. Subsequently, the mixture was transferred into a Teflon-lined
stainless steel autoclave and heated at 200 ◦C for 24 h. After completion of hydrothermal
treatment, the autoclave was cooled down to room temperature. The resulting brownish-
yellow solution was separated through a mixed cellulose ester membrane filter (pore size
0.22 µm). Afterward, the resulting brownish-yellow solution was freeze-dried to obtain the
TC-CDs. The final TC-CDs were used for further analysis.
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