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a b s t r a c t

The recent discovery of Middle East Respiratory Coronavirus and another novel dromedary camel
coronavirus UAE-HKU23 in dromedaries has boosted interest in search of novel viruses in dromedaries.
In this study, fecal samples of 203 dromedaries in Dubai were pooled and deep sequenced. Among the
7330 assembled viral contigs, 1970 were assigned to mammalian viruses. The largest groups of these
contigs matched to Picobirnaviridae, Circoviridae, Picornaviridae, Parvoviridae, Astroviridae and Hepevir-
idae. Many of these viral families were previously unknown to dromedaries. In addition to the high
abundance of contigs from Circoviridae (n¼598 with 14 complete genomes) and Picobirnaviridae
(n¼1236), a high diversity of contigs from these two families was found, with the 14 Circoviridae
complete genomes forming at least five clusters and contigs from both genogroup I and genogroup II
potentially novel picobirnaviruses. Further studies comparing the incidence of these viral families in
healthy and sick dromedaries will reveal their pathogenic potential.

& 2014 Elsevier Inc. All rights reserved.

Introduction

Camels are one of the most unique mammals on earth. In
particular, they have shown perfect adaptation to desert life where
the daytime temperature is very high, diurnal temperature range
is large and the supply of food and water is scarce. Such adapta-
tions are made through their distinct anatomical and physiological
properties, such as short but thick fur, long legs, water conserva-
tion and unique fat metabolism. Therefore, camels were used for
transportation of people and goods as well as for military uses in
the past. In addition, they also provide a good source of meat, milk

and wool. They are also important recreational animals in the
Middle East and are used for camel racing. Having been associated
with humans for at least 5000 years, camels usually pose little
physical danger to humans. Occasionally, infectious diseases, such
as brucellosis, can be transmitted from camels to humans. Dro-
medary camels are one of the two surviving old world camel
species, namely Camelus dromedarius (dromedary or one-humped
camel), which inhabits the Middle East and North and Northeast
Africa; and Camelus bactrianus (Bactrian or two-humped camel),
which inhabits Central Asia. Among the 20 million camels on
earth, 90% are dromedaries.

The recent emergence of Middle East Respiratory Coronavirus
(MERS-CoV) from the Middle East and the presence of neutralizing
antibodies against MERS-CoV from dromedaries in the Middle East
have boosted interest in the search of novel viruses in dromedaries
(de Groot et al., 2013; Lau et al., 2013; Perera et al., 2013; Reusken et
al., 2013; Zaki et al., 2012). Viruses of at least eight families, including
Paramyxoviridae, Flaviviridae, Herpesviridae, Papillomaviridae, Picorna-
viridae, Poxviridae, Reoviridae and Rhabdoviridae, have been found to
infect camels (Al-Ruwaili et al., 2012; Intisar et al., 2009; Khalafalla
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et al., 2010; Ure et al., 2011; Wernery et al., 2014; Wernery et al.,
2008; Wernery and Zachariah, 1999; Yousif et al., 2004). Recently, we
have discovered a novel coronavirus, named dromedary camel
coronavirus UAE-HKU23 (DcCoV UAE-HKU23), in dromedaries
(Woo et al., 2014b). As camels are closely associated with humans,
knowledge on the variety of viruses present in this hardy group of
animals is important to understand their potential for emergence. In
this study, we analyzed the viromes of fecal samples of dromedaries
in the Middle East, which is the first metagenomic study on animals
of the family Camelidae. The interestingly large number and high
diversity of contigs from the Circoviridae and Picobirnaviridae families
were also discussed.

Results

Metagenomic analysis of dromedary fecal samples

Fecal samples of 203 dromedaries were pooled and deep
sequenced using the Illumina HiSeq 2500 instrument, generating
29,247,514 paired-end 151-bp sequence reads. De novo assembly of
the metagenome was performed using IDBA-UD to confirm isola-
tion of viral genomes using default parameter with minimum read
length of 200. There were 159,388 contigs ranging in size from 200
to 14,611 bp with a mean contig length of 540 bp.

Among 159,388 contigs, 7330 were viral sequences. The most
abundant fraction of viral contigs matched to the bacteriophages,
including those of the order Caudovirales (n¼3805), family Micro-
viridae (n¼509) and unclassified phages (n¼319) (Fig. 1). Viral
contigs related to plant viruses included those of the families
Geminiviridae (n¼17), Betaflexiviridae (n¼15), Totiviridae (n¼2),
Nanoviridae (n¼1) and Partitiviridae (n¼4); and those related to
insect viruses included those of the families Iflaviridae (n¼5),
Dicistroviridae (n¼3), Poxviridae (n¼3), and Nodaviridae (n¼2)
and subfamily Densovirinae (n¼2) (Fig. 1).

