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Abstract: The removal of dyes from industrial effluents is one of the most important industrial
processes that is currently on academic demand. In this project, for the first time, Trachycarpus fortunei
seeds are used as biosources for the synthesis of activated carbon (AC) using physical as well as acid–
base chemical methods. The synthesized AC was initially characterized by different instrumental
techniques, such as FTIR, BET isotherm, SEM, EDX and XRD. Then, the prepared activated carbon
was used as an economical adsorbent for the removal of xylenol orange and thymol blue from an
aqueous solution. Furthermore, the effect of different parameters, i.e., concentration of dye, contact
time, pH, adsorbent amount, temperature, adsorbent size and agitation speed, were investigated
in batch experiments at room temperature. The analysis of different techniques concluded that the
pyrolysis method created a significant change in the chemical composition of the prepared AC and the
acid-treated AC offered a high carbon/oxygen composite, which is graphitic in nature. The removal
of both dyes (xylenol orange and thymol blue) was increased with the increase in the dye’s initial
concentration. Isothermal data suggested that the adsorption of both dyes follows the Langmuir
model compared to the Freundlich model. The equilibrium time for AC biomass to achieve the
removal of xylenol orange and thymol blue dyes was determined to be 60 min, and the kinetic data
suggested that the adsorption of both dyes obeyed the pseudo-second order model. The optimal pH
for thymol blue adsorption was pH 6, while it was pH 2 for xylenol orange. The adsorption of both
dyes increased with the increase in the temperature. The influence of the adsorbent amount indicated
that the adsorption capacity (mg/g) of both dyes reduced with the rise in the adsorbent amount.
Thus, the current study suggests that AC prepared by an acid treatment from Trachycarpus fortunei
seeds is a good, alternative, cost effective, and eco-friendly adsorbent for the effective removal of
dyes from polluted water.

Keywords: Trachycarpus fortunei seeds; activated carbon; adsorbent; dyes; water purification

1. Introduction

The supervision and treatment of wastewater sources is a field that has demanded
great technical awareness for decades [1]. Nowadays, the industrial revolution leads to
consuming high amounts of water along with organic-based chemicals. Due to the strict
limitations implemented on the organic content of industrial effluents, there have been
extensive efforts to develop efficient remediation technologies for wastewater treatment.
Synthetic dyes are considered as a main category of chemicals that are extensively employed
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in industries for the coloration of products, especially textiles. Such dyes are ultimately
discharged into effluents, thus influencing aquatic environments [2,3]. The quality of
water is highly influenced by the color of the discharged dyes because the presence of
trace concentrations of dyes in water even by mg/L is visible, which is unfavorable [4].
It is well known that dyes are the main type of contamination in wastewater, which
are released in water reservoirs that absorb and reflect sunlight and, ultimately, disturb
aquatic life and affect the food chain [5]. In addition, most of such dyes are carcinogenic
in nature, thus posing a serious threat to aquatic organisms [6]. The main structure of
synthetic dyes is aromatic rings that become highly stable by opposing the departure upon
exposure to sweat, soap, water, light and oxidizing agents [7]. As a result, the dyes are not
predictable for natural behavior, especially for aerobic digestion as well as for oxidizing
agents [8]. However, reactive dyes are soluble in water and 10–50% of dyes remain in waters
leading to strongly colored effluents that cause serious problems in the environment [9].
Thus, industrial pollutants, especially textile dyes, are highly hazardous and potentially
carcinogenic causing environmental degradation along with diverse diseases to humans
and other organisms. They decompose to carcinogenic aromatic amines under anaerobic
conditions, which ultimately affect the structure and functionality of the ecosystem. The
main side effects of dyes may involve mutations, cancer and irritations of eye and skin.

In general, conventional remediation techniques are of a physical, chemical and bio-
logical nature including ion exchange, adsorption [10], oxidation processes [11,12], catalytic
reduction [13,14], membrane filtration [15,16], coagulation/flocculation, ozonation, elec-
troflotation, electrokinetic coagulation, electrochemical destruction, irradiation, precipita-
tion and biotreatments [17]. Such techniques may be efficient in the purification of effluents,
however, most of them are expensive and technically complicated [18]. Adsorption is
a physical adherence or bonding of ions or molecules present on the surface of another
molecule. It has many advantageous features, such as effectiveness, ease of operation,
simple recovery and the ability to reprocess the adsorptive material [19]. In this treatment,
the dye molecules are removed by attaching dyes to the surface of the asbestos. This
connection is caused by physical or chemical forces between the surface and the molecules
or ions. Since the compression is the exterior occurrence, it will strongly depend on the
specific float-up area or the space available for the dye molecules to access the surface of
the adsorbent material.

