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Abstract

Chinese Erhualian is the most prolific pig breed in the world. The breed exhibits exceptionally large and floppy ears. To
identify genes underlying this typical feature, we previously performed a genome scan in a large scale White Duroc 6
Erhualian cross and mapped a major QTL for ear size to a 2-cM region on chromosome 7. We herein performed an identical-
by-descent analysis that defined the QTL within a 750-kb region. Historically, the large-ear feature has been selected for the
ancient sacrificial culture in Erhualian pigs. By using a selective sweep analysis, we then refined the critical region to a 630-
kb interval containing 9 annotated genes. Four of the 9 genes are expressed in ear tissues of piglets. Of the 4 genes, PPARD
stood out as the strongest candidate gene for its established role in skin homeostasis, cartilage development, and fat
metabolism. No differential expression of PPARD was found in ear tissues at different growth stages between large-eared
Erhualian and small-eared Duroc pigs. We further screened coding sequence variants in the PPARD gene and identified only
one missense mutation (G32E) in a conserved functionally important domain. The protein-altering mutation showed perfect
concordance (100%) with the QTL genotypes of all 19 founder animals segregating in the White Duroc 6 Erhualian cross
and occurred at high frequencies exclusively in Chinese large-eared breeds. Moreover, the mutation is of functional
significance; it mediates down-regulation of b-catenin and its target gene expression that is crucial for fat deposition in skin.
Furthermore, the mutation was significantly associated with ear size across the experimental cross and diverse outbred
populations. A worldwide survey of haplotype diversity revealed that the mutation event is of Chinese origin, likely after
domestication. Taken together, we provide evidence that PPARD G32E is the variation underlying this major QTL.
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Introduction

The external ear is part of the auditory system and plays a vital

role in collecting sound as the first step in hearing. Multiple

congenital anomalies have been documented for human external

ears. For instance, microtia, characterized by a small and

abnormally shaped outer ear, occurs in approximately one in

8,000–10,000 births. However, only in a minority of cases has a

genetic or environmental cause been found [1]. The domestic pig

services as not only an agriculturally important animal for meat

production but also an important large-animal model for human

medicine [2]. Thousands of years of selective breeding has created

diversity of phenotypes in pigs, such as ear size in Erhualian and

White Duroc breeds. Erhualian is the most prolific pig breed and

exhibits unusually large and floppy ears as breed character

(Figure 1). Historically, the large-ear feature of Erhualian pigs had

been favored by owners for the traditional sacrificial culture [3].

White Duroc is one of worldwide-popular boar line and has small

and erect ears (Figure 1). We have created a four-generation White

Duroc 6 Erhualian resource population, in which phenotypic

traits related to ear size have been recorded in 1,027 adult F2

animals and 560 adult F3 individuals (Table S1). We mapped a

major QTL for ear size around 58 cM on SSC7 (Figure S1) using

a genome scan on the White Duroc 6Erhualian cross [4], which

confirmed the previously reported QTL affecting ear size in a

Large White 6 Meishan F2 resource population [5]. The

significant QTL had a small confidence interval of 2 cM and

explained more than 40% of phenotypic variance. The aim of this

study was to identify the genetic determinant underlying this major

QTL.

Results/Discussion

Identical-by-descent analysis defines the major QTL
within a 750-kb interval

To fine map the QTL, we genotyped 1,027 adult F2 animals

and their 68 parents and 19 grandparents in the White Duroc 6
Erhualian cross using additional 17 SNP markers and 11

microsatellite markers in the QTL region. A final set of 33

markers covering the QTL region were then explored to deduce

the QTL genotypes of F1 sires by the marker-assisted segregation

analysis as proposed previously [6]. We determined QTL

genotypes of all 9 F1 sires (Figure S2). All 9 Q-bearing

chromosomes for increased ear size shared a haplotype of

,1.2 Mb flanked by markers HMGA1 – TULP1. The shared

haplotype was distinct from q-bearing chromosomes (Figure 2).
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These observations strongly suggest that the QTL is located in the

1.2-Mb interval.

Given the extremely divergent ear size phenotypes between

Erhualian and White Duroc animals, we assumed that Q and q

alleles were alternatively fixed in Erhualian and White Duroc

founder animals; hence all Erhualian founder sows could share a

chromosomal segment carrying the Q allele for increased ear size.

To test this assumption, we reconstructed haplotypes of all 19

founder animals (2 sires and 17 dams) using 50 markers (15

microsatellites and 35 SNPs) in the QTL region. Almost all

Erhualian founder sows shared a haplotype of ,750 kb within the

refined 1.2-Mb interval (Figure 2). As predicted, this shared

haplotype was associated with increased ear size and presumably

Q-bearing chromosomes. Two Erhualian founder sows carried a

distinct haplotype (denoted as Eq), which was unexpected because

it was contrast with our initial assumption. We then conducted a

statistical analysis of F2 animals in the White Duroc 6Erhualian

cross. The results revealed that the Eq chromosome had an effect

on decreased ear size similar to the White Duroc chromosome (Dq)

and significantly different from the Erhualian Q-bearing chromo-

some (EQ). The least-squares means (6 s.e.) of ear weight were

323.0764.55 for EQEQ and 266.66618.9 for EQEq (P = 0.04);

264.7163.52 for DqEQ and 236.98617.12 for DqEq (P = 0.06,

Table 1). The shared EQ chromosome allowed us to refine the

location of the major QTL to the 750-kb interval between markers

UHRF1BP1 and TULP1 (Figure 2).

