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Abstract

Background: Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general
reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the
gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis.

Methodology/Principal Findings: Linkage analysis: 264 UK families and 155 US families each containing at least one child
diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association
analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia
susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining
samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following
the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in
three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-
regulated 4-like (NEDD4L).

Conclusions: Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for
dyslexia susceptibility genes. However, further replication and functional studies are still required.
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Introduction

Developmental dyslexia (DD [MIM 127700]) is a specific

impairment in reading ability not directly related to intelligence,

socio-economic background, general motivation, educational

opportunity or sensory acuity [1,2,3,4,5,6]. The prevalence of

DD is reported as 5% to 17.5% [1,2,3,4,5]. Familial observations

[7,8,9,10] and twin studies [11,12,13] suggest a genetic aetiology

of DD, and the heritability has been estimated between 0.30 and

0.70 [13,14,15,16]. Recently, genetic studies have begun to

unravel this complex aetiology.

Linkage studies of DD susceptibility have identified nine loci of

interest, named DYX1 to DYX9 [2,3,5]. Candidate DD susceptibility

genes have since been identified close to some of these loci. Firstly,

‘‘dyslexia susceptibility 1 candidate 1’’ (DYX1C1 [MIM 608706])

was found close to DYX1 on chromosome 15 [17]. Both KIAA0319

(MIM 609269) and ‘‘doublecortin domain containing protein 2’’

(DCDC2 [MIM 605755]) were indentified at DYX2 on chromosome

6 [18,19,20]. The three genes ‘‘family with sequence similarity 176,

member A’’ (FAM176A), ‘‘mitochondrial ribosomal protein L19’’

(MRPL19 [MIM 611832]) and ‘‘chromosome 2 open reading frame

3’’ (C2ORF3 [MIM 189901]) have been implicated at DYX3 on

chromosome 2 [21]. Finally, ‘‘roundabout, axon guidance receptor,

homolog 1 (Drosophila)’’ (ROBO1 [MIM 602430]) has been found

close to DYX5 (MIM 606896) on chromosome 3 [22].

We performed the first two quantitative-trait locus (QTL) based

genome-wide linkage screens for DD using 89 United Kingdom

(UK) and 119 United States (US) families [23]. Both revealed their

most significant QTLs at chromosome 18p11.2 (DYX6 [MIM

606616]), with various reading-related measures. An independent

set of 84 UK families replicated this linkage at 18p11.2, and also

revealed linkage at 18q12.2.

We then performed a multi-variate linkage study with the

original 89 UK families to explore the contribution of six different

reading-related traits to DYX6 [24]. Dropping any one of these

reading-related measures from the multi-variate model signifi-

cantly reduced the linkage at DYX6, thereby implying that all

measures were influenced by the underlying QTL.

Seven independent studies have failed to observe linkage at

18p11.2 with DD [25,26,27,28,29,30,31]. However, a study of 82
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German families has observed a weak signal at 18p11 (LOD<0.5)

and 18q12 (LOD<0.6) [32] with different reading-related traits,

and a study of 108 Dutch families observed linkage to 18q12–q21

with DD (LOD = 2.0) [33]. Furthermore, a study of 403 Australian

twin-families found strongest genome-wide linkage for reading

ability at 18p11.2 (LOD = 1.70) and 18q12.1 (LOD = 2.0) [34].

Finally, the Framingham study of 705 stroke- and dementia-free

individuals found strongest genome-wide linkage for reading

ability at 18p11.2 (LOD = 5.0) [35].

Here, we conduct linkage analysis by genotyping our UK and

US families to an approximate density of 1 microsatellite marker

every 5 cM. A further 91 UK and 39 US families were also

similarly genotyped. These new families continue to support

linkage to chromosome 18. Subsequently, we performed a high-

density association study by genotyping nearly 3000 SNPs from

18p11.31 to 18q21.31, covering the linkage region, in a discovery

sample of 187 of the UK families. This yielded significant results in

numerous genes, of which we could replicate several in our

remaining samples of 102 UK families, 152 US families and 317

UK DD cases. In particular, we find consistent associations within

the genes ‘‘melanocortin 5 receptor’’ (MC5R [MIM 600042]),

dymeclin (DYM [MIM 607461]) and ‘‘neural precursor cell

expressed, developmentally down-regulated 4-like’’ (NEDD4L

[MIM 606384]).