Several studies have been conducted using AC. However, it is recognized that the
use of industrial AC used for dye elimination is very expensive; therefore, research was
conducted to find agricultural, industrial or urban waste to produce AC or to use raw
materials as adsorbents [20]. Commercial systems mostly use AC as adsorbents to eliminate
dyes from wastewater and provide a superb adsorption potential [21]. Several methods
have been explored to extend the search to cheaper and more useful adsorbents. In spite
of the multiplicity of adsorbents, it has been established that AC is still useful to remove
contaminated water from plants and is still effective in a gaseous situation. Activated
carbon (AC) is a well-known adsorbent that is employed in industrial processes and has
a micro porous homogenous structure with a high surface area. However, the limitation
of implementing AC is due to its high cost and difficulty to regenerate [22]. Therefore,
researchers have paid attention to the production of AC from renewable sources using
low-cost and local agricultural waste. Several underused wastes that have been employed
to explore possible sources for AC are forests, bagasse [23], coconut peat [24], corncobs [25],
cassava shed [26], tobacco stems [27], hazelnut [28], and some other.

The fruit of Trachycarpus fortunei is used in making polishes, wax papers and carbon
papers, and the seeds are usually discarded, but have potential to be used in the removal of
dyes from industrial effluents because they are very hard and have high carbon constituents.
Therefore, in this present study, Trachycarpus fortunei seeds were used as biomass for the
synthesis of activated carbon. This prepared AC was then used as an adsorbent for the
removal of xylenol orange and thymol blue dyes from aqueous solutions.
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2. Experimental Procedure
2.1. Chemicals/Solvents

The chemicals utilized in the project were of analytical grade and used as obtained from
the suppliers. Xylenol orange (XO), thymol blue (TB), hydrochloric acid (HCl), phosphoric
acid (H3PO4), and sodium hydroxide (NaOH) were purchased from Sigma-Aldrich, Zama
Zam Supermarket, Karachi, Pakistan. Deionized water was employed in the preparation
of the solutions. XO, which is a cationic dye, and TB, an anionic dye, were selected as
adsorbates. Raw biomass and AC treated with acid and base were prepared from T. F.
seeds, which were selected as adsorbent.

2.2. Preparation of the Adsorbent
2.2.1. Raw Biomass

T. F. seeds were collected from the local areas of Lakki Marwat, Khyber Pakhtunkhwa,
Pakistan, in June–July 2018. The seeds were washed with deionized water for removing
dust particles. Then, the seeds were dried for a couple of days under sunshine. The dried
seeds were then ground to powder form by using a grinder and then sieved to acquire
a homogenous adsorbent with a known particle size (with the ranges of 45–90 µm and
90–212 µm).

2.2.2. Activated Carbon (AC)

AC was prepared by heating T. F. seeds at 550 ◦C in a nitrogen atmosphere for 30 min.
The prepared composite was activated with H3PO4 and NaOH using the ratio of 1:5 and
then washed several times with deionized water. The prepared composite was dried at
110 ◦C in an oven for two hours to remove the moisture contents from the sample. The
formation of both raw biomass and AC was confirmed by using different characterization
techniques, such as FTIR, XRD, SEM/EDX, and BET.

2.3. Instrumentation

The following instruments were used for the characterization of AC and adsorption
analysis. FTIR analysis of the biomass and AC was carried out by using a FTIR Spectropho-
tometer (Spectrum Two, Perkin Elmer, Waltham, MA, USA) in the range of 400–4000 cm−1.
The surface area and porosity of biomass and AC were characterized by NOVA 2200e,
Quantachrome, Ashland, Virginia, USA., by adsorption–desorption isotherms of nitrogen
at −196 ◦C. For each analysis, 0.3 g of the sample was used. SEM images of biomass and
AC were studied by scanning electron microscope (SEM) (JSM-5910, JEOL, Tokyo, Japan).
The elemental analysis of the biomass and AC was performed by using Energy Dispersive
Spectroscope (INCA 200, Oxford Instruments, Oxford, UK) with SEM (JSM-5910, JEOL,
Tokyo, Japan). The crystal structures of the biomass and AC were investigated by X-ray
diffractometer (JDX-3532, JEOL, Tokyo, Japan) using Cu Kα (λ = 1.5418 Å). The adsorption
capacity of both the biomass and AC was determined by UV-Vis Spectrophotometer (Shi-
madzu UV-1800, Shimadzu Corporation, Tokyo, Japan). The instrumental conditions were:
wavelength range: 190–800 nm; scan rate: 150–600 nm min−1; and slit: 1.0 nm.

2.4. Adsorption
Preparation of Stock Solutions

The basic cationic dye (XO) and the anionic dye (TB) were taken as adsorbates and
1000 mg/L stock solution was prepared for both dyes, separately, by dissolving 1 g of
each dye in 1000 mL volumetric flasks and diluted up to the mark by using deionized
water. Further solutions of different concentrations (mg/L) were prepared from these stock
solutions by using the dilution method.
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2.5. Adsorption of TB and XO on Biomass and AC Treated with Acid and Base

The influence of various parameters, i.e., initial dye concentration, contact time, pH,
adsorbent amount, temperature, adsorbent size and rpm, on the adsorption of XO and TB
on biomass and AC were investigated as follows:

2.5.1. Dye Concentration

To explore the influence of dye concentration, 50 mL of various concentrations of both
dyes (1 mg/L to 1000 mg/L) were prepared separately, and 0.1 g of adsorbent was added
to each solution. All solutions were stirred on a water bath at a rate of 140 rpm for 60 min.
After 60 min of stirring, all solutions were filtered. The filtrate was transferred to sample
bottles for UV analysis.