One thousand nine hundred and seventy (26.9%) of the 7330
viral contigs were assigned to mammalian viruses (Fig. 1). The
largest group of the contigs matched to double-stranded RNA
viruses in the family Picobirnaviridae (n¼1236), followed by
single-stranded DNA viruses in the family Circoviridae (n¼598).
The remaining contigs with homology to the most represented
families of mammalian viruses were, in order of decreasing
abundance, Picornaviridae [kobuviruses (n¼17), enteroviruses
(n¼26), hunnivirus (n¼14), encephalomyocarditis virus (n¼4)];
Parvoviridae [porcine bocavirus (n¼22), human bocavirus (n¼5),
feline bocavirus (n¼1), gorilla bocavirus (n¼1)]; Astroviridae
[porcine astrovirus (n¼8), feline astrovirus (n¼7)]; Hepeviridae
[HEV (n¼3)]; Reoviridae [rotavirus (n¼3)] and Caliciviridae [feline
norovirus (n¼2)]. These viral contigs showed a wide range of
sequence identity to known viruses, suggesting some of these
sequences might be derived from novel viruses.

Alignment of sequences of Circoviridae and Picobirnaviridae

The 598 and 1236 contigs that belonged to the families Circovir-
idae and Picobirnaviridae respectively were analyzed by BLASTx. In
both families Circoviridae and Picobirnaviridae, contigs that encoded
the corresponding RdRp, capsid proteins and hypothetical proteins
were observed (Supplementary Fig. 1).

Phylogenetic analysis of complete genomes in Circoviridae

Repeated terminal sequences in the contigs indicated a circular
genome. Fourteen contigs containing complete circular genomes
of the Circoviridae family, ranging in size from 2516 to 2977 bp
(Fig. 2). Overall, nucleotide identities to known members of the

Circoviridae family were less than 75% for all the genomes. There-
fore, according to the ICTV criteria (www.ictvdb.org) which state
that circoviruses of the same species should share 475% and
470% nucleotide identity in their complete genome and capsid
protein sequences respectively, these viruses found in dromed-
aries should be novel species in the Circoviridae family.

Phylogenetic tree of these 14 complete genomes were con-
structed with representative complete genomes of circovirus,
cyclovirus and circo-like virus sequences, starting at Rep ATG.
These 14 complete genomes formed at least five clusters, including
one related to porcine circovirus-like virus, five related to bovine
stool-associated circular DNA virus (BoSCV), two related to fur seal
feces-associated circular DNA virus (FSfaCV), two related to rodent
stool associated circular genome virus (RodSCV) and four related
to other cirovirus-like virus (Fig. 3).

Phylogenetic analysis of sequences in Picobirnaviridae

The 12 and 21 contigs that belonged to the family Picobirnaviridae
with complete RdRp and capsid genes respectively were further
aligned with all available complete RdRp and capsid genes of
picobirnaviruses. Phylogenetic tree of the complete RdRp and capsid
genes of the picobirnavirus genome is shown in Fig. 4. The contigs
were highly diverse. Contigs that belonged to both genogroup I and
genogroup II picobirnaviruses were observed. In addition, distinct
branches that were not clustered with either genogroup I or
genogroup II picobirnaviruses were also observed, suggesting that
there may be one or more additional genogroups in picobirnaviruses.

Discussion

In this first metagenomic study on viromes in animals of the
family Camelidae, more than 500 contigs (including 14 complete
genomes) and around 25% of mammalian virus contigs observed in
dromedary fecal samples belonged to the Circoviridae family.
Members of the Circoviridae family are small non-enveloped
circular single-stranded DNA viruses found in a wide variety of
mammals and birds. Circovirus infections are very common and
geographically widely distributed. Although subclinical infections
are common, circovirus infections have been suggested to be
associated with psittacine beak and feather disease, infectious
chicken anemia, circovirus disease of pigeons, and the postwean-
ing multisystemic wasting syndrome of pigs (Biagini et al., 2011).
Among the metagenomic studies on fecal samples of other
mammals, only one study on fecal samples of pigs showed a
comparable high number of sequences from the Circoviridae family
(Table 1) (Sachsenroder et al., 2014). At least five metagenomic
studies did not show any circovirus sequence (Lager et al., 2012; Li
et al., 2011a; Li et al., 2011b; Smits et al., 2013; van den Brand et al.,
2012). As for sequence diversity, the 14 complete genomes formed
at least five clusters related to different known members of the
Circoviridae family, including porcine circovirus-like virus, BoSCV,
FSfaCV, RodSCV and other cirovirus-like virus, were observed in
this study (Fig. 3). This high diversity of sequences from the
Circoviridae family was rarely seen in other metagenomic studies.