Selective sweep analysis refines the QTL to a 630-kb
region

Historically, Erhualian pigs had undergone selection for ear size

because pigs with extraordinary large and floppy ears were favored

for the ancient sacrificial culture in the Taihu region of East China

[3]. Reduced genetic variation in the critical region containing the

QTL was therefore predicted. To define the region of reduced

genetic variation, we collected 211 animals representing all

lineages in 3 Erhualian nucleus populations, 216 animals from 6

Chinese indigenous breeds and 119 independent animals from 3

Western worldwide-popular commercial breeds. Using these

samples, we genotyped 6 microsatellite and 32 SNP markers in

the 750-kb region. We found that 18 adjacent markers in a 630-kb

region between markers UHRF1BP1 and FANCE showed

dramatically reduced polymorphisms in all Erhualian pigs with

nearly all major allele frequencies of more than 0.90. Notably, the

18 markers in the 630-kb region are monomorphic in the

Erhualian nucleus population from Xishan county (n = 72). In

comparison, the genetic polymorphisms of these markers were

maintained in other Chinese, Western breeds, and wild boars

(Figure 3). The 630-kb region showing strong selective-sweep

effects on Erhualian pigs was therefore predicted to contain the

responsible locus. We further genotyped the 18 markers in the

630-kb region on 188 adult animals of Sutai pigs. This breed was

developed after 18-genereation selection from a Duroc (50%) 6
Erhualian (50%) cross in 1986 [7], meaning that the breed has

undergone 18 generations of meiosis reducing the extent of linkage

disequilibrium between QTL and linked markers. The Erhualian-

originated haplotype of 630 kb showed significant (P = 0.009)

association with increased ear size compared with other

chromosomes in Sutai pigs (Figure S3), thereby supporting the

conclusion that this region harbors the causative gene.

Figure 1. The Erhualian and White Duroc phenotypes. Erhualian pigs (right panel) are obese and short legged, have wrinkly face, extremely
large and floppy ears. In comparison, White Duroc pigs (left panel) are renowned for muscularity and exhibit much smaller and half or fully pricked
ears.
doi:10.1371/journal.pgen.1002043.g001

Author Summary

A central but challenging objective in current biology is to
dissect the genetic basis of quantitative traits. Numerous
quantitative trait loci (QTL) have been uncovered in model
and farm animals, providing unexpected insights into the
biology of complex traits. However, only a few causal
variants underlying the QTL have been explicitly identified.
By using a battery of genetic and functional assays, we
herein show that a major QTL effect on pig ear size is most
likely caused by a single base substitution in an
evolutionary conserved region of the PPARD gene. The
protein-altered mutation is of functional significance and
explains a proportion of variation in ear size across diverse
pig breeds. A worldwide survey showed that the mutant
allele for increased ear size was derived from a common
ancestor in Chinese pigs, likely after domestication. These
findings establish, for the first time, an essential role of
PPARD in ear development and highlight the great
potential of naturally occurring mutations in farm animals
to gain insights into mammalian biology. Moreover, the
knowledge of the PPARD causal mutation adds to the
limited list of quantitative trait genes and quantitative trait
nucleotides characterized in domesticated animals.

PPARD Causal Mutation for Ear Size in Pigs

PLoS Genetics | www.plosgenetics.org 2 May 2011 | Volume 7 | Issue 5 | e1002043



PPARD Causal Mutation for Ear Size in Pigs

PLoS Genetics | www.plosgenetics.org 3 May 2011 | Volume 7 | Issue 5 | e1002043



Positional candidate gene analysis: discovery of a
nonconservative missense mutation in PPARD
concordant with the QTL genotypes of founder animals

The 630-kb region encompasses 9 annotated genes (ANKS1A,

DEF6, FANCE, PPARD, SCUBE3, TAF11, TCP11, UHR1BP1 and

ZNF76) in the human homologous region. RT-PCR was

performed to detect expression levels of these genes in ear tissues

of piglets. Four genes including PPARD, FANCE, TAF11 and

ZNF76 were highly expressed, whereas transcripts of other genes

were almost absent in ear tissues (data not shown). Of the 4 genes,

PPARD (peroxisome proliferator-activated receptor delta) is a

ligand-modulated transcription factor belonging to the nuclear

receptor superfamily and plays crucial roles in diverse biologically

important processes [8]. For instance, PPARD play a pivotal role

in modulating cell differentiation in both keratinocytes and

sebocyte of skin [9]. PPARD also serves as a key regulator in fat

metabolism; it triggers fat burning and enhances energy

uncoupling in adipose tissues and skeletal muscle [10–12].

Moreover, PPARD is a key player in Wnt/b-catenin pathway

[13], which has essential roles in diverse cellular activities

including chondrocyte proliferation and differentiation [14]. The

external ear is composed of skin, cartilage, connective tissues and

fat. Given its crucial role in skin homeostasis, cartilage develop-

ment and fat metabolism, PPARD stood out as a prime positional

candidate for the major QTL. We monitored the relative mRNA

expression of PPARD in ear tissues of Erhualian and Duroc pigs at

four different ages by real-time RT-PCR. The expression levels

were higher in samples at early ages (days 0, 45 and 90) compared

with adult samples (day 300). However, no significant difference of

expression levels was found in ear tissues between large-eared

Erhualian and small-eared Duroc pigs (Figure S4).