2.5.2. Contact Time

A total of 50 mL of both dyes’ solutions (100 mg/L TB and 50 mg/L XO) were taken
in different conical flasks to study the contact time influence on TB and XO dye adsorption
on biomass and AC. An amount of 0.1 g of adsorbent was mixed with each solution. All
solutions were stirred at different intervals of time (1, 5, 10, 20, 30, 60, 120 and 180 min) on
a water bath shaker with continuous stirring at 140 rpm speed. After stirring, all solutions
were filtered, and the filtrate was transferred to sample bottles for UV analysis.

2.5.3. pH

Different solutions (50 mL) of TB and XO (100 mg/L TB and 50 mg/L XO) were placed
in separate conical flasks. The pH of each solution was adjusted (pH 2–14) with 0.1 M HCl
and 0.1 M NaOH solution. A 0.1 g of biomass and AC adsorbents was individually mixed
with each solution and all solutions were stirred on a water bath shaker for 60 min at
140 rpm. Then, all solutions were filtered by Whatman filter paper, and the filtrate was
transferred to sample bottles for UV analysis.

2.5.4. Temperature

Different solutions (50 mL) of 100 mg/L TB and 50 mg/L XO were prepared in
separate conical flasks and 0.1 g of biomass and AC adsorbents was added separately to
each solution. All solutions were shaken on a water bath shaker for 60 min at different
temperatures (10–80 ◦C) at the constant speed of 140 rpm. After shaking, all solutions were
filtered, and the filtrate was transferred to sample bottles for UV analysis.

2.5.5. Adsorbent Amount

A total of 50 mL of dyes solutions having a concentration of 100 mg/L TB and 50 mg/L
XO were placed in separate conical flasks and different amounts of adsorbent (0.1, 0.2, 0.3,
0.4 and 0.5 g) were mixed with each solution separately. All the solutions were shaken for
60 min at 140 rpm. After shaking, all solutions were filtered, and the filtrate was transferred
to sample bottles for UV analysis.

2.5.6. Adsorbent Size

A total of 50 mL of different solutions of 100 mg/L TB and 50 mg/L XO were placed
in separate conical flasks. A total of 0.1 g of adsorbent of different particle sizes (below
45 µm, 45–90 µm and 90–212 µm) was added to each solution. All solutions were shaken
on a water bath shaker for 60 min at the rate of 140 rpm. After shaking, each solution was
filtered, and the filtrate was transferred to sample bottles for UV analysis.

2.5.7. RPM: Shaker Speed

A total of 50 mL of different solutions of 100 mg/L TB and 50 mg/L XO were taken in
separate conical flasks and 0.1 g of biomass and AC adsorbents was added separately to
each solution. All solutions were shaken on a water bath shaker with different speeds (35,
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70, and 140 rpm) for 60 min. After shaking, all solutions were filtered, and the filtrate was
transferred to sample bottles for UV analysis.

3. Results and Discussion
3.1. Characterization
3.1.1. FT-IR

The moiety of biomass (T. F. seeds) and AC derived from biomass as obtained by FTIR
analysis, as displayed in Figure 1. Different functional groups were obtained from the data
of biomass, which includes hydroxyls, amines, unsaturated hydrocarbons, aldehydes, and
carbonyl compounds. Nevertheless, pyrolysis led to losing some such peaks in the AC.
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Figure 1. FTIR spectra of (a) biomass, (b) acid-treated AC and (c) base-treated AC.

In the biomass, the noticed peak at 3358 cm−1 is ascribed to the O–H stretching [29].
The asymmetric and symmetric stretching of the methylene (C–H) group was observed
at 2923 cm−1 and 2854 cm−1, respectively [30]. The peak observed at 1743 cm−1 is owed
to the C=O stretching [31]. The peaks observed at 1457 cm−1 are due to the C–H bending
and at 1377 cm−1 is due to the N–O stretching vibration [29]. C–O stretching vibrations
appeared at 1239 cm−1 [32]. The peaks observed at 1150 cm−1 and 1638 cm−1 are due to
the C–O stretching vibrations and C=C stretching, respectively [29].

Most of the peaks disappeared in the FTIR spectra of the AC treated with acid and base.
Some new peaks appeared in the case of the AC treated with acid. The peaks displayed at
876 cm−1 and 1574 cm−1 are owed to the functional groups of aromatic C–H bonds [33] and
C=C stretching [32], respectively. In the case of AC treated with base, the peak observed
at 1057 cm−1 is ascribed to C–O stretching [34]. C–H bending appeared at 1449 cm−1 [35].
The peak obtained at 1683 cm−1 is related to C=O stretching [36]. These results indicate
that the pyrolysis process caused a significant change in the chemical composition. In both
acid- and base-treated AC, the peaks for OH, CH and C=O disappeared, showing that the
heat treatment removed these moieties from biomass and the polyaromatic type AC was
formed. The formation of AC is also supported by appearance of C=C bending at 847 cm−1

and at 580 cm−1.