The dromedary fecal samples also contain a large number (more
than 1000 contigs and more than half of all mammalian virus contigs)
and high diversity of picobirnavirus sequences. Picobirnaviruses are
small non-enveloped bisegmented double-stranded RNA viruses
found in human and a wide variety of mammals and birds. Since its
first discovery in fecal samples of humans and rats in 1988 (Pereira
et al., 1988a; Pereira et al., 1988b), picobirnaviruses have been reported
in other mammals and birds (Browning et al., 1991; Gallimore et al.,
1993; Ludert et al., 1991; Masachessi et al., 2007; Nates et al., 2011)
and environmental water samples (Hamza et al., 2011). The
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Fig. 1. Taxonomic classification of sequences with similarity to viruses. Circles located next to taxa are logarithmically proportional to the total number of contigs with
BLASTx Eo10�5. The figure was generated using MEGAN version 4.70.4.
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Fig. 2. Genomic organization of the novel circular genomes identified in this study (A) and representative genomes in the Circoviridae family (B). The 2 major ORFs, encoding
the putative replication-associated protein (rep) and the putative capsid protein (cap) and other ORFs are shown. The locations of the potential stem-loop at the origin of
replication are marked. The junctions of alternative splicing sites (AS) were indicated with bridge lines. DcSCV, dromedary camel stool-associated circular DNA virus
(KM573763–KM573776); FSfaCV, fur seal feces associated circular DNA virus (KF246569); Po-Circo-like virus 41, porcine circovirus-like virus 41 (JF713718); BoSCV, bovine
stool-associated circular DNA virus (JN634851); PoSCV, porcine stool-associated circular DNA virus (KF193403); RodSCV, rodent stool-associated circular virus (JF755402);
GoCV, goose circovirus (GU320569); PCV2, porcine circovirus 2 (FR823451).
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pathogenicity of picobirnaviruses has not been established. Although
picobirnaviruses have been detected in fecal samples from children
with diarrhea and in immunocompromised patients, they have also
been found in individuals without diarrhea (Delmas, 2011). Although
4500 sequences (most are partial sequences) of picobirnaviruses are
available in the GenBank database, phylogenetic and evolutionary
studies have been hampered by the small number of complete
genome sequences of picobirnaviruses available. So far, there are
only four complete genome sequences of genogroup I picobirna-
viruses, including one from a human picobirnavirus, another from a
porcine picobirnavirus, the third from a turkey picobirnavirus and
the fourth from a novel picobirnavirus, named otarine picobirnavirus,
we discovered in the fecal sample of a California sea lion in an
oceanarium in Hong Kong recently (Woo et al., 2012). For these
four available genomes, the larger genome segment, segment 1, is
2.3–2.5 kb in length and encodes the capsid protein and one to two
putative proteins of unknown function, while the smaller genome
segment, segment 2, is 1.6–1.7 kb in length and encodes the viral
RdRp. Moreover, no genogroup II picobirnavirus complete genome
sequence is available. This large number of picobirnavirus sequences
observed in dromedary fecal samples has never been found in
metagenomic studies in other animals. For example, pigs are

well-known to have a relatively high prevalence of picobirnavirus
infections (Banyai et al., 2008; Chen et al., 2014; Ganesh et al., 2012;
Giordano et al., 2011; Martinez et al., 2010; Smits et al., 2011), but in
the various metagenomic studies on fecal samples of pigs, picob-
irnavirus sequences only constituted 0–7% of all mammalian virus
sequences (Cheung et al., 2013; Lager et al., 2012; Sachsenroder et al.,
2012; Sachsenroder et al., 2014; Shan et al., 2011). In fact, in some
metagenomic studies, such as those on bats, pine martens, European
badgers and dogs, no picobirnavirus sequence was observed (Table 1)
(Ge et al., 2012; Li et al., 2011a; Li et al., 2010; van den Brand et al.,
2012; Wu et al., 2012). As for the diversity, data from the present
metagenomic study suggested the presence of large numbers of both
genogroup I and genogroup II picobirnavirus contigs with high
diversity in dromedaries (Fig. 4). This is different from results
obtained from metagenomic studies for fecal samples of other
animals, in which mainly genogroup I picobirnavirus sequences were
observed (Bodewes et al., 2013; Cheung et al., 2013; Lager et al., 2012;
Li et al., 2011b; Phan et al., 2011; Sachsenroder et al., 2012;
Sachsenroder et al., 2014; Smits et al., 2013). Complete genome
sequencing of these picobirnaviruses in dromedaries would be
invaluable in understanding genome evolution in this understudied
family of virus.