Materials and Methods

Ethics Statement
Ethical approval for this study for the UK samples was acquired

from the Oxfordshire Psychiatric Research Ethics Committee

(OPREC O01.02). Written informed consent to participate in this

study was obtained from all individuals prior to taking blood or

buccal samples for DNA extraction, with the understanding that

they could withdraw from the study at any time. Research plans

and consent forms for the US families were reviewed and

approved by the Institutional Review Boards of both the

University of Colorado and the University of Nebraska Medical

Center.

Sample collection
The UK families were identified at clinics and schools of the

Berkshire area, and have been detailed previously [23]. Families

were ascertained if the proband had a British abilities scales (BAS)

single-word reading score .2 standard deviations (SDs) below that

predicted by their intelligence quotient (IQ) derived from their

verbal and non-verbal reasoning scores and if at least one other

sibling had a record of reading disability. Proband exclusion

criteria included other disorders such as specific language

impairment (SLI [MIM 606711]), autism (MIM 209850) or

attention deficit-hyperactivity disorder (ADHD [MIM 143465]).

These criteria identified some probands with high IQ scores and

BAS scores within the ‘normal’ range. Therefore, after collecting

173 UK families the criteria were changed such that the proband’s

difference in their BAS single-word reading score had to be $1 SD

below the population mean for their age-band (and not IQ), along

with an IQ$90, and the requirement of reading disability in

another sibling dropped. A further 116 UK families were then

collected with these new criteria. The total sample now comprises

289 UK families, with 685 siblings measured for a series of

reading-related quantitative traits.

The 155 US families were drawn from the Colorado Learning

Disabilities Research Center (CLDRC) twin study of reading

disability. Twin pairs were identified from the records of 27

Colorado school districts and ascertained if at least one member

had a school history of reading difficulty. Monozygotic twins were

excluded, but additional non-twin siblings were included. Each

child was assessed for a series of psychometric measures as detailed

previously [23].

Briefly, the psychometric measures include graded tests for

single-word reading (READ) and spelling (SPELL), and tests for

orthographic coding by an irregular word task (OC-irreg; only UK

families) and forced choice task (OC-choice; a pseudohomophone

detection task), phoneme awareness (PA), phonological decoding

(PD).

We also report a new collection of 317 UK cases of DD

recruited through the Dyslexia Research Centre clinics in Oxford

and Reading, and the Aston Dyslexia and Development clinic in

Birmingham. These cases are between 8 and 18 years old, have a

BAS2 single-word reading score #100 (at chronological age) and

.1.5 SDs below that predicted by IQ.

Population controls were taken from the Human Random

Control (HRC) panel of the European Collection of Cell Cultures

(ECACC). We analysed the DNA of 287 unique samples from

these cell lines. Three assumptions are made about these controls.

Firstly, that ,5% have DD due to the prevalence of this disorder

in the UK. Secondly, that they are unrelated to our DD

individuals, which is reasonable as they have been randomly

ascertained from the UK and Ireland. Thirdly, that they come

from the same ethnic origin as our DD samples, which is

important to prevent population stratification from affecting our

association analyses.

Genotyping
Highly polymorphic microsatellite markers were genotyped by

semi-automated fluorescent genotyping techniques with the

ABI3700 machine and GenotyperH software from Applied

Biosystems as previously described [23].

SNPs were genotyped with GoldenGate assays from IlluminaH
[36] or iPLEX assays from SEQUENOMH [37,38], according to

the manufacturers’ instructions. Two GoldenGate assays of 1,536

SNPs were created for genotyping in a single multi-plex reaction.

After amplification, hybridisation and washing steps, the arrays

were scanned and analysed to generate genotypes which were then

verified by eye. SEQUENOMH’s Assay Design software was used

to design the PCR and extension primers for each SNP after

downloading and processing sequences with Biomart and

RealSNP, respectively. Genotypes were called automatically and

verified by eye using SEQUENOMH’s Typer software.