3.1.2. BET Analysis

To determine the surface area of biomass and AC treated with acid and base, charac-
terization was performed by N2 adsorption–desorption isotherm analysis at −196 ◦C. For
each analysis, a sample of 0.3 g was used. The specific surface area was assessed by the BET
method and the results obtained are illustrated in Table 1. The table shows that, in both
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acid- and base-treated AC samples, the surfaces were increased. This increase in surface
area is also supported by the SEM results, as shown later. However, due to limitations
(low value of C, i.e., 10), the BET results did not show a clear picture of the increase in the
surface area of the prepared AC. The high increase in surface area was also observed in the
acid-treated AC in the previous studies [37].

Table 1. BET analysis of biomass and AC treated with acid and base.

Sample BET Surface Area
(m2/g)

Pore Volume
(cm3/g)

Pore Radius
(Å)

Biomass 29.10 0.007 16.90
AC treated with acid 64.28 0.012 14.51
AC treated with base 43.57 0.003 16.78

3.1.3. SEM

SEM was employed to evaluate the morphology of biomass and AC treated with acid
and base samples as well as the important changes in the morphology of the prepared
samples. The results given in Figure 2 show the SEM images of biomass (a), AC treated with
acid (b) and AC treated with base (c). These results specify that the surface morphology
of biomass is smooth and different residues were deposited, while no apparent pores are
observed. The synthesis of AC treated by acid produced significant pores in the surface.
Additionally, the disintegration of the surface took place (Figure 2b). The treatment of AC
with base also produced a significant change in the morphology of the biomass. However,
the base treatment produced only the disintegration of the surface, while no apparent
pores were produced.It has been reported that acid- and base-treated ACs were compared
and found that acid-treated AC showed the best results [38]. These results indicate that
acid-treated AC has a high porous structure, which is one of the main desirable outcomes
of the adsorption process.
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3.1.4. EDX

EDX spectra of biomass and AC treated with acid and base are shown in Figure 3,
and the data obtained are tabulated in Table 2. The samples with the maximum amount of
carbon and the slightest amount of oxygen are held to be the most efficient ACs because
they have a higher surface area and graphitic-type structure. Regarding Table 2, in the
biomass sample, it is observed that the amount of carbon and oxygen are 64.33% and
25.78% by atom, respectively. On the other hand, the acid-treated AC contains 83.24% and
14.26% of carbon and oxygen, respectively. Similarly, base-treated AC contains 56.21%
and 30.08% of carbon and oxygen, respectively. Table 2 also shows that the amount of
nitrogen in biomass is 9.98% (by weight), while it almost disappeared (0.18% by weight)
in the acid-treated AC, but it increased to 12.01% by weight in the base-treated AC. These
results demonstrate that the acid treatment caused a significant change in the elemental
composition of the prepared AC. The high carbon/oxygen ratio in the acid-treated AC is
supported by the SEM (Figure 2) and BET (Table 1) results and are in line with previous
investigations [39].
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Table 2. EDX results of biomass and AC treated with acid and base.

Biomass Acid-Treated AC Base-Treated AC

Element Weight, % Atomic, % Weight, % Atomic, % Weight, % Atomic, %

C 58.02 64.33 76.45 83.24 61.04 56.21
O 30.97 25.78 17.44 14.26 24.52 30.08
N 9.97 9.48 0.18 0.08 12.01 12.64
Si 0.26 0.12 2.29 1.06 0.73 0.38
P 0.30 0.13 0.55 0.23 0.55 0.26
K 0.28 0.09 1.43 0.58 0.57 0.21
Ca 0.21 0.07 1.67 0.54 0.58 0.21

Total 100 100 100 100 100 100

In addition to the aforementioned elements, EDX analysis also showed the presence
of Si, P, K, and Ca in biomass, which slightly change in the AC treated with acid and base.
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3.1.5. Powder XRD

Powder XRD analysis was carried out to determine the crystal nature of biomass
and AC treated with acid and base, following the procedure discussed in Section 2.3
(Figure 4). The figure illustrates that the powder XRD patterns of biomass showed a broad
diffraction peak at two theta positions of 23◦, which demonstrates that the biomass sample
is amorphous with small crystallinity. The amorphous nature of biomass is also supported
by our previous studies carried out on the seeds of Datura metel [40]. The synthesis of AC
from the obtained Trachycarpus fortunei seeds showed a crystalline structure. The crystalline
nature is characterized by a peak at two theta positions of 27◦. However, the crystallinity of
the synthesized AC is slightly different according to the different chemical treatments. In
the case of the AC treated with acid, this peak appears at two theta positions of 27◦. This
confirms the formation of AC, while in the case of the base-treated AC, the morphology
totally changed. Shifted peaks occurred towards the high two theta positions, i.e., at 29◦.
Additionally, a peak at two theta positions of 35◦ appeared, which is not recognized. These
results indicate that the chemical treatment of AC produced a significant change in the
produced AC and the acid-treated AC produced a graphitic-type AC [41].

Materials 2022, 15, x FOR PEER REVIEW 8 of 21 
 

 

Table 2. EDX results of biomass and AC treated with acid and base. 

