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Decision-making is an advanced cognitive function that promotes information processes
in complex motor situations. In recent years, many neuroimaging studies have assessed
the effects of long-term motor training on athletes’ brain activity while performing
decision-making tasks, but the findings have been inconsistent and a large amount
of data has not been quantitatively summarized until now. Therefore, this study aimed
to identify the neural mechanism of long-term motor training affecting the decision-
making function of athletes by using activation likelihood estimation (ALE) meta-analysis.
Altogether, 10 studies were included and comprised a total of 350 people (168 motor
experts and 182 novices, 411 activation foci). The ALE meta-analysis showed that
more brain regions were activated for novices including the bilateral occipital lobe, left
posterior cerebellar lobe, and left middle temporal gyrus (MTG) in decision-making tasks
compared to motor experts. Our results possibly suggested the association between
long-term motor training and neural efficiency in athletes, which provided a reference for
further understanding the neural mechanisms of motor decision-making.
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INTRODUCTION

Decision-making refers to the advanced cognitive function to process information in complex
situations (Johnson, 2006). The motor has the characteristics of behavior initiation, memory, and
decision-making that make it easy to observe or measure the results of decisions, thus motor
psychologists consider that the most suitable for decision-making research is the field of sports
(Raab et al., 2019). Numerous studies have shown that long-term motor training can substantially
change the neurological activation of the cerebral cortex (Kelly and Garavan, 2005; Leff et al., 2011;
Morgan et al., 2015; Fernandes et al., 2017). Presently, motor-induced decreases in activity might
occur in brain areas related to visual processing, such as the occipital pole (Duru and Balcioglu,
2018) and occipital fusiform gyrus (Herold et al., 2020). Motor psychologists used the “neural
efficiency” hypothesis to explain the result (Babiloni et al., 2010; Li and Smith, 2021). Neural
efficiency refers to the phenomenon in which task execution becomes an automatic and neural
activity in specific brain regions decreases as skill levels increase (Neubauer and Fink, 2009; Karim
et al., 2017). Meanwhile, long-term motor training promoted the formation of internal models
in the brain that enabled athletes to perform tasks in a relatively stable and efficient manner
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(Imamizu et al., 2000). For example, a study on archers when
performing aiming tasks found that experts invoked smaller
and more focused neural networks, whereas novices activated
a wide range of brain regions including superior frontal gyrus,
inferior frontal gyrus, prefrontal lobe, primary motor cortex,
superior parietal lobe and primary somatosensory cortex (Kim
et al., 2014). In contrast, some authors have found that the
ventromedial prefrontal cortex (Hiser and Koenigs, 2018),
orbitofrontal cortex (Rudebeck and Rich, 2018), infralimbic
cortex (Roughley and Killcross, 2021), and amygdala (Chang
et al., 2015) were activated in experts during decision-making.
To summarize, changes in cortical activation caused by extensive
motor training might be to satisfy better decision-making.

An “expert-novice” paradigm has been developed in the field
of motor cognition (Del Villar et al., 2007). An important
approach to study the effect of motor training on cortical
activation during executive decision-making was to recruit
professionals with intensive motor experience (motor experts) as
an experimental group and compare their brain activation with
that of a control group (novices).

Currently, image fixation and eye-movement recording
methods are mostly used to compare the decision-making
function of experts and novices in different motor scenarios,
yet these methods are likely to make the obtained data content
inaccurate due to the subjectivity of the subjects (Brunyé
and Gardony, 2017). The rapid development of neuroimaging
techniques such as functional magnetic resonance imaging
(fMRI) and positron emission tomography (PET) has informed
further understanding of the neural mechanisms underlying the
differences in decision-making behavior between experts and
novices (Kable and Levy, 2015; Bertollo et al., 2020). However,
these studies have reported inconsistent results, probably due to
small samples or inconsistent analysis methods.