Fig. 3. Phylogenetic analysis based on complete genome nucleotide sequences of Circoviridae. The scale bar indicates the number of nucleotide substitutions per residue.
Solid circles mark the contigs determined in this study. Porcine circovirus-like virus, fur seal feces-associated circular DNA virus, bovine stool-associated circular DNA virus,
circoviruses, cycloviruses, circovirus-like virus and rodent stool associated circular genome virus are represented by cyan, orange, red, green, blue, purple and citron branches
respectively.
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In addition to circoviruses and picobirnaviruses, the present
metagenomic analysis also revealed other viral families in dromed-
aries, many of which are previously not known in dromedaries, such

as hepatitis E virus, picornaviruses, parvoviruses and astroviruses.
The use of centrifugation steps and filters in metagenomics studies
may result in the loss of viruses, particularly those with large virions.

Fig. 4. Phylogenetic analysis based on complete Picobirnaviridae RNA dependent RNA polymerase (Panel A) and capsid (Panel B) nucleotide sequences. The scale bar
indicates the number of nucleotide substitutions per residue. Solid circles mark the contigs determined in this study. Picobirnavirus genogroup I and genogroup II are
represented by green and blue branches respectively.
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Unlike three recent studies which detected the presence of MERS-CoV
in nose swabs of dromedaries in Qatar, Saudi Arabia and Egypt
(Alagaili et al., 2014; Chu et al., 2014; Haagmans et al., 2014), no
MERS-CoV was found in the present metagenomic study on fecal
samples. This is probably due to the inherent tissue tropism of MERS-
CoV. Similarly, our recently discovered DcCoV UAE-HKU23 was also
not found in the present metagenomic study on fecal samples
collected from adult dromedaries (Woo et al., 2014b). This is probably
because DcCoV UAE-HKU23 was mainly detected in dromedary calves,
whereas its prevalence in adult dromedaries was very low (Woo et al.,
2014b). The plant and insect viral sequences observed in fecal samples
of dromedaries were probably results of ingestion of plants and insects
by the dromedaries. As for the mammalian virus families, hepatitis E
virus has never been reported in camels and its prevalence, genome
sequence and phylogenetic analysis have been reported elsewhere
(Woo et al., 2014a). As for picornaviruses, astroviruses and parvo-
viruses, they are also commonly observed in previous metagenomic
studies using fecal samples of other animals (Bodewes et al., 2013;
Phan et al., 2011; Shan et al., 2011). Parvoviruses and astroviruses are
important pathogens in various groups of mammals and these two
families of viruses are previously not described in dromedaries. Since
some contigs were found to be most closely related to human
bocavirus, complete genome sequencing and further phylogenetic
analysis would be useful to further understand the relationship
between these “dromedary bocaviruses” and human bocaviruses.
Although some members of picornaviruses are able to infect Bactrians
and cause diseases such as foot-and-mouth disease, dromedaries were
known to be not susceptible to these agents and camels are not the
reservoir of these picornaviruses (Wernery et al., 2014). Further studies
comparing the incidence of these three important families of viruses
in healthy and sick dromedaries will reveal their importance in this
unique group of animals.

Materials and methods

Sample collection

All fecal samples of dromedaries (Camelus dromedarius) were
left-over specimens submitted for coprological studies to Central
Veterinary Research Laboratory in Dubai, United Arab Emirates

from January to July 2013. The samples originated from different
camel premises where dromedaries were kept for racing, includ-
ing both dromedaries for routine check-up (n¼200) and those
with diarrhea (n¼3). A total of 203 adult dromedaries have been
tested in this study.