Biomass Acid-Treated AC Base-Treated AC 

Element Weight, % Atomic, % Weight, % Atomic, % Weight, % Atomic, % 

C 58.02 64.33 76.45 83.24 61.04 56.21 

O 30.97 25.78 17.44 14.26 24.52 30.08 

N 9.97 9.48 0.18 0.08 12.01 12.64 

Si 0.26 0.12 2.29 1.06 0.73 0.38 

P 0.30 0.13 0.55 0.23 0.55 0.26 

K 0.28 0.09 1.43 0.58 0.57 0.21 

Ca 0.21 0.07 1.67 0.54 0.58 0.21 

Total 100 100 100 100 100 100 

3.1.5. Powder XRD 

Powder XRD analysis was carried out to determine the crystal nature of biomass and 

AC treated with acid and base, following the procedure discussed in Section 2.3 (Figure 

4). The figure illustrates that the powder XRD patterns of biomass showed a broad dif-

fraction peak at two theta positions of 23°, which demonstrates that the biomass sample 

is amorphous with small crystallinity. The amorphous nature of biomass is also supported 

by our previous studies carried out on the seeds of Datura metel [40]. The synthesis of AC 

from the obtained Trachycarpus fortunei seeds showed a crystalline structure. The crystal-

line nature is characterized by a peak at two theta positions of 27°. However, the crystal-

linity of the synthesized AC is slightly different according to the different chemical treat-

ments. In the case of the AC treated with acid, this peak appears at two theta positions of 

27°. This confirms the formation of AC, while in the case of the base-treated AC, the mor-

phology totally changed. Shifted peaks occurred towards the high two theta positions, i.e., 

at 29°. Additionally, a peak at two theta positions of 35° appeared, which is not recognized. 

These results indicate that the chemical treatment of AC produced a significant change in 

the produced AC and the acid-treated AC produced a graphitic-type AC [41]. 

 

Figure 4. Powder XRD patterns of (a) biomass, (b) acid-treated AC and (c) base-treated AC. 

  

10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

In
te

n
s
it

y
 (

a
.u

.)

2 theta

 Biomass

 Base Treated AC

 Acid Treated AC

a
c

b

Figure 4. Powder XRD patterns of (a) biomass, (b) acid-treated AC and (c) base-treated AC.

3.2. Adsorption of XO and TB on Biomass and AC Treated with Acid and Base

Adsorption experiments were performed by taking varied concentrations of primary
dyes, contact times, pH, adsorbent concentration, temperature, adsorbent size and RPM to
determine the uptake capacity of the organized seeds and ACs.

3.2.1. Dye Concentration

The influence of dye concentration on the adsorption of TB and XO was studied to
evaluate the uptake capacity of biomass and AC treated with acid and base. Figure 5 reveals
that the adsorbed amount of both dyes at equilibrium increased with the rise in the initial
dye concentration. The acid-treated AC showed the highest adsorption in comparison
with the biomass sample and the base-treated AC [42]. These results were compared with
previous studies, which are shown in Table 3. From the analysis of the table, it can be
observed that the adsorption capacity of the prepared AC for the removal of TB and XO is
comparable or superior to the values obtained in previous studies. However, the adsorbent
prepared in the current study is cheaper, more eco-friendly and widely available than the
aforementioned adsorbents. This increase in biomass and AC uptake capacity of the TB
and XO dyes may be ascribed to π–π interactions among dye molecules and functional
groups of the carbon surface since they are responsible for the mechanism of aromatic
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compound adsorption. Thus, increasing the initial concentration of dyes led to the increase
in driving force for mass transfer, which increases the rate of dye molecule transport from
the solution to the adsorbent particle surface. The increase in uptake capacity by rising
dye concentrations indicated that the AC, especially the acid-treated sample, possess great
potential to eliminate TB and XO from aqueous solutions [43].
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Figure 5. Effect of (a) TB and (b) XO concentration on the adsorption of 50 mL solution using 0.1 g
biomass and AC treated with acid and base for 60 min at 140 rpm and room temperature.

Table 3. Comparison of the adsorption of XO and TB of the current results with the previous literature.

Bioadsorbent qmax (mg/g) References

Thymol Blue (TB)

Pomegranate peel 5.28 [44]
Garcinia cola nut shells 396.04 [45]
Hydroxyapatite powder 0.21 [46]

Trachycarpus fortunei
96.81 (Biomass)

130.38 (AC treated with acid)
112.74 (AC treated with base)

Current study

Xylenol Orange (XO)

Coal ash 0.74 [47]
Natural bauxite 2.74 [48]

Polyurethane foam 0.904 [49]
Expansion graphite 18.15 [50]

Sodium alginate graft polyhydrogel composite 312.4 [51]

Trachycarpus fortunei
96.43 (Biomass)

138.12 (AC treated with acid)
112.36 (AC treated with base)

Current study

3.2.2. Adsorption Isotherms

Adsorption isotherm is significant to depict the interaction of solutes with adsorbents.
The Langmuir and Freundlich isotherm models were utilized to study the relationship
between the adsorbed amount of dyes and its equilibrium concentration in solutions.

Langmuir Isotherm Model

The Langmuir isotherm model assumes a monolayer adsorption on a surface contain-
ing a finite number of identical sites [52]. The linear form of Langmuir isotherm is shown
as below:

Ce

qe
=

1
qmKL

+
Ce

qm
(1)
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where

Ce = Concentration of dye molecules adsorbed at equilibrium (mg/L);
qe = Dye molecule adsorbed per unit mass of adsorbent (mg/g);
KL = Free energy of adsorption related to Langmuir isotherm constant;
qm = Maximum adsorption capacity.