To search for causative mutations, we first sequenced the entire

coding region of the PPARD gene using ear mRNA of two White

Duroc and two Erhualian animals and identified only one

nonsynonymous mutation. The G to A mutation caused a glycine

to glutamic acid substitution at codon 32 (GU565977) in the

conserved intrinsically disordered domain of the PPARD protein

predicted by SMART (http://smart.embl-heidelberg.de/). The

intrinsically disordered domain is a distinctive and common

characteristic of eukaryotic hub proteins like multifunctional

nuclear receptors and serves as a determinant of protein

interactivity [15]. Comparison of amino acids of this protein

domain across mammals revealed that glycine is well conserved in

mammalian PPARDs (Figure 4), while the derived glutamic acid

occurs only in alleles increasing ear size in pigs. We thus

speculated that the nonconservative substitution probably changes

the PPARD interactivity with other protein partners and

consequently affects the gene’s regulation function. Genotypes of

F1 sires (9 heterozygotes) and F0 animals (17 homozygotes and 2

heterozygotes) at the mutation site were 100% concordance with

their QTL genotypes. The potentially altered function and QTL

concordance of PPARD G32E corresponded to the hypothesis that

this SNP may be the causative mutation underlying the major

QTL.

PPARD G32E is a functional variant mediating down-
regulation of b-catenin and its target gene expression

PPARD is involved in the Wnt/b-catenin signaling pathway

that regulates diverse cellular functions. In the nucleus, PPARD

interacts with b-catenin binding to TCF/LEF transcription factors

that stimulate transcription of target genes important for multiple

cellular activities including cartilage development and organogen-

esis [14]. To demonstrate functional significance of PPARD G32E,

we cotransfected the 293T cells with the lentiviral expression

vectors of wild-type or mutant PPARD and a TCF/LEF-driven

luciferase reporter construct. A Renilla luciferase expression vector

was used for the normalization of transfection efficiency.

Overexpression of mutant PPARD led to a 40% decrease

(P,0.05 compared with the wild-type treatment) in TCF/LEF

reporter activity (Figure 5A), indicating the G32E mutation

mediates down-regulation of b-catenin downstream genes. To

examine a direct functional role of PPARD G32E in target genes of

b-catenin, we treated pig ear-derived primary fibroblast cells with

the lentiviral PPRAD expression vectors and monitored the

mRNA levels of b-catenin and its known downstream (c-myc) [16]

and upstream (Sox9) [17] genes along with GAPDH as a loading

control by real time quantitative RT-PCR. The mRNA levels of

b-catenin and c-myc were reduced respectively by 4.1-fold and 11.5-

fold (P,0.001) in mutant PPARD transfectants compared with the

cells transfected with wild-type PPARD. Western blot analysis

showed that both b-catenin and c-myc protein levels were

decreased by the mutant PPARD treatment (Figure 5B), thereby

confirming the results of mRNA and luciferase reporter analyses.

Sox9 mRNA expression in mutant PPARD transfectants was only

slightly decreased to 1.1-fold of the wild-type PPARD treatment;

the result was validated by Western blot (Figure 5B). GAPDH was

used as a protein loading control for total cell lysate, which was not

affected by both wild-type and mutant PPARD treatments

(Figure 5B). Altogether, we conclude that PPARD G32E is a

functional variant that mediate down-regulation of b-catenin and its

Table 1. Effects of Erhualian Q or q -bearing chromosomes on
ear weight in the White Duroc 6 Erhualian F2 cross.a

Genotype Number
Least square mean ±
standard error (g)

DqDq 197 185.3064.49 A

DqEQ 443 264.7163.52 B

DqEq 10 236.98617.12 AB

EQEQ 194 323.0764.55 C

EQEq 7 266.66618.9 B

a EQ represented the major chromosome and Eq indicated the other distinct
chromosome in Erhualian founder sows. Phenotypic values were corrected for
fixed effects including sex, batch and SSC5 QTL for ear size and a covariate of
carcass weight. Significance was evaluated by the t-test in the GLM procedure
of SAS 9.0 (SAS Institute, Cary, NC). Values with different superscripts are
significantly different (P,0.05).
doi:10.1371/journal.pgen.1002043.t001

Figure 2. Fine mapping of the QTL by the haplotype sharing analysis. Shared haplotypes of Q-bearing chromosomes in F1 sires segregating
for the QTL and of Erhualian founder chromosomes in the QTL region. Polymorphisms are displayed at the respective gene or microsatellite markers.
SNP positions in each gene are given in brackets with reference to GenBank accession numbers. Microsatellite alleles are numbered consecutively
from shortest to longest fragments. For SNP markers the allele with the higher frequency is denoted 1, and the allele with the lower frequency is
denoted 2. Identities of F1 sires and F0 Erhualian sows are given in the left axis. QTL genotype of each chromosome of F1 sires is shown on the right
axis. The shared haplotype blocks are indicated in colored boxes. Two Erhualian founder chromosomes associated with decreased ear size (Eq) are
marked in green.
doi:10.1371/journal.pgen.1002043.g002
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target gene expression in the Wnt/b-catenin signaling pathway.

Wnt/b-catenin signaling has been firmly demonstrated to suppress

adipogensis [18–19]. The fact that PPARD is a key modulator of

lipid production in the skin [9] and that PPARD G32E inhibits

b-catenin expression led us to assume that the mutation stimulates

lipid production and storage that are required for enlarged ear

size.