Gene and SNP Selection
The SNP selection and genotyping were conducted in two

stages. Both stages utilised the International HapMap Project

(IHMP) genotype data from 30 Centre d’Etude du Polymorphisme

Humain (CEPH) trios to guide SNP selection (see Table S1). Our

second stage superseded the first as more genotype data were then

available from the IHMP, thereby increasing the number of

available polymorphisms to test and the resolution of linkage

disequilibrium. Exclusion criteria for the IHMP SNPs were

deviations from Hardy-Weinberg (H–W) equilibrium (p-val-

ue,0.001), low genotype call rates (#50%), Mendelian inheri-

tance errors (.0) and low minimum allele frequency (,5%).

HAPLOVIEW [39] created blocks of SNPs in strong LD

according to the definition of Gabriel et al. [40], and subsequently

selected haplotype-tagging SNPs (htSNPs) within each block to tag

all haplotypes $3% frequency. htSNPs from all ‘‘genic blocks’’ in

the candidate region were selected for genotyping, where we

define a ‘‘genic block’’ as a Gabriel block covering any part of a

gene (including any additional upstream or downstream sequence).

Genetics of Dyslexia on chr18
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Three genes remained totally uncovered by any block, whilst all

others were covered completely or partially by at least one block.

Details for all genes in the candidate region were downloaded

from the University of California, Santa Cruz (UCSC) Genome

Table Browser freezes July 2003 and May 2004, for the first and

second stages, respectively (see Table S2).

Data handling and analysis
The Integrated Genotyping System (IGS) [41] was used to store

and check genotypes for Mendelian inheritance problems.

MERLIN (1.1.1) [42] was used to detect unlikely double

recombinants which might indicate further genotyping errors.

PEDSTATS (0.6.9) [43] was used to assess levels of H–W

equilibrium. STRUCTURE [44,45] was used to assess population

structure within and between sample sets by comparing the

genotypes of 28 SNPs at genomic loci unlinked to DD.

STRUCTURE was executed with a burn-in length of 1,000,000

followed by 1,000,000 iterations until completion. Analyses were

performed within and between each sample set assuming K = 1

sub-populations (i.e. no population stratification), and K = 2 and 3

sub-populations (assuming a model of admixture) and revealed a

homogenous ancestry of samples.

Linkage analysis
Multi-point linkage analysis was performed. GENEHUNTER

(2.1_r2 beta) [46] was used to apply the traditional Haseman-

Elston (HE) sibling-pair squared trait-differences model [47] or a

variance components (VC) framework without dominance vari-

ance and with a single-trait mean. The DeFries-Fulker (DF)

regression technique [48] was applied with scripts and macros for

the SAS package [49].

Association analyses
Family-based samples with their quantitative traits were

analysed with the ’total association’ option within QTDT (2.5.1)

[50,51]. The association tests were not adjusted for linkage. All

traits were tested against each SNP individually. Qualitative

population-based analyses were performed with PLINK (1.01)

[52] which supports the genotype and allele count tests. Quantile-

quantile plots validated these tests (see Figure S1).

Results

Linkage analysis of DD susceptibility on chromosome 18
The 89 UK families and 116 (of the 119) US families used for

the original whole genome-wide scans and the 84 UK families

used for replication [23], were genotyped with a denser set of

microsatellite markers. We detected the same linkages as

previously reported (see Figures S2 and S3). Subsequently, we

genotyped a third set of 91 UK families and a second set of 39 US

families with microsatellite markers to the same high density.

Both new samples reveal linkage at 18q12.2; the 91 UK families

with OC-irreg (LOD<1.5; see Figure S2) and the 39 US families

with OC-choice (LOD<3.5; see Figure S3). Linkage at 18p11.2

was also observed in the 39 US sample with PD, SPELL and OC-

choice (LOD<1.5) and also at 18q21 with PD and READ

(LOD.3.5). Combining all 264 UK families together produced

linkage at 18q12 with a LOD.2 and at 18p11.2, 18q12.2 and

18q22.3 with a LOD<1.5 with various traits (see Figure S2).

For analysis with the DF regression technique, UK or US

families were selected if at least one child scored .1.5 SDs or .2.0

SDs, respectively, below the normative mean for any one of the

reading-related traits (see Figure 1). This selection yielded 188 UK

families and 133 US families. DF analysis revealed strong linkage

Figure 1. DF linkage analysis on chromosome 18 of the UK and US families. Families were selected for each quantitative trait if any sibling
scored .1.5 SD or .2 SD below the normative mean for that trait, for the UK or US families, respectively. The units of the x-axis are cM and y-axis are
negative t-scores.
doi:10.1371/journal.pone.0013712.g001
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at 18p11.2 and 18q12.2 with READ in both the UK and US

families, and also at 18q22.1 in the US families.