The plot of Ce/qe versus Ce shows a linear relationship between the 1/qm slope and
1/qmKL intercept (Figure 6). The applicability of the Langmuir’s isotherm model was based
on the experimental data with correlation coefficient (R2) of 0.99, 0.99 and 0.997 for TB
adsorption on biomass, AC treated with acid, and AC treated with base, respectively, which
were closed to the unity. According to this equation, the highest adsorption capacities for
TB adsorption on biomass, AC treated with acid and AC treated with base were 96.81 mg/g,
130.38 mg/g, and 112.74 mg/g, respectively. The values of the Langmuir isotherm constant
KL accrued from the plot were 0.0072 dm3/mg, 0.0079 dm3/mg, and 0.0072 dm3/mg for
biomass, AC treated with acid, and AC treated with base, respectively.
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Figure 6. Langmuir adsorption isotherm of (a) TB and (b) XO on biomass and AC treated with acid
and base.

The R2 values for the adsorption of XO on biomass, AC treated with acid and AC
treated with base are 0.992, 0.997, 0.990, respectively. These values were also close to the
unity. The highest adsorption capacities for the adsorption of XO on biomass, AC treated
with acid and AC treated with base were 96.43 mg/g, 138.12 mg/g, and 112.36 mg/g, re-
spectively. The KL values obtained from the plot were 0.0096 dm3/mg, 0.0067 dm3/mg, and
0.0067 dm3/mg, for biomass, AC treated with acid and AC treated with a base, respectively.

The dimensionless separation factor (RL), considered as an essential characteristic for
the Langmuir isotherm [52], can be defined as follows:

RL =
1

1 + KLCo
(2)

The value of RL determines the type of isotherm. Specifically, RL > 1 means an
unfavorable adsorption process, whereas favorable adsorption occurs if 0 < RL < 1, while
values of RL = 1 and RL = 0 indicate linear and irreversible processes. The RL values were
found to be 0.122, 0.126, and 0.122 in the case of TB adsorption on biomass, AC treated
with acid and AC treated with a base, respectively, while in the case of XO, the values
of RL were found to be 0.095, 0.131, and 0.130 for biomass, AC treated with acid and AC
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treated with a base, respectively. These overall discussions suggest that the current data
follows the Langmuir adsorption isotherm for both dyes. Most of the previous studies
for the adsorption of dyes on biomass follow the Langmuir adsorption isotherm, which
indicates that the formation of dyes on the monolayer took place on the AC obtained from
biomass [3].

Freundlich Isotherm Model

The Freundlich isotherm model assumes a heterogeneous surface on which an irregular
distribution of the biosorption heat and a multilayer biosorption above the surface can be
expressed [52]. The Freundlich isotherm equation is given by:

log
x

m
= logKF +

1
n

logC (3)

The plot of log x/m versus logC shows a linear relationship with the slope of 1/n and
intercept of KF, using the experimental data obtained, which are shown in Figure 7. The
figure shows that, for the TB adsorption on biomass, AC treated with acid and AC treated
with a base, the correlation coefficients (R2) are 0.957, 0.952, and 0.948, respectively. The
values of the intercept KF obtained from the plots were 0.775, 1.246, and 0.905 for biomass,
AC treated with acid and AC treated with a base, respectively. The principles of slope 1/n
obtained from the design were 0.684, 0.714, and 0.716 for biomass, AC treated with acid
and AC treated with a base, respectively.
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Figure 7. Freundlich adsorption isotherms of (a) TB and (b) XO on biomass and AC treated with acid
and base.

In the case of XO, the values of correlation coefficient (R2) were 0.93, 0.938, and 0.930
for biomass, AC treated with acid and AC treated with a base, respectively. The values
of the intercept KF resulted from the plot were 0.939, 1.332, and 1.021 for biomass, AC
treated with acid and AC treated with a base, correspondingly. The principles of slope 1/n
obtained as of the plot were 0.743, 0.740, and 0.755 for biomass, AC treated with acid and
AC treated with base, respectively.

The value of KF represents the adsorption ability and 1/n indicates the adsorption
strength. The results indicate that the adsorbent has several different types of adsorption
sites. A value of n greater than 1 represents a positive adsorption situation. The value of
n was found to be 1.291, 1.346, and 1.282, in the case of TB adsorption on biomass, AC
treated with acid and AC treated with a base, respectively, suggesting that adsorption
conditions were favorable. In the case of XO adsorption on biomass, AC treated with
acid and AC treated with a base, the value of n was found to be 1.346, 1.352, and 1.324,
respectively, which also indicates that the adsorption condition was favorable. However,
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for the Freundlich adsorption model for both dyes, the values of correlation coefficient (R2)
were low compared to the Langmuir adsorption model.