PPARD G32E is significantly associated with ear size
across the experimental intercross and outbred
populations

To confirm the effect of PPARD G32E on ear size, we

performed a standard association test, a marker-assisted associa-

tion test and an F-drop test [20] in the White Duroc 6Erhualian

cross. The SNP showed greatly significant (P,0.0001) association

with ear weight and ear size in the standard association test. In the

marker-assisted association test, the SNP was more significant

(P,0.001) for these traits compared with the QTL effect. After

fitting this polymorphism in the QTL model, the great QTL effect

disappeared with F-value drop rations of less than 0.03 (Table S2).

These results were in agreement with the hypothesis that the SNP

is the causative mutation for the major QTL affecting ear size.

Nevertheless, we cautioned the results because variants closely

linked with a causative mutation also lead to strong association in

F2 resource populations due to the high level of linkage

disequilibrium between founder breeds [20].

To obtain additional supporting evidence, we further genotyped

the G32E mutation on 667 mature pigs from 4 Chinese local

breeds (Erhualian, Hang, Yushan Black and Bama Xiang) and 3

synthetic commercial lines (Sutai, Suzhong, Sujiang) with

phenotypic data of ear size. These populations show a wide range

of ear size and segregate for the mutation. The association analyses

confirmed the effect of PPARD G32E on ear size. The 32E allele

was significantly associated with increased ear size across the tested

breeds (P,0.05; Table 2). Chinese local pig breeds have low levels

Figure 4. Conservation of the intrinsically disorder domain of PPRAD protein in mammals. The ClustalW alignment of predicted amino
acids of 8 orthologous PPARD genes is shown. The sequences for the alignment were taken from the following accessions: NP_001123713 and
ADF55028 (Sus scrofa), NP_001077105 (Bos taurus), NP_001041567 (Canis lupus), XP_001498920 (Equus caballus), NP_006229 (Homo sapiens),
XP_001172224 (Pan troglodytes), NP_035275 (Mus musculus) and NP_037273 (Rattus norvegicus). The G32E substitution in a conserved hepta-amino
acid region (grey box) is indicated by the asterisk. Glycine is the conserved amino acid at this position in the wild-type pigs (Sus scrofa, W) and other
mammals, whereas glutamic acid occurs only in alleles increasing ear size in pigs (Sus scrofa, M).
doi:10.1371/journal.pgen.1002043.g004

Figure 3. Refining the QTL region by the genetic variation analysis. Heterozygosities of 38 markers of the QTL region in 13 breeds are
shown. Numbers of samples in tested breeds are given in parentheses. A near-fixation of alleles (‘selective sweep’) occurs in a 630-kb region between
markers UHRF1BP1 and FANCE in Erhualian populations. Sequences corresponding to markers in this figure have been submitted to GenBank with
accession numbers GU565968 - GU565989, GU592173.
doi:10.1371/journal.pgen.1002043.g003

PPARD Causal Mutation for Ear Size in Pigs
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of linkage disequilibrium extending up to only 0.05 cM [21]. The

concordantly significant association across Chinese breeds thereby

strengthened the hypothesis that PPARD G32E is the responsible

locus for ear size. The effects of PPARD G32E differ in their

magnitude in the tested breeds; one reason is that the effects are

context-dependent and are influenced by different genetic

backgrounds and environments. Another possibility is that PPARD

G32E is only responsible for part of the effect on ear size in

Erhualian pigs.

PPARD G32E has a unique origin of Chinese pigs likely
after domestication

To reveal the ancestral state and allele frequency of PPARD

G32E in diverse pig breeds, we genotyped the mutation in a panel

of 1,166 animals representing 31 domestic breeds and Chinese and

European wild boars. Overall, the derived 32E allele for increased

ear size occurred at high frequencies (.0.80) in Chinese breeds

with large and floppy ears. In contrast, the 32G allele for normal

ear size was fixed in all wild boars, European local and commercial

breeds, and occurred at low frequencies (,0.30) in Chinese

indigenous breeds having small and erect ears. These results

indicated that PPARD G32E may occur in Chinese pigs after

domestication. We detected only one heterozygote in European

local breeds (Table 3). The animal was from Large Black pigs that

exhibit large and floppy ears and have been influenced by Chinese

breeds brought into England in the late 18009s [22].

We further analyzed the genetic variability and haplotype

structure around the G32E mutation in a worldwide pig panel. A

total of 868 animals representing 34 breeds were genotyped for 32

SNPs in a 77-kb region of PPARD. Again, the Erhualian breed

showed a selective sweep signal as it had negative classical selection

statistics Tajimas D and much smaller nucleotide variability (pN)

compared with other Chinese local breeds and Western

commercial breeds (Table S3). Especially, the genetic variability

at the 32 loci was wiped out in the Erhualian population from

Xishan. Moreover, we plotted a distribution of the frequency of

the derived 32E allele (PA) against Tajimas D index to elucidate the

existence of directional selection for the G32E mutation. When

Figure 5. PPARD G32E mediates down-regulation of critical genes in the Wnt/b-catenin signaling pathway. (A) Overexpression of mutant
PPARD decreases TCF/LEF reporter activity. After infection with PPARD lentiviral expression vectors, the 293T cells with 80% confluence were
transiently cotransfected with TCF/LEF-Luc reporter vector and a control Renilla luciferase expression vector. The normalized luciferase activity was
determined as described in Methods. All values are expressed as fold induction relative to basal activity. The figure shown is representative of 3
independent experiments. WT: wild type; Mutant: mutant type. *, P,0.05 compared with wild-type treatment. (B) Overexpression of mutant PPARD
leads to down-regulation of b-catenin and its target gene expression. The pig ear fibroblast cells were transfected with PPARD lentiviral expression
vectors for 5 days. Cells were harvested for RNA and protein isolation to assess the mRNA (left panel) and protein (right panel) levels of b-catenin and
its downstream (c-myc) and upstream (Sox9) genes by real time quantitative PCR and Western blot assay, respectively. GAPDH was used as an internal
control. Each value represents the mean 6 S.D. of triplicate assays per condition. ***, P,0.001 compared with wild-type treatment. Western blot
analysis of c-myc protein was failed probably due to the insufficient specificity of rabbit anti-c-myc antibody.
doi:10.1371/journal.pgen.1002043.g005

Table 2. Effect of the PPARD G32E substitution on ear size in 7 outbred populations.