This linkage analysis therefore provides supporting evidence of

a DD susceptibility gene on chromosome 18. However, we were

unable to narrow down the region and instead extended the

linkage to the other side of the centromere. We therefore carried

out a high-throughput genotyping and association strategy of all

genic regions in the broader candidate region spanning 18p11.31

to 18q21.31. A total of 768 samples, including quality control

samples, were genotyped in 8696 well plates, which represented

the most cost-effective strategy. To enable family-based tests, the

188 UK families that gave strongest linkage to chromosome 18

with the DF analysis were selected for genotyping. Following QC

procedures one family was removed. The remaining 187 UK

families included 68 from the original 89 families used in the whole

genome-wide linkage scan, 53 from the 84 families used in the

replication of DYX6, and 66 from 91 families newly reported here.

Association analysis: discovery stage
Altogether, 2,895 SNPs in our candidate region were success-

fully genotyped in 759 samples, and of these .97% SNPs and

.99% samples had a genotype call rate .96%. The 759 samples

included 187 successfully genotyped UK families known hence

forth as the ‘‘discovery sample’’ (see Table 1).

Quantitative association analyses with each of the six quanti-

tative traits were performed on all 2,895 SNPs in the discovery

sample (see Figure S4 and Table S3 for the complete results, and

Table S4 for the top results). The most significant associations (p-

values = 0.0003) were with rs7507114 and rs4800148 in the genes

‘‘chromosome 18 open reading frames 1’’ (C18orf1 [MIM 606571])

and ‘‘Cdk5 and Abl enzyme substrate 1’’ (CABLES1 [MIM

609194]), respectively. The top associations consistently showed

the same direction for each quantitative trait tested, in agreement

with our observations of multivariate linkage analysis [24].

Association analysis: Replication stage
The 11 most significant SNPs (p-values,0.001) from the

discovery stage were selected for replication in independent

samples. Another 14 highly ranked SNPs (p-values between

0.001 and 0.002) were also selected if they were compatible with

the iPLEX assays. In total, 25 SNPs were selected for further

genotyping (see Table 2) in our independent samples consisting of

102 UK families, 152 US families and 317 UK DD cases and 287

UK population controls (see Table 1). Tests in the family samples

were performed with QTDT whilst tests in the cases and controls

were performed with PLINK (see Tables S5 & S6 for the complete

results).

Significant results were observed in the same direction as the

discovery sample for 5 SNPs with the QTDT analysis and 5 SNPs

with either of the population-based analyses (p-values,0.05; see

Table 3). Of particular note are two SNPs that gave significant

results in both the 102 UK families and the case-control samples;

rs1299348 within MC5R and rs11873029 within DYM. Also of

Table 1. Summary of the independent samples and tests performed for the association study on chromosome 18.

Analysis type # tests

Discovery sample 187 UK families QTDT 662895

Replication sample 1 102 UK families QTDT 6624

Replication sample 2 152 US families QTDT 5624

Replication sample 3 317 UK DD cases and 287 controls Allelic & genotypic tests 2624

A summary of the samples used and the tests conducted in the discovery and replication stages of the association study on chromosome 18. Note, an additional 25 UK
families not genotyped for microsatellites, were used in the replication stage of SNP associations, and 3 US families genotyped for microsatellites in the linkage stage
failed genotyping for the association stage.
doi:10.1371/journal.pone.0013712.t001

Table 2. SNPs selected for further genotyping in
independent samples.