Several studies have found that in decision-making tasks,
experts showed decreased activation in specific brain regions
compared to novices (Del Percio et al., 2008; Babiloni et al.,
2010; Blain et al., 2019). An fMRI study comparing the intensity
of brain activation during the ball response task in table tennis
players and non-athletes found that the bilateral middle frontal
gyrus, right middle orbitofrontal area, left inferior temporal
gyrus, left middle temporal gyrus, right angular gyrus, and
bilateral lingual gyrus was significantly less activated in the
players (Guo Z. et al., 2017) and similar results were found by
another study (Kellar et al., 2018). These authors suggested that
task-related brain networks were organized more centrally and
efficiently as athletes improved their skills, so a possible reflected
more efficient utilization of specific neural circuits or automation
of task execution. A study investigated the brain activation of
objects tracking decisions in basketball players and novices. The
results showed that less cortical activation of the bilateral middle
frontal gyrus, right middle orbitofrontal area, right paracentral
lobe, right precuneus, left supramarginal gyrus, right angular
gyrus, left inferior temporal gyrus, left middle temporal gyrus
and bilateral lingual gyrus was observed in basketball players
than in novices (Qiu et al., 2019). This might indicate that long-
term motor training promoted higher decision-making efficiency
and athletes did not need to use more information systems

to make decisions from complex situations, which led to less
activation of neural network areas associated with decision-
making (Wang et al., 2017; Ludyga et al., 2020; Blazhenets et al.,
2021).

However, two fMRI studies (Abernethy and Russell, 1987;
Wong and Gauthier, 2010) showed that expert players were able
to pick up more relevant information than novices in a selective
decision-making task, electrophysiological data indicated more
prefrontal positive activities in experts (Javier et al., 2014). Several
recent studies have found that experts compared with novices
could quickly perceive the actions of opponents and successfully
respond, and the frontal areas were more activated, which
might be related to the expert’s better ability in action planning
and action understanding (Callan and Naito, 2014; Okazaki
et al., 2015; Vernon et al., 2018). A randomized controlled
trial recruited 15 basketball expert athletes and 15 novices to
participate in an action decision-making task to analyze the
correlation between gaze behavior and decision-making. The
results showed that expert athletes had stable gaze fixation,
accurate rate, and activation in the inferior parietal lobe and
inferior frontal gyrus compared to novices (Wu et al., 2013).
This suggested that experts might need more activation in the
brain’s attention and sensorimotor networks to achieve better
decision-making performance.

Taken together, the above evidence has suggested that long-
term motor training could alter brain activation in decision-
related areas, but the findings were inconsistent. On the other
hand, in existing many imaging studies, there was a small sample
size of subjects, and the selection of motor items, duration,
and intensity of each motor also vary, which might lead to low
statistical power and effect sizes and even inconsistent findings
(Yarkoni, 2009). Therefore, to overcome the limitations of single
studies and further elucidate the neural mechanisms underlying
the effects of motor training on decision-making functions, an
activation likelihood estimation (ALE) algorithm based on large
amounts of data need to be introduced into the field of motor
cognition (Yarkoni et al., 2011). The quantitative approach for
ALE has been increasingly improved, obtaining rich information
within the whole brain. Therefore, the current study applied the
ALE method to compare brain activation differences between
experts and novices during the execution of decision-related
tasks. Our results provide a reference for further understanding
the neural mechanisms of motor decision-making and promote
the development of motor cognitive neuroscience.

According to the view of motor psychologists, athletes
acquired motor skills through training rapid stimulus
discrimination, decision-making, and specialized attention,
but novices did not have. So they concluded that motor
experts were better able to perform specific tasks with fewer
neural resources, suggesting that long-term motor training
could improve the neural efficiency of experts, reflecting the
automation process of motor skills (Seiler, 2010; Denadai et al.,
2017). Based on this view we predicted that experts might
indicate an activity decrease in areas relevant to the motor
decision process. The opposite hypothesis was that there was no
significant difference in brain activation between experts and
novices when performing decision-making tasks.
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MATERIALS AND METHODS

Literature Search
This ALE meta-analysis has been conducted following a
strict protocol by using the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines
(Moher et al., 2009).

A literature search was conducted by PubMed,1 ISI Web
of Science,2 Elsevier3 and Cochrane Library.4 All included
articles were published in the English language until March
2021. The following search keywords were used: “athlete” OR
“expert” OR “novice” OR “non-athlete,” “decision-making” OR
“decision,” “functional magnetic resonance imaging” OR “fMRI”
OR “positron emission computed tomography” OR “PET.” The
retrieval formula was (“athlete” [Mesh Terms] OR expert OR
novice OR non-athlete) AND (“decision-making” [Mesh Terms]
OR decision) AND (“functional magnetic resonance imaging”
[Mesh Terms] OR “fMRI” [Mesh Terms] OR “positron emission
computed tomography” [Mesh Terms] OR PET).