Population No. Genotype P value

GG GE EE

Erhualian 105 - 397.85615.87 (n = 32) 460.17610.51 (n = 73) 0.0014

Hang 58 169.01611.51 (n = 7) 213.4 96 5.88 (n = 23) 225.3865.42 (n = 28) 0.0001

Sujiang 80 258.3165.25 (n = 63) 282.58610.19 (n = 17) - 0.0374

Sutai 177 257.2966.98 (n = 42) 274.6265.19 (n = 76) 290.4566.98 (n = 59) 0.0017

Suzhong 81 214.9766.11 (n = 56) 238.8069.14 (n = 25) - 0.0332

Yushan Black 64 - 172.8065.86 (n = 23) 200.7864.33 (n = 41) 0.0002

Bama Xiang 102 55.7061.28 (n = 59) 61.1561.73 (n = 32) 65.4162.96 (n = 11) 0.0027

a Least square mean 6 standard error (cm2) is given for each genotype. Significance was evaluated by the GLM procedure of SAS 9.0 (SAS Institute, Cary, NC).
doi:10.1371/journal.pgen.1002043.t002
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PA = 0, Tajimas D was highly variable across breeds, likely due to

demographic and/or sampling effects. In stark contrast, Tajima’s D

took highly negative values when PA .0.8 in Erhualian and other

Chinese large-eared breeds as expected in a classical directional

selection (Figure S5). We reconstructed 16 major haplotypes with

frequencies larger than 0.01 from the 32 SNPs genotyped. Of the 16

haplotypes, only one carried the derived 32E allele; it was at high

frequencies in Erhualian pigs and intermediate frequencies in some

floppy-eared Chinese breeds whereas absent in Western pigs and wild

boars (Table 4). The NJ phylogenetic tree illustrated that the typical

haplotype of Erhualian pigs was generally divergent from other

haplotypes (Figure S6). These observations supported the assumption

that the G32E mutation has a unique origin in Chinese breeds likely

after domestication and has undergone selection in Erhualian pigs. We

calculated linkage disequilibrium measures (r2) between all pairs of loci

and inferred haplotype blocks. Three and two haplotype blocks were

identified in the PPARD region for Chinese indigenous pigs and

Western commercial breeds, respectively. Only a single nevertheless

larger block that spanned 53 kb and contained the G32E SNP was

found in Erhualian pigs, reflecting a selection hitching effect (Figure

S7). The G32E SNP was in high disequilibrium with very few of the

SNPs analyzed (two with r2.0.8), and there was no observable trend

between physical distance and disequilibrium measures for the G32E

SNP and the rest of loci (Figure S8).

Diverse pieces of evidence support the casualty of PPARD
G32E for the QTL

The elucidation of the genetic basis of multifactorial traits in

domestic animals is still a big challenge, and few successful examples

have been reported [23–27]. In this study, a battery of genetic and

functional assays obtained diverse pieces of supporting evidence that

the PPARD G32E substitution underlies the major QTL effect on

ear size on SSC7. (1) The shared haloptypes of 9 F1 sires segregating

for the QTL spanned a region of ,1.2 Mb containing PPARD. (2)

All Erhualian founder chromosomes shared a ,750 kb segment

spanning PPARD that were associated with the Q allele for increased

ear size. (3) Erhualian pigs showed an obvious selective sweep signal

in a 630-kb region encompassing PPARD; the signal was concordant

with the breeding history of the breed. (4) The 630-kb haplotype

showed similar QTL effect on increased ear size in Sutai pigs that

were developed after 18-generation selection in the Erhualian 6
Duroc cross. (5) Of the 4 genes expressed in ear tissues within the

critical region, PPARD stood out a prime candidate for its

established essential roles in skin homeostasis, cartilage development

and fat metabolism. (6) Only one missense mutation (G32E) was

identified in PPARD using White Duroc and Erhualian founder

animals. The mutation caused a nonconservative amino acid

change at the conserved intrinsically disordered domain and was of

functional significance. (7) The G32E SNP was concordant with

QTL genotypes of F0 and F1 animals in the White Duroc 6
Erhualian cross. (8) The G32E SNP showed strikingly significant

association with ear size across the experimental cross and diverse

outbred populations. (9) The derived allele for increased ear size

occurred at high frequencies only in Chinese floppy-eared breeds.

Altogether, these data led us to conclude that G32E in the PPARD

gene has an important contribution to ear size in pigs. The results

establish, for the first time, a direct and novel role of PPARD in ear

development and may be of relevance for the pathogenesis of

external ear abnormalities in humans.