SNPs selected for
replicationa Block # Gene Rankingb

rs7507114 1015 C18orf1, C18orf15 1

rs4800148 1121 CABLES1 1

rs11659463 2162 SMAD2, MADH2 3

rs17802670 256 DLGAP1 4

rs17439829 559 LAMA1 5

rs9957285 2094 LOXHD1 5

rs11874896 449 EPB41L3 7

rs10502812 1936 AK131011 7

rs4464148 2246 SMAD7 7

rs3018202 1913 RIT2, U78166 10

rs7241007 N/A ZNF519 10

rs6505873 1049 ZNF519 12

rs12607710 975 PTPN2 15

rs1299348 1033 MC5R 15

rs9958315c 1571 C18orf34 15c

rs1790480 2294 ACAA2, SCARNA17 15

rs506696 2296 MYO5B 15

rs11873029 N/A FLJ20071, DYM 15

rs11661879 2240 KIAA0427 22

rs8083578 2654 NEDD4L 22

rs8094063 2346 MRO, B29 25

rs1941001 441 EPB41L3 28

rs8094327 2663 NEDD4L 30

rs555879 N/A MYO5B 30

rs12606138 2664 NEDD4L 34

Displayed are the SNPs selected for further genotyping in the independent
replication samples. The p-values for these SNPs can be found in Tables S3 & S4.
aSome SNPs were replaced by proxy SNPs if the original were not compatible
with the assays designed for the iPLEX genotyping system;

branking only given for those SNPs selected for genotyping in replication
samples. Equally ranked SNPs are given the same rank number, and
subsequent rank numbers are skipped to compensate;

cThis SNP (rs9958315) failed genotyping in the replication samples.
doi:10.1371/journal.pone.0013712.t002
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note are the two SNPs rs8094327 and rs12606138 within NEDD4L

that both replicated in the case-control samples.

Discussion

In the present study we confirm linkage to DD on chromosome

18 by genotyping an extended sample of our UK and US families

with a denser set of microsatellite markers. By combining all UK

or US families, the linkage signals appear broad (.40 Mb) and

span the centromere from 18p11.2 to 18q12.2.

We then performed a high-throughput SNP genotyping

experiment covering genes from 18p11.31 to 18q21.31 in a subset

of 187 UK families. Highly associated SNPs were then genotyped

in the remaining independent samples; 102 UK families, 152 US

families, 317 UK DD cases and 287 UK controls (see Table 1). We

successfully found associations for SNPs within several genes,

particularly MC5R, DYM and NEDD4L, with the same trend in

independent samples. Between samples, the associations were not

always with the same trait or test, and so not all are replications in

the purest sense. However, we know from the multivariate linkage

analysis that all six traits are influenced by the same underlying

QTL(s) on chromosome 18. Furthermore, there is consistency

between the observed linkage and association patterns. The

linkage signals in both UK and US samples are spread across

chromosome 18, spanning some 40 Mb, and accordingly we find

associations to genes located along this chromosome (see Figure 2).

Hence, it would be attractive to speculate that this spread of

associations across the candidate region explains the broad spread

of linkages. Indeed, READ gives strongest linkage to 18p11.21 in

the discovery sample (see Figure 1), and the genes PTPN2, C18orf1,

C18orf15, MC5R and ZNF519 at 18p11.21 each appear strongly

associated with READ (see Table S4). Whilst on the q-arm,

strongest linkage is at 18q12.2 in the discovery sample with PD,

READ, OC-irreg, and PA, and the genes C18orf34 and RIT2, at

18q12.1 and 18q12.3 respectively, are associated strongest for all

or most of these traits. Also on the q-arm, at 18q21, are DYM and

NEDD4L, and together these are strongly associated to these traits

too.

MC5R is a G-protein-coupled 7 transmembrane receptor [53]

that binds melanocortins, including the neuropeptides adrenocor-

ticotropic hormone (ACTH) and a-, b- and c-melanocyte-

stimulating hormones (a-,b- and c-MSH). The melanocortins

are involved in skin physiology, behaviour, learning and memory

[54,55,56]. ACHT, or peptides derived from it, are implicated in

attention, visual attention, analytical thinking, spatial awareness

and musical ability [57,58,59,60]. MC5R is a single exon gene less

than 1 kb in length. Here, we find association to the SNP

rs1299348 within this gene in 3 independent samples. The major

allele of ,65% frequency confers risk to DD susceptibility.

DYM is nearly 500 kb long, and mutations in this gene cause

Dyggve-Melchior-Clausen syndrome [MIM 223800] [61], char-

acterised by short trunk dwarfism, developmental delay, micro-

cephaly and psychomotor retardation. We find here an association

to a single SNP, rs11873029, in the discovery sample. We then

found association to a proxy SNP in our independent UK families

and UK case and control samples. The two SNPs are found in

separate introns of DYM, and the major alleles of ,85% frequency

confer risk to DD susceptibility.