The titles and abstracts were independently screened by two
trained reviewers (YD and LXH). Two independent reviewers
completed the entire article inclusion process, and only articles
that both reviewers reached an agreement on were finally
included. When two independent reviewers disagreed on whether
to include articles, resolved the differences through discussion,
and seed the assistance of a third reviewer (DBL) if they still could
not be resolved.

Inclusion and Exclusion Criteria
We selected studies considering the following inclusion criteria:
(1) the samples included a group motor expert and a group
novice; (2) motor experts with extensive experience were awarded
the title of experts by their country, region, or school; (3) subjects
performed motor decision-making task stimulus; (4) study with
fMRI or PET; (5) the peak coordinates of brain activation
areas were explicitly reported of motor experts and novices; (6)
the reported results of activated foci were normalized to the
Montreal Neurological Institute (MNI) (Collins et al., 1994) or
the Talairach standardized stereotactic spaces (Paus et al., 1996);
(7) whole-brain voxel analysis or at least one whole-brain analysis
was performed; (8) subjects were healthy; (9) subjects were adults;
(10) the language of studies was limited to English; (11) original
research articles.

Exclusion criteria: (1) report coordinates were incomplete,
or complete results have not been obtained after contacting the
corresponding author; (2) research published in the form of
conference reports, abstracts, etc.

These criteria identified 10 studies including 350 people (168
experts and 182 novices, 411 activation foci). Figure 1 shows the
outcomes of the search process.

1https://pubmed.ncbi.nlm.nih.gov/
2http://isiknowledge.com/wos
3https://www.elsevier.com/zh-cn
4https://www.cochranelibrary.com/

Data Extraction
The two reviewers (YD and LXH) extracted the following
information from each included study: authors, age, year of
publication, study name, type of coordinates, brain analysis
method, number of participants, the ratio of male to female
participants, comparison conditions, handedness, Foci.

Activation Likelihood Estimation
Meta-Analysis
ALE is a quantitative meta-analysis method that uses a spatial
variance model (3D Gaussian) to calculate the likelihood of
each voxel being activated under a certain condition, thus
obtaining the consistency of brain activation across multiple
experiments (Laird et al., 2005; Eickhoff et al., 2009). Data
processing was performed using GingerALE software (version
3.0.2)5 (Eickhoff et al., 2012). The difference in coordinate space
(MNI vs. Talairach space) could be explained by converting
the coordinates in Talairach to MNI space using icbm2tal
in GingerALE (Lancaster et al., 2007). Finally, all activation
coordinates were displayed in MNI space. We adopted a
threshold for the map of the final ALE score graph with a
familywise error (FWE) at p < 0.05 and a minimum cluster size
of k > 10 mm3. For visualization, the ALE whole-brain maps
were imported into Mango software (version 4.0.1)6 overly on a
standardized anatomical MNI template (Colin27_T1_seg_MNI)
(Dehghan et al., 2016).

RESULTS

Study Selection and Characteristics
A total of 1,323 records were initially retrieved, and only
1,191 studies remained after deleting duplicates (n = 132). We
screened potentially relevant articles by applying the inclusion
and exclusion criteria (see Supplementary Material 1). Finally,
10 articles focusing on the brain activation of experts and
novices while performing decision-making tasks were included
in the present study. All included articles tested decisions made
by experts and novices under the same stimuli. Among those
papers, six (Wright et al., 2011; Wu et al., 2013; Balser et al.,
2014; Wimshurst et al., 2016; Qiu et al., 2019; Blazhenets et al.,
2021) determined the accuracy of the ball’s flight direction, three
(Bishop et al., 2013; Wright et al., 2013; Xu et al., 2016) tested to
determine the accuracy of opponent behavior, one (Guo-Zheng,
2016) tested response accuracy rate of ball block. Regarding the
types of sports including basketball, tennis, hockey, volleyball,
handball, badminton, soccer, etc. Table 1 described the detailed
information of the included study.

Single Dataset Activation Likelihood
Estimation Analysis Results
Experts had 93 foci in 5 different experiments, the 3 regions
activated included the right inferior temporal gyrus (ITG)

5http://www.brainmap.org
6http://rii.uthscsa.edu/mango/
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(BA 37), right sub-gyral (BA 37), right middle occipital
gyrus (MOG) (BA 19).