Potential pleiotropic effects of PPARD G32E on diverse
traits

The genomic region harboring PPARD G32E is of great interest in

pig genetics, because significant QTL for diverse traits related to

growth, carcass length, skeletal morphology and fat deposition have

been consistently evidenced in the region using the current resource

population and different crosses between Chinese Meishan and

commercial breeds [28–33]. The overlapping QTL for multiple traits

in the region led us to assume that there might be a single critical gene

having pleiotrophic effects on these traits. We herein showed the

causality of PPARD G32E for the QTL affecting ear size in the critical

region. Given that PPARD serve as a crucial and multifaceted

determinant of diverse biological functions including fat metabolism,

cartilage development, chondrocyte proliferation and differentiation

Table 3. Frequencies of the derived 32E allele in different ear-
sized outbred pig populations.

Phenotype Breed Number
Allele
frequency

Chinese breeds

Large and floppy ears Erhualian, Xishan 67 1.00

Erhualian, Nanchang 67 0.95

Erhualian, Wujin 105 0.85

Erhualian, Changshu 72 0.85

Hetao Large-ear 55 0.81

Jiaxing Black 32 1.00

Meishan 23 0.82

Medium-size and
floppy ears

Hang 58 0.68

Jiangquhai 30 0.07

Jinhua 30 0.00

Laiwu 29 0.00

Lantang 30 0.83

Minzhu 30 0.67

Ningxiang 22 0.14

Rongchang 29 0.38

Tongcheng 29 0.45

Yushan Black 64 0.82

Small, erect or
half-flicked ears

Bama Xiang 32 0.30

Diannan Small-Ear 31 0.00

Tibetan 34 0.00

Chinese wild boar 22 0.00

Western breeds

Duroc 58 0.00

European
domestic pigs a

28 0.02

Landrace 71 0.00

Large White 93 0.00

White Duroc 12 0.00

European wild boar 13 0.00

a European domestic pigs include Iberian (n = 10), Berkshire (n = 4), Large Black
(n = 2), Mid White (n = 2), Chester White (n = 2), Old Spot (n = 2), Yorkshire (n = 2),
Tamworth (n = 1), British Lop (n = 1), Hampshire (n = 1), Saddle Back (n = 1). All
these animals are homozygous GG except a heterozygote detected in one of
two Large Black pigs, which exhibits large or medium-size and floppy ears and
are influenced by Chinese breeds brought into England in the late 1800’s (Kijas
et al. 1998) [22].
doi:10.1371/journal.pgen.1002043.t003
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[8,10–14], we thus speculate that PPARD is a strong candidate of the

multiple significant QTL on SSC7 and that PPARD G32E might have

pleiotropic effects on growth, carcass and fatness traits in pigs. Further

investigations will be performed to validate the hypothesis in the future.

Methods

Ethics statement
All animal work was conducted according to the guidelines for

the care and use of experimental animals established by the

Ministry of Agriculture of China.

Fine mapping by identical-by-descent analysis
Microsatellite markers in the mapped interval were mined from

the pig genome assembly (Build 9.2) at http://www.ensembl.org/

Sus_scrofa/Info/Index and were genotyped using standard

procedures. Primers for amplification of microsatellite markers

are given in Table S4. QTL genotypes of F1 boars in the White

Duroc6Erhualian intercross were determined by marker-assisted

segregation analysis as described previously [6]. Briefly, a Z-score

was calculated for each F1 sire; the score is the log10 of the H1/H0

likelihood ratio where H1 assumes that the boar is heterozygous at

the QTL (Qq), while H0 postulates that the boar is homozygous QQ

or qq. Boars were considered to be Qq when Z .2, QQ or qq when

Z ,22, and of undetermined genotype if 22,Z,2. The pedigree

and management of the intercross population with phenotypic

data of ear size have been described elsewhere [4]. Haplotypes of

founder animals were reconstructed with the SimWalk2 program.

Selective sweep detection
To detect the effects of a putative selection sweep on the genetic

variation in Erhualian pigs compared with control animals, we

analyzed the microsatellite and SNP genotypes of 211 Erhualian pigs

and 335 control animals representing 10 different breeds (Hetao Large-

Ear: 56; Laiwu: 32; Yushan Black: 31; Wuzhishan, 32; Dianan Small-

Ear: 31; Tibetan: 34; White Duroc: 12; Duroc: 29; Large White: 39;

Landrace: 39). SNP markers were genotyped using the ABI SNapshot

protocol or PCR-RFLP assays. All primers are given in Table S4.

RT-PCR of candidate genes in ear tissues
Total RNA was extracted from pig tissues using the Rneasy

Fibrous Tissue Mini Kit (Qiagen). To analyze expression of

candidate genes in ears, products from the first strand-comple-

mentary DNA synthesis (TaKaRa) were amplified with primers

given in Table S5. The quantification of the PPARD transcripts

was performed by the comparative Ct method (22DDCt) using the

primers and TaqMan probes shown in Table S5. Real-time PCR

was done with the Universal PCR Master Mix using an ABI7900

instrument (Applied Biosystem). All samples were analyzed in

triplicate. The b-actin gene was used as the internal reference gene.

Resequencing of PPARD cDNA and genotyping of PPARD
G32E

The entire coding region of porcine PPRAD was re-sequenced

using ear mRNA of two White Duroc and two Erhualian animals.