NEDD4L has 78% amino acid sequence identity with neural

precursor cell expressed, developmentally down-regulated 4

Table 3. Results for any SNPs that replicated in any independent sample.

Association analysis for minor allelea

SNP Gene Discovery familiesb 102 UK familiesb 152 US familiesb
317 UK DD cases and 287
population controlsc

rs11874896 EPB41L3 [-] P,0.001 (PA) [-] 0.05 (OC-irreg) n/s n/s

rs1299348 MC5R 0.006 (OC-irreg)
0.005 (OC-choice)
0.001 (READ)

0.04 (SPELL) n/s 0.009 (allelic)
0.009 (genotypic)

rs10502812 AK131011 [-] P,0.001 (PD) n/s 20.05 (PD)
20.03 (SPELL)

n/s

rs11661879 KIAA0427 0.03 (OC-irreg)
0.001 (SPELL)
0.02 (PA)

0.04 (SPELL) n/s n/s

rs11873029 DYM 0.004 (PD)
0.001 (PA)

0.01 (OC-choice) n/s 0.006 (allelic)
0.02 (genotypic)

rs555879 MYO5B 0.03 (PD)
0.02 (SPELL)
0.002 (PA)

n/s n/s 0.03 (genotypic)

rs8094327 NEDD4L 0.02 (OC-irreg)
0.008 (PD)
0.002 (READ)
0.04 (SPELL)

n/s n/s 0.007 (allelic)
0.007 (genotypic)

rs12606138 NEDD4L 0.02 (OC-irreg)
0.007 (PD)
0.002 (READ)
0.04 (SPELL)

n/s n/s 0.005 (allelic)
0.002 (genotypic)

aabsolute values presented are p-values for the minor allele, and the negative sign [-] indicates an association of risk for DD with that allele, else that allele confers
protection against DD. n/s means not significant (p-value.0.05) – the actual p-values are available in the supplementary tables;

bthe acronyms OC-irreg, PD, OC-choice, READ, SPELL and PA in brackets refer to the trait giving association with QTDT;
cthe terms allelic or genotypic in brackets indicate the allelic or genotypic test for that p-value.
doi:10.1371/journal.pone.0013712.t003

Genetics of Dyslexia on chr18

PLoS ONE | www.plosone.org 5 October 2010 | Volume 5 | Issue 10 | e13712



(NEDD4 [MIM 602278]) and is implicated in the regulation of the

epithelial sodium channel [62]. A SNP within NEDD4L

(rs4149601) has been separately associated to ADHD [63],

hypertension and blood pressure [64,65,66,67], and another

SNP (rs2288774) has also been associated with ADHD [63]. DD

shows strong co-morbidity with ADHD [68] and has also been

tentatively associated to low blood pressure [69]. Proxies of these

two SNPs that were genotyped in the discovery sample did not

reveal association with DD. However, a marked haplotypic

diversity has previously been observed within NEDD4L such that

opposite alleles of the same SNPs associate with hypertension in

different white populations [65,70]. NEDD4L is about 350 kb in

length, and we identify here three associated intronic SNPs in our

discovery sample that are separated by about 135 kb. Two of these

SNPs replicated in our case and control samples (see Table 3). The

major alleles, of 70–80% frequency, for each of these SNPs appear

to confer risk for DD susceptibility.

The power of this study was limited by a relatively small sample

size. Another limitation was the failure of some SNPs to genotype

and the technical constraints of genotyping other SNPs, as this has

led to some genetic variability remaining untested. A further issue

not yet addressed is that of multiple-testing. The p-values reported

here are all uncorrected for multiple-testing. Given that 2,895

SNPs and six quantitative traits were analysed in the discovery

stage analysis, a total of 17,370 tests were performed in the

discovery sample (see Table 1). In the follow-up replication stages,

144 tests were performed in the independent UK families, 120

tests in the US families and 48 tests with the independent UK

cases and controls. A Bonferroni corrected significance threshold

for the discovery stage is therefore 2.8761026, and for the

replication stages are 3.4761024 (UK families), 4.1761024 (US

families) and 1.0461023 (UK cases and controls). None of the

SNPs reached this level of significance in either the discovery or

replication stages. However, a simple Bonferroni correction is

highly conservative here as many of the SNPs are in strong LD

with each and the traits themselves are highly correlated.