3.2.3. Contact Time

To assess the adsorption capacity and contact time needed by biomass and AC systems
to reach equilibrium with TB and XO dyes, adsorption experiments were performed at
varied contact times ranging from 1 to 180 min (Figure 8). It is clear from the figure
that increasing the contact time resulted in a gradual increase in adsorption capacity,
and the equilibrium was attained within the initial 60 min. These results indicate that
the maximum uptake capacity is achieved within the initial 60 min. However, further
increasing adsorption time had no influence on dye adsorption, which is consistent with
reported results that were found in the literature for the adsorption of TB and XO dyes onto
a powdered AC prepared from Garcinia cola nut shells [53] and coal ash [54], respectively,
where an equilibrium was established within 60 min for TB adsorption and 40 min for XO
adsorption. Furthermore, regarding contact time, the acid-treated AC showed a maximum
adsorption capacity for both dyes.
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Figure 8. Effect of contact time on the adsorption of 50 mL (a) 100 mg/L TB and (b) 50 mg/L XO
using 0.1 g biomass and AC treated with acid and base at 140 rpm and room temperature.

3.2.4. Kinetic Analysis

The process of removing dyes from aqueous solutions by assertiveness was studied
by different kinetic models to assess the rate control process. Dynamic parameters are
helpful to predict the adsorption rate, which can be utilized as important information
in the design and modeling of the insurance transaction. The dynamics of dye removal
have been discussed in the literature using pseudo-first and pseudo-second order dynamic
models [55]. To classify and examine the mechanism of dye adsorption processes, the
linearized equation of the pseudo-first order and the pseudo-second order was applied, as
displayed in Figures 9 and 10, respectively.

Pseudo-First Order Kinetic Model

This model gives information about the speed of adsorption, which is entirely depend-
ing on the capability of adsorption. The pseudo-first order kinetic model can be defined by
the following equation [55]:

ln(qe − qt) = lnqe − k1t (4)

The value of pseudo-first order rate constant k1 is calculated from the intercept and
slope obtained from the linear plot of ln(qe − qt) versus time t. From the plot, the values
of correlation coefficient R2 were found to be 0.865, 0.685, and 0.709 for TB adsorption on
biomass, AC treated with acid and AC treated with base, respectively. In the case of XO,
the values of correlation coefficient R2 were found to be 0.661, 0.710, and 0.571 for biomass,
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AC treated with acid and AC treated with base, respectively. These results clearly indicate
that the current data do not follow the pseudo-first order kinetic model due to the low
correlation coefficient values.
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Figure 9. Pseudo-first order kinetic plots for the adsorption of (a) TB and (b) XO on biomass and AC
treated with acid and base.
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Figure 10. Pseudo-second order kinetic plot for the adsorption of (a) TB and (b) XO on biomass and
AC treated with acid and base.

Pseudo-Second Order Kinetic Model

This kinetic model is also used to define the kinetics of adsorptions with the equation
below [55]:

t
qt

=
1

k2q2
e
+

t
qe

(5)

where t is time (min), qt is the adsorbed amount of dye (mg/g) at any time (t), qe is
the adsorbed amount of dye (mg/g) at equilibrium and k2 is the pseudo-second order
rate constant.

The slope and intercept of the linear plot of t/qt against t provide the values of qe and
k2. Figure 10 shows that the current data fitswell in the pseudo-second order model due to
its high value of correlation coefficient. The data are also supported by previous studies in
which the removal of dyes was performed with prickly pear seed cakes [56].
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3.2.5. pH

The influence of pH medium on the adsorption of TB and XO dyes by biomass and
AC was evaluated by varying the pH of the dye samples. Figure 11 depicts the adsorption
of dyes’ reliance on the solution pH. The adsorption of TB was low at a low pH on the
prepared biomass and AC treated with acid and base. However, with an increase in pH, the
adsorption of TB steadily increased but any further increase than pH 6 had no significant
influence on the adsorption capacity of the prepared biomass and AC. These results indicate
that the optimum pH for the removal of TB from wastewater is 6. On the other hand, for
the anionic dye (XO), the maximum adsorption was observed at pH 2 and a rise in the pH
of the dye solution decreased the adsorption capacity of the prepared biomass and AC.
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Figure 11. Effect of pH on the adsorption of 50 mL (a) 100 mg/L TB and (b) 50 mg/L XO using 0.1 g
biomass and AC treated with acid and base for 60 min at 140 rpm and room temperature.

Figure 11 shows that up to pH 6, a significant decrease in pH was observed, while the
further increase in pH had no significant effect on the removal capacity of XO. It is clear
that, by rising the pH, the decrease in the amount of XO dye adsorption on biomass and
AC occurred.

Generally, acidic dyes first dissolve and then dissociate in aqueous solutions, which
results in the formation of anionic dye ions. Moreover, positive charge sites are created
on the adsorbent surface in contact with water at low pH leading to a high electrostatic
attraction between the anionic dye and the adsorbent of the positively charged surface.
Thus, boosting the system pH causes a rise in the negatively charged sites along with
a reduction in the positively charged sites, which causes the unfavorable adsorption of
anionic dye because of electrostatic repulsion [57].