Primer pairs listed in Table S6 were used to generate overlapping

PCR amplicons. All PCR products were purified using the

NucleoSpin Extract II kit (Macherey-Nagel) and sequenced using

the same primers. The sequence traces were assembled and

analyzed for polymorphisms using the SeqMan program (DNAS-

TAR). The PPARD G32E mutation was genotyped using the ABI

SNapshot protocol. A 385-bp DNA fragment was amplified with

the F2/R2 primer pairs (F2: 59-CGG CTG TTT TAC AGG

AAG GA-39; R2: 59- CTG CAC TCA GAC CCA GAT GA-39).

SNapshot reactions were performed with Multiplex Ready

Reaction Mix (Applied Biosystem) and an extension primer (59-

TTT TTT TTT TGC TGG AGG GAA GCG AGT GCT CTG

GT -39) using an ABI 3130XL DNA Analyzer (Applied

Biosystem).

Table 4. Distribution of major haplotype frequency in the PPARD gene in corresponding pig populations.

No. a Haplotype All Erhualian
Chinese
local breed

Chinese
wild boar

Commercial
breed

EU local
breed

EU wild
boar

Haplo1 CGTGGCGACCATAGTGAGGCTCACTCTCAG 0.42 0.91 0.55 0.00 0.00 0.00 0.00

Haplo2 .AC..TAGT..A.CC.GA.ACTGGCGCGGT 0.07 0.01 0.02 0.00 0.26 0.36 0.55

Haplo3 TAC..TAGT..A.CC.GA.ACTGGCGCGGT 0.07 0.00 0.02 0.00 0.28 0.15 0.35

Haplo4 ......................GG....G. 0.06 0.00 0.07 0.17 0.01 0.06 0.05

Haplo5 ...A...G...A..CA......GG.G..GT 0.06 0.01 0.03 0.02 0.14 0.20 0.00

Haplo6 ......................GG...... 0.04 0.00 0.03 0.00 0.08 0.06 0.00

Haplo7 .......G.TGAG.CA..A...GG.G..GT 0.04 0.00 0.04 0.14 0.00 0.04 0.00

Haplo8 ......................GG.G..GT 0.03 0.00 0.02 0.02 0.08 0.09 0.00

Haplo9 .......G.TGA..CA......GG.G..G. 0.03 0.00 0.03 0.14 0.00 0.00 0.00

Haplo10 .......G.TGAG.CA......GG.G..GT 0.03 0.00 0.03 0.00 0.00 0.00 0.00

Haplo11 ....T..G.TGAG.CA..A...GG.G..GT 0.03 0.02 0.03 0.00 0.00 0.00 0.00

Haplo12 TAC..TAGT....CC.GA.ACTGGCGCGGT 0.02 0.01 0.02 0.00 0.05 0.02 0.00

Haplo13 ..........GAG.CA..A...GG.G..GT 0.02 0.00 0.01 0.00 0.06 0.00 0.00

Haplo14 .......G.TGA..CA......GG.G..GT 0.02 0.00 0.02 0.10 0.00 0.00 0.00

Haplo15 ..C....G.TGA..CA......GG.G..G. 0.01 0.00 0.01 0.17 0.00 0.00 0.00

Haplo16 .AC..TAGT....CC.GA.ACTGGCGCGGT 0.01 0.01 0.01 0.00 0.03 0.00 0.05

a Haplo1 is the typical haplotype of Erhualian pigs that carries the derived 32E allele; Haplo2 and Haplo3 represent European haplotypes for their predominant presence
in European commercial and local breeds and wild boars; Haplo4 is an ancient haplotype that was evidenced in both Chinese and European wild boars.
Haplo9 and Haplo15 are two additional ancient haplotype mainly pertain to Chinese wild boars. The PPARD G32E alleles are indicated in bold.
doi:10.1371/journal.pgen.1002043.t004
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Luciferase report assay
The coding region of pig PPARD was amplified with primers

PPARD-Age-I-F (59- GAG GAT CCC CGG GTA CCG GTC GCC

ACC ATG GAG CAG CCG CCG GAG-39) and PPARD-Age-I-R

(59- TCA TCC TTG TAG TCG CTA GCG TAC ATG TCC TTG

TAG-39). The amplified cDNA was gel-purified and digested with AgeI

and NheI (NEB). The restricted fragments were cloned to pGC-FU-

EGFP-3FLAG lentiviral expression vector (Genechem). The sequence

and orientation of the insert were verified by DNA sequencing. The

expression of His-tagged PPARD in cultured cells was confirmed by

Western blot analysis with anti-His antibody. The human 293T cells

were infected with the lentiviral expression constructs of pig wild-type

and mutant PPARD. The infected cells were seeded at a concentration

achieving 80% confluence in 96-well plates 18 h before transfection.

The cells were transiently transfected with TCF/LEF-Luc reporter

vector (Cignal, SAB) along with a control Relina luciferase vector using

Lipofectamine plus reagent. The cell lysates were obtained with 16
reporter lysis buffer (Promega) 48 h after transfection. The luciferase

activity was assayed in a Berthold Auto Lumat LB953 luminometer

(Nashua, NH) by using the luciferase assay system from Promega. The

relative luciferase activity was normalized to the Relina luciferase

activity in each sample.

Real-time RT-PCR and western blot analysis in cultured
cells

The pig ear-derived fibroblast cells were transfected with pGC-

FU-EGFP-3FLAG lentiviral expression vector (Genechem). Five

days post-transfection, 16106 cells were harvested for qPCR and

Western blot analysis. Total RNA was extracted from harvested

cells using Trizol (Invitrogen). Two mg of total RNA was synthesized

into cDNA with M-MLV reverse transcriptase (Promega) and oligo

d(T). Real time PCR was performed on the cDNA using the SYBR

Premix Ex Taq (TaKaRa) and primers listed in Table S7 in a

TP800 Real Time System (TaKaRa). The quantification of

transcripts was performed by the comparative Ct (22DDCt) method.