We also recognise that our association results were not as

consistent or significant as the linkage study, and this may in part

be due to rare variations present in individual families. However,

with our approach we did find consistent association to genetic

variants in several independent samples for MC5R, DYM and

NEDD4L. Published biological evidence for these genes make them

attractive candidates with respect to DD susceptibility. We suggest

that further independent samples be tested for these genes.

Web Resources
Biomart, http://www.biomart.org

HapMap homepage, http://www.hapmap.org/

Online Mendelian Inheritance in Man (OMIM), http://www.

ncbi.nlm.nih.gov/Omim/

RealSNP, Sequenom, https://www.realsnp.com/

UCSC Genome browser: http://www.genome.ucsc.edu/

Supporting Information

Figure S1 Quantile-Quantile plots of the association analyses.

Quantile-quantile plots were created for the association analyses

performed in QTDT and TDT. The left column displays the

SNPs from the first stage, the middle displays the SNPs from the

second stage, and the right displays both stages combined. The x-

axis is the expected test statistic and the y-axis is the observed test

statistic.

Found at: doi:10.1371/journal.pone.0013712.s001 (0.47 MB TIF)

Figure S2 HE and VC linkage analysis on chromosome 18 in

the UK families. The HE and VC linkage analyses were

performed in the three sets of independent UK families separately

and combined. The units of the x-axis are cM and y-axis are LOD

scores.

Found at: doi:10.1371/journal.pone.0013712.s002 (0.39 MB TIF)

Figure S3 DF linkage analysis on chromosome 18 of the US

families. The DF linkage analyses was performed in the two sets of

independent US families separately and combined. Families were

selected for each trait if any sibling scored .2 SD below the

normative mean for that trait. The units of the x-axis are cM and

y-axis are negative t-scores.

Found at: doi:10.1371/journal.pone.0013712.s003 (0.16 MB TIF)

Figure S4 Association analysis with the discovery sample of 187

UK families. Association analyses were performed by QTDT with

the six quantitative traits. Results are shown with respect to the

minor allele of each SNP.

Found at: doi:10.1371/journal.pone.0013712.s004 (0.15 MB TIF)

Table S1 Information on the SNPs in the candidate region

downloaded from the IHMP. Contains details on the SNPs

genotyped in the CEPH trios and downloaded from the IHMP in

phases I and II for the chromosome 18 DD susceptibility

candidate region (18p11.2 to 18q12.2), for stages 1 and 2

respectively.

Found at: doi:10.1371/journal.pone.0013712.s005 (0.02 MB

XLS)

Table S2 Selection of genes on chromosome 18 in the candidate

region. A complete list of all the genes in the candidate region,

including their physical co-ordinates, Gabriel block coverage, and

the number of htSNPs identified for genotyping.

Found at: doi:10.1371/journal.pone.0013712.s006 (0.04 MB

XLS)

Table S3 Complete results of the association analyses. Listed are

the complete results of the QTDT analysis of the 2,895 SNPs

genotyped in the discovery sample of 187 UK families.

Found at: doi:10.1371/journal.pone.0013712.s007 (0.69 MB

XLS)

Table S4 Results from the QTDT association analysis with the

discovery sample of 187 UK families. Displayed are the SNPs

selected for genotyping in independent samples, including all SNPs

achieving a nominal p-value,0.001 for any quantitative trait and

other high ranking SNPs. Also displayed are any p-values,0.05.

Found at: doi:10.1371/journal.pone.0013712.s008 (0.02 MB

XLS)

Table S5 Complete results of the association analysis with

QTDT in the independent UK and US families. Listed are the

complete results of the association analysis performed in QTDT

Figure 2. Location of interesting genes on chromosome 18. The location of the genes that showed some evidence of replication are
highlighted along chromosome 18.
doi:10.1371/journal.pone.0013712.g002
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with the independent UK and US families. Also shown are the

results of the analysis performed in all the UK families combined.

Found at: doi:10.1371/journal.pone.0013712.s009 (0.03 MB

XLS)

Table S6 Complete results of the association analysis in the

independent UK DD cases and population controls. Listed are the

complete results of the association analysis performed with the

independent UK cases and population controls.

Found at: doi:10.1371/journal.pone.0013712.s010 (0.02 MB

XLS)
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