Whereas novices had 124 foci in 7 different experiments. After
completing the single data ALE analysis, novices activated the left
precuneus (BA 7), left superior parietal lobule (SPL) (BA 7), left
inferior parietal lobule (IPL) (BA 40), left middle frontal gyrus
(MFG) (BA 6), left precentral gyrus (BA 4, BA 6), left cingulate
gyrus (BA 24), left postcentral gyrus (BA 2), left supramarginal
gyrus (BA 40), right middle temporal gyrus (MTG) (BA 37, BA
39), right superior temporal gyrus (STG) (BA22). Table 2 and
Figure 2 showed the results of the single-dataset ALE analysis.

Dual Dataset Comparison Activation
Likelihood Estimation Analysis
Experts did not have significant activation compared to novices.
In contrast, novices were activated in the left middle temporal
gyrus (MTG) (BA 19, BA 39), bilateral MOG (BA 18, BA 19),
left posterior lobe, right lingual gyrus (BA 18), left precuneus (BA
31), right fusiform gyrus (BA 19), bilateral inferior occipital gyrus
(IOG) (BA 17). Table 2 and Figure 3 showed the results of the
ALE analysis for experts and novices comparisons.

DISCUSSION

The Effect of Handedness on the Results
of Activation Likelihood Estimation
Analysis
Handedness might affect an individual’s skills and athletic
performance (Raymond et al., 1996). Some studies also have
found that handedness was associated with cognitive function
(Buckingham et al., 2011; Somers et al., 2015). The results of
an EEG study found that left-handed athletes had greater P300
wave amplitude than right-handed athletes, suggesting that left-
handed athletes had an advantage in cognitive perception and
observation, but slower processing than the right-handed athletes
(Nakamoto and Mori, 2008). Almost all of the subjects in the
existing fMRI literature of motor decision-making were right-
handed since there were fewer left-handed athletes. Among the
10 articles included in this study, only one article did not report
whether the subjects were right-handed or not (Wimshurst et al.,
2016), and the remaining nine articles reported that the subjects
were right-handed. Therefore, we considered the articles included
in this study to be general.

Summary of Activation Likelihood
Estimation Meta-Analysis Results
Through systematic review and ALE meta-analysis of the
included papers investigating brain activation in decision-making
tasks by experts and novices, we found that experts activated the
right ITG, right sub-gyral, and right MOG, but novices activated
more brain regions including the left middle temporal gyrus
(MTG) (BA 19, BA 39), bilateral MOG (BA 18, BA 19), left
posterior lobe, right lingual gyrus (BA 18), left supramarginal
gyrus (BA 40), right fusiform gyrus (BA 19), bilateral inferior
occipital gyrus (IOG) (BA 17). Results of this ALE meta-analysis

showed significant clusters in novices, and they were located
in the bilateral occipital lobe (including the MTG, MOG, IOG,
lingual gyrus, fusiform gyrus, and precuneus), left posterior
cerebellar lobe, and left MTG compared to experts. This also
confirmed that long-term motor training could improve the
neural efficiency of motor experts, reflecting the automated
process of motor skills.

Brain Activation Contrasts Between
Motor Experts and Novices in
Decision-Making Tasks
There was substantial evidence that the occipital lobe played
an important role in the processing of visuospatial information
(Todorov and Sousa, 2017; Buening and Brown, 2018). Motor
cognitive psychologists argued that decision-making was based
on information, of which visual information was particularly
important (Darren et al., 2016). The results of the present
study showed that the occipital lobe had in novices compared
to experts, suggesting that the brain required more visual
information processing when performing decision-making tasks.
The results also corroborated previous research (Jie, 2014;
Filgueiras et al., 2017; Guo Z. et al., 2017; Blazhenets et al., 2021).
When the brain was stimulated by complex motor scenarios,
motor experts first transferred the stimulus information into the
brain’s perceptual system. The brain recognized the information
and matched it with tactical information extracted from long-
term memory and then made a final decision based on the learned
motor skills (Smits et al., 2014). In contrast, novices performed
the same task needing to find usable information and invalid
information, which led to more visual information systems being
activated to process and analyze information. Therefore, we
believed that the primary mechanism for decreased activation
in the expert’s occipital lobe was that experts had higher neural
efficiency, which implied task-specific brain function plus sparing
(Neubauer and Fink, 2009; Ludyga et al., 2016). This suggested
that visual information processing played a key role in motor
decision-making behavior.