All values were reported as mean 6 S.D. of triplicate assays of each

cDNA sample. Rabbit anti-PPARD (Sigma), mouse anti-b-catenin

(Abcam), rabbit anti-c-myc (Cellsignaling), mouse anti-Sox9

(Abcam) and mouse anti-GAPDH (Santa Cruz) antibodies were

used in Western blots in a routine way. The specific immunoreactive

bands were visualized using an ECL plus kit (GE Healthcare) and

quantified with the Molecular Imaging Software (Kodak).

Association analysis
The entire White Duroc 6 Erhualian resource population was

genotyped for the PPARD G32E mutation. Association of the

mutation with ear size and weight was evaluated using standard

association, marker-assisted association and F-drop test as described

previously [20]. Association analyses were also performed on 667

animals representing 7 different breeds. Photographs were taken for

one ear of each animal after the ear was fixed and covered with a

ruler as an internal reference of the size. Ear size was calculated

using the Qwin software (Laica). Significance was evaluated by the t-

test in the GLM procedure of SAS 9.0.

Analysis of haplotype phylogenies and linkage
disequilibrium

Genomic DNA pools of White Duroc (n = 2) and Erhualian (n = 2)

animals were amplified with primers given in Table S6. All PCR

products were purified with the Qiagen protocol and sequenced using

the same PCR primers, revealing a subset of SNP markers in the

genomic region of porcine PPARD. SNP markers were genotyped by

iPLEX SEQUENOM MassARRAY platform. SNP genotype calls

were filtered and checked manually, and aggressive calls were omitted

from the dataset. Population genetics parameters including the mean

number of pairwise differences across loci (pN), Tajimas D, Fu and

Li’s D were estimated with DnaSP v5 [34]. Haplotypes were

reconstructed with PHASE v2 [35]. Haplotype phylogenetic tree

based on p-distance were drawn using MEGA4 [36]. The Haploview

v4.1 program [37] was used to calculate linkage disequilibrium

measures (r2 and D’) and to identify haplotype blocks.

Supporting Information

Figure S1 Plots of F-ratios indicating the major QTL for ear size

at 58 cM on pig chromosome 7. Markers and distance in cM are

given on the x-axis, and F-ratios are indicated on the left y-axis.

The threshold for 1% genome-wide significant level is indicated by

the dashed horizontal line. The confidence interval of 2 cM is

marked by the dashed vertical line. LEW: left ear weight; REW:

right ear weight; LEA: left ear area; REA: right ear area.

(TIF)

Figure S2 QTL genotypes of F1 boars determined by marker-

assisted segregation analysis. The number of offspring in each sire

family is given above the error bars. The right ear size measured in the

pedigree is marked by cm2 in left axis. A Z-score is given for each sire

pedigree. Q alleles associated with increased ear size are marked by a

diamond, q alleles by a circle.

(TIF)

Figure S3 Association of the Erhualian-originated haplotype in

the critical 630-kb region with increased ear size in Sutai pigs.

Rare haplotypes with frequencies of less than 0.01 were discarded

for analysis. E denotes the Erhualian haplotype.

(TIF)

Figure S4 Real-time RT-PCR analysis of PPARD temporal

expression in ear tissues of Erhualian and Duroc pigs. Tissue samples

were collected from Erhualian and Duroc pigs at days 0, 4563,

9063, and 30063 for RNA extraction. Six animals were sampled

from each breed at each period. Real- time PCR was performed in

triplicate. PPARD expression levels normalized with b-actin are given

(mean 6 s.e.). No significant difference was observed in PPARD

expression levels between Erhualian and Duroc pigs at each stage.

(TIF)

Figure S5 Relationship between Tajima’ D and frequency of the

derived 32E allele.

(TIF)

Figure S6 NJ phylogenetic tree constructed with the 16 frequent

PPARD haplotypes. The detail information about each haplotype

is given in Table 4. Haplotype 1 is the only one containing the

derived 32E allele for increased ear size and is the major haplotype

of Erhualian pigs.

(TIF)

Figure S7 Linkage disequilibrium (r2) plot between pairs of loci

for Chinese indigenous breeds (A), Erhualian pigs (B) and Western

commercial breeds (C). Haplotype blocks are underlined, and the

G32E locus is indicated by arrows.

(TIF)

Figure S8 Distribution of linkage disequilibrium measures

(r2 and D’) against the distance between the G32E mutation and

the rest of loci.

(TIF)

Table S1 Descriptive statistics of the ear traits measured in the

White Duroc 6Erhualian cross.

(DOC)
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Table S2 Effect of the PPARD G32E substitution on ear size in

the White Duroc 6Erhualian cross.

(DOC)

Table S3 Genetic variability in the PPARD gene in worldwide

pig breeds.

(DOC)

Table S4 Primers for detection of SNP and microsatellite

markers in the QTL region.

(DOC)

Table S5 Primers for analyzing expression of annotated genes in

the refined interval using RT-PCR and real-time PCR.

(DOC)

Table S6 Primers for identification of polymorphisms in the

coding and genomic regions of porcine PPARD.

(DOC)

Table S7 Primers for real time RT-PCR analysis in cultured

cells.

(DOC)
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