3.2.6. Temperature

To investigate the effect of temperature on TB and XO dye adsorption on the prepared
biomass and AC, many experiments were executed by varying the temperature from 10 ◦C
to 80 ◦C, as shown in Figure 12. The adsorption of dyes is remarkably influenced by the
temperature, which has an impact on the amount adsorbed on the surface of biomass and
AC treated acid and base. It was found that, by rising the temperature from 10 ◦C to 80 ◦C,
the uptake capacity of dyes onto the adsorbent surface was also increased. Thus, the effect
of the temperature changes the adsorption efficiency of the adsorbents. From these results,
it can be concluded that the adsorption of both dyes on the prepared biomass and AC
treated with acid and base was chemisorption in nature. Furthermore, high temperatures
can cause a stronger interaction by providing sufficient activation energy between dyes and
adsorbents, which has a significant contribution in the adsorption process. Additionally,
the rise in temperature of the dye solution led to the promotion of the activity of the dye
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molecule adsorption on the adsorbent surface, thus increasing the mass transfer through
the liquid film that surrounds the adsorbent particles.
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Figure 12. Effect of temperature on the adsorption of 50 mL (a) 100 mg/L TB and (b) 50 mg/L XO
using 0.1 g biomass and AC treated with acid and base for 60 min at 140 rpm.

3.2.7. Adsorbent Dosage

To analyze the influence of the adsorbent amount on the TB and XO dyes adsorption,
several experiments were carried out by changing the adsorbent concentration from 0.1 g
to 0.5 g, while keeping other parameters constant (Figure 13). These findings indicate that
the uptake capacity of TB and XO decreased with the increase in adsorbent amount. Such
behavior is probably ascribed to the saturation of adsorption sites owing to the aggregation
of adsorbent particles, which causes the decrease in the total surface area of the adsorbent
and the increase in the diffusional path length [1].
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Figure 13. Effect of biomass and AC treated with acid and base amount on the adsorption of 50 mL
(a) 100 mg/L TB and (b) 50 mg/L XO for 60 min at 140 rpm and room temperature.

3.2.8. Agitation Speed

To evaluate the role of the agitation speed on the adsorptive elimination of dyes from
aqueous solutions, different experiments were carried out by changing the agitation speed
between 35 RPM and 140 RPM. The results are given in Figure 14 and indicate that the
adsorption of the dyes increases significantly with the increase in agitation speed.
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Figure 14. Effect of agitation speed on the adsorption of 50 mL (a) 100 mg/L TB and (b) 50 mg/L XO
using 0.1 g biomass and AC treated with acid and base for 60 min at room temperature.

3.2.9. Adsorbent Size

The selection of particle size is the main criteria for the commercialization of the
adsorbent because the small particle size causes the blockage of the fixed bed reactor,
while the large particle size causes a decrease in the surface area and active sites for dye
adsorption. To determine the optimum size of the adsorbent for the adsorption of the dyes,
different experiments were performed by changing the particle size of adsorbent (45 µm
to 212 µm) and the results obtained are shown in Figure 15. These results show that by
increasing the particle size, the amount of dyes adsorbed decreased. An adsorbent with
smaller particles has a large surface area, thus it has a higher adsorption capacity compared
to an adsorbent with a larger particle size, which may cause a decrease in the adsorption
capacity of the larger particles. Too small particle size may float on surface and not adsorb
the dyes well [58].
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Figure 15. Effect of particle size for 0.1 g biomass and AC treated with acid and base on the adsorption
of 50 mL (a) 100 mg/L TB and (b) 50 mg/L XO for 60 min at 140 rpm and room temperature.

4. Conclusions

In the present study, biomass and chemically synthesized AC obtained from T. F. seeds
were used as bioadsorbents to remove TB and XO dyes from wastewater. Varieties of
foreground techniques were used to characterize the AC prepared by using acid and base
treatments. The FTIR result indicated the formation of AC from the biomass of the T. F.
seeds. The formation of AC was confirmed through the disappearance of various functional
groups present in biomass. The SEM results showed that the pyrolysis process produced a
high porous AC in the acid-treated sample. The formation of high C/O ratio composites in
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the acid-treated sample proved the formation of graphitic carbon, which was confirmed by
the EDX and XRD results, especially in the acid-treated sample. The effects of a variety of
parameters were investigated for the removal of the TB and XO dyes on the prepared AC,
such as dye concentration, contact time, pH, temperature, adsorbent amount, rpm, and
absorbent size. The adsorption of TB and XO dyes increased with the rise in the initial dye
concentration, and isothermal data suggested that the adsorption of both dyes followed
the Langmuir isotherm model. The equilibrium time for the adsorption of the TB and XO
dyes were 60 min on the biomass and synthesized AC, and the kinetic data were better
matched to the pseudo-second order model. The optimal pH for TB adsorption was pH 6,
while it was pH 2 in the case of XO. Due to chemisorption, increasing the temperature led
to an increase in the adsorption affinity of the TB and XO dyes. The results demonstrated
that the maximum adsorption was achieved at 80 ◦C. On the other hand, the data revealed
that the uptake capacity of TB and XO decreases with the increase in adsorbent mass due
to the sintering or agglomeration of the particles. The adsorption of both dyes increased
with the rise in agitation speed and decreased with the increase in particle size. Thus,
the current study suggests that AC prepared from T. F. seeds through an acid treatment
may be considered as a perfect, eco-friendly alternative adsorbent to eliminate dyes from
industrially polluted water.
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