Compared with experts, the results of ALE analysis showed
that novices activated the left posterior cerebellar lobe during
the decision-making process. The cerebellar was more involved
in motor regulating and motor learning (Ashida et al., 2019;
Schmahmann et al., 2019). Several studies have indicated that the
activation of the cerebellum during performing decision-making
tasks could enhance decision-making planning, initiation, and
control (Yarrow et al., 2009; Nowrangi et al., 2014; Kim et al.,
2015). Previous studies have found that long-term professional
motor training could alter cerebellar activation. For example, a
study comparing brain activation in elite archers and non-archers
during archery found that non-archers had more cerebellar
activation than elite archers (Chang et al., 2011), which was
consistent with the findings of Guo Z. et al. (2017). Authors
indicated that experts through years of sports skill learning and
training might develop precise and professional sports skills,
which included the ability to rapidly regulate motor information
and motor learning, whereas novices did not have the ability.
Imamizu et al. (2000) suggested that motor could be accurately
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FIGURE 1 | Flowchart describing the process of study selection.

TABLE 1 | Basic information included literature.

References Sample
size

Imaging
method

Expertise Gender M/F Space Conditions Handedness Foci

Wu et al. (2013) 30 fMRI Basketball 30/0 Talairach Free-throw direction decision accuracy Right 55

Balser et al. (2014) 32 fMRI Tennis 16/16 MNI Tennis flight direction decision Right 22

Wimshurst et al. (2016) 30 fMRI Hockey 19/11 MNI Determine the accuracy of hockey hitting direction / 76

Guo-Zheng (2016) 40 fMRI Volleyball 20/20 MNI The response accuracy rate of ball block Right 38

Qiu et al. (2019) 47 fMRI Basketball 47/0 MNI Determines the direction and strength of the ball Right 5

Blazhenets et al. (2021) 48 PET Handball 48/0 MNI Free-throw decision Right 21

Xu et al. (2016) 34 fMRI Badminton 19/15 MNI Determines the direction and gender of the players Right 24

Wright et al. (2011) 16 fMRI Badminton 16/0 MNI Decide where to drop the badminton Right 50

Wright et al. (2013) 34 fMRI Soccer 34/0 MNI Decide the move direction in the opponent Right 110

Bishop et al. (2013) 39 fMRI Soccer 39/0 MNI Decide an oncoming opponent’s movements Right 10

controlled by using internal models of the body and that
after the cerebellum acquired internal models through long-
term motor training, athletes were able to perform tasks in a
relatively automated, energy-conserving processing mode. Based
on this view we believed that the reduced activation of the
expert cerebellum was due to the formation of internal models
of the cerebellum.

The MTG (BA 39) was already known to be significantly
involved in cognitive functions such as motor planning and
information processing (Guo L. et al., 2017; Xu et al., 2019).
The results of this study found that the left MTG was activated

when novices made decision-making in sports, which reflected
the fact that experts did not need to activate more cognitive areas
of the brain. Motor psychologists have suggested that cognitive
mechanisms might be the main reason for the different decision-
making levels between experts and novices (Dew et al., 2009).
Experts with extensive motor experience could facilitate sports
memory and attention, especially the ability to increase the depth
of attention and reduce the waning of attentional information in
complex motor scenarios. However, when novices made motor
decisions in face of unfamiliar motor conditions, activation of the
left MTG might be due to further processing of motor behavior
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TABLE 2 | ALE meta-analysis results according to experts, novices, and contrasts.

Anatomical region Cluster BA MNI coordinates Volume ALE value

X Y Z (mm3) (× 103)

Experts

R ITG 1 37 50 –68 –2 8,976 12.03
37 56 –68 4 9.23
37 62 –58 –4 8.64

R sub-gyral 37 46 –64 6 18.37
R MOG 19 40 –66 12 10.11
Novices

L Precuneus 1 7 –24 –58 55 7,744 9.06

7 –22 –48 56 8.86

L SPL 7 –34 –46 56 17.97

L IPL 40 –46 –34 40 8.81
L supramarginal gyrus 40 –40 –42 42 8.56

L MFG 2 6 –24 –6 54 7,120 17.73
6 –28 –4 46 10.09

L precentral gyrus 4 –34 –12 64 9.07

4 –34 –20 68 8.79
6 –38 –6 52 8.65

L cingulate gyrus 24 –16 2 46 9.28

L postcentral gyrus 2 –44 –28 64 7.72

R MTG 3 37 50 –62 8 6,504 14.29

39 46 –60 12 14.27

R STG 22 46 –52 20 9.15

22 54 –48 8 8.97

22 62 –46 12 8.84

22 66 –42 18 8.83

Experts > Novices

– – – – – – – –

Experts < Novices

L MOG 1 18 –20 –90 –4 27,000 17.46

18 –14 –96 18 10.70

19 –44 –80 18 9.18

19 –48 –74 10 9.04

18 –30 –84 6 7.95

18 –26 –86 14 7.20

19 –40 –88 12 5.06

L MTG 19 –44 –80 24 9.14

19 –48 –62 16 8.83

39 –40 –58 8 8.72

L IOG 17 –16 –98 –8 10.36

L lingual gyrus 18 –16 –104 0 8.62

L posterior lobe –26 –82 –16 9.61

L precuneus 31 –30 –72 24 7.90

R lingual gyrus 2 18 30 –98 0 11,240 10.32

18 20 –96 –10 10.05

18 24 –86 –6 9.70

18 10 –88 2 7.22

R MOG 18 28 –94 6 10.05

18 22 –88 –2 9.92

R fusiform gyrus 19 30 –88 –10 9.64

R IOG 17 26 –100 –4 8.79

ALE maps were computed at a familywise error (FWE) corrected threshold of p < 0.05, with a minimum cluster size of k > 10 mm3. BA, Brodmann area, L, left, R, right,
superior parietal lobule, SPL, inferior parietal lobule, IPL, middle frontal gyrus, MFG, middle temporal gyrus, MTG, superior temporal gyrus, STG, inferior temporal gyrus,
ITG, middle occipital gyrus, MOG, inferior occipital gyrus, IOG.
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FIGURE 2 | Significant meta-analysis results for (A) experts and (B) novices performing decision-making tasks. L, left, R, right, inferior temporal gyrus, ITG, middle
occipital gyrus, MOG, superior parietal lobule, SPL, inferior parietal lobule, IPL, middle frontal gyrus, MFG, middle temporal gyrus, MTG.

FIGURE 3 | Significant meta-analysis results for comparison between experts and novices performing decision-making tasks. L, left, R, right, middle temporal gyrus,
MTG, middle occipital gyrus, MOG, inferior occipital gyrus, IOG.
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information which reconfirmed the neural areas involved in
motor information processing (Woods et al., 2014). Therefore,
we argued that long-term motor training in athletes led to the
more efficient cognitive neural network to adapt to the demands
of high intensity and high correctness, which induced the brain
to automatically process information. This was consistent with
previous research findings (Babiloni et al., 2010; Zhang et al.,
2019; Dobersek and Husselman, 2021).

Limitations and Future Research
Directions
Potential limitations in this study should be mentioned. ALE
analysis inevitably ignored the variation in each study and
belonged to the statistical inference of fixed effects. Unlike a
meta-analysis with complete activation maps, the data used in
ALE were based on the reported data peak activation coordinates
(Zhang et al., 2016). Therefore, it was unable to take into
account studies without any significant categorical reporting,
which might lead to systematic overestimation of biased results.
Another limitation of this article was the gap between the
designed motor situation and the real situation in included
studies, which might make the findings not necessarily a true
reflection of the actual movement, but rather an exploration
of brain activation for decision-making tasks in a laboratory
setting. Further development of realistic experimental designs
or fMRI techniques could facilitate the direct exploration of
decision-making in real motor situations, which was a direction
of future research. Last, it was difficult to assess whether these
activation regions were related to sports types due to the lack of
comparisons between different motor experts, so further imaging
studies were needed to compare brain activation alterations of
different professional motor experts.

CONCLUSION

This study took a cognitive neuroscience perspective to reveal
differences in the neural mechanisms underlying the motor
decision-making processes of experts and novices. Our study
provided new and meaningful evidence that greater activation
for novices compared to experts in the bilateral occipital lobe, left
posterior cerebellar lobe, and left MTG, but a decreased activation
was not detected.
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