Sample preparation for Illumina sequencing

The viral transport medium containing the 203 fecal samples
were pooled, 200 μl (�0.2 g feces per 2 ml viral transport medium)
each, and centrifuged at 10,000g for 10 min. The supernatant was
then filtered through a 0.45-μm filter (Millipore, Massachusetts,
USA) to remove eukaryotic and bacterial cell-sized particles. The
filtrate was treated with a cocktail of DNase enzymes consisting of
14 U of turbo DNase (Ambion, Austin, TX, USA), 20 U of benzonase
(Novagen, Madison, WI, USA) and 20 U of RNase One (Promega,
Wisconsin, USA) at 37 1C for 60 min in 1�DNase buffer (Ambion,
Austin, TX, USA) to digest unprotected nucleic acids. Total RNA from
the sample was extracted using the QIAamp Viral RNA Mini Kit
(Qiagen, Hilden, Germany). Reverse transcription was performed
using SuperScript III reverse transcriptase (Invitrogen, San Diego, CA,
USA) and a random primer containing a 20-base arbitrary sequence
at the 50 end followed by a randomized octamer (8 N) at the 30 end.
A single round priming and extension was performed using Klenow
fragment polymerase (New England Biolabs, Massachusetts, USA).
PCR amplification with primer consisting of only the 20-based
arbitrary sequence of the random primer was performed in 20
cycles of 94 1C for 15 s, 60 1C for 30 s and 68 1C for 1 min and a final
extension at 68 1C for 7 min in an automated thermal cycler
(Applied Biosystems, Foster City, CA, USA). Standard precautions
were taken to avoid PCR contamination and no amplified PCR
product was observed in negative control. The PCR product was
purified using the MinElute PCR Purification Kit (Qiagen, Hilden,
Germany) following the manufacturer's protocol with slight mod-
ification. The purified DNA was eluted in 15 μl of EB buffer and used
as the template for library construction.

Library construction for Illumina sequencing

The metagenomic library was prepared using Nextera XT DNA
Sample Preparation Kit (Illumina, San Diego, CA, USA) and Nextera

Table 1
Abundance of circoviruses- and picobirnaviruses-related reads in metagenomic analysis of fecal samples in various mammals.

References Animal No. of fecal
samples pooled

Next-generation
sequencing platform

Abundance of
circoviruses-related reads

Abundance of
picobirnaviruses-related reads

Li et al. (2011b) California sea lion 47 Genome sequencer FLX instrument � þ
Li et al. (2010) Bata 480 Genome sequencer FLX instrument þ �
Wu et al. (2012) Batb 216 Illumina senome snalyzer þ �
Ge et al. (2012) Batc 6 Illumina genome analyzer þ �
Bodewes et al. (2013) Red fox 13 Genome sequencer FLX instrument þ þ
Phan et al. (2011) Wild rodentd 105 Genome sequencer FLX instrument þ þ
Shan et al. (2011) Pig 36 Genome sequencer FLX instrument þ �
Sachsenroder et al. (2014) Pig 8 Genome sequencer FLX instrument þþþ þ
Lager et al. (2012) Pig 4 Genome sequencer FLX instrument � þ
Sachsenroder et al. (2014) Pig 5 Genome sequencer FLX instrument þþ þþ
Cheung et al (2013) Pig 6 Genome sequencer FLX instrument þ þ
van den Brand et al. (2012) Pine marten 4 Genome sequencer FLX instrument � �
van den Brand et al. (2012) European badger 3 Genome sequencer FLX instrument þ �
Smits et al. (2013) Ferret 39 GS Junior instrument � þ
Li et al. (2011a) Dog 18 Genome sequencer FLX instrument � �
Present study Dromedary camel 203 Illumina senome Analyzer þþþ þþþ

a Include Myotis velifer, Nycticeius humeralis, Perimyotis subflavus, Antrozous pallidus and Tadarida brasiliensis.
b Include Myotis ricketti (n¼29), Rhinolophus ferrumequinum (n¼15), Myotis myotis (n¼28), Rhinolophus sinicus (n¼19), Hipposideros armiger (n¼15), Hipposideros

pomona (n¼23), Hipposideros cineraceus (n¼20), Ia io (n¼11), Tylonycteris robustula (n¼10), Rhinolophus affinis (n¼19) and Miniopterus schreibersii (n¼27).
c Include Myotis ricketti (n¼2), Scotophilus kuhlii (n¼2), Hipposideros armiger (n¼1) and Myotis spp. (n¼1).
d Include Peromyscus crinitus (n¼7), Peromyscus maniculatus (n¼20), Peromyscus truei (n¼1), Peromyscus boylii (n¼4), Mus musculus (n¼20), Neotoma cinerea, Microtus

longicaudus (n¼1) and Microtus pennsylvanicus (n¼51).
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XT Index kit (Illumina, San Diego, CA, USA) according to the
manufacturer's protocol. Briefly, 1 ng of input DNA was tagmented
by the Nextera XT transposome at 55 1C for 5 min. This transpo-
some simultaneously fragmented the input DNA and added
adapter sequence to the ends, allowing amplification by PCR in
subsequent steps. The sequencing library with tagmented DNA
was then amplified in 12 cycles of 95 1C for 10 s, 55 1C for 30 s and
72 1C for 30 s and a final extension at 72 1C for 5 min in an
automated thermal cycler (Applied Biosystems, Foster City, CA,
USA). Amplified DNA library was purified using 1.8�AMPure XP
beads (Beckman Coulter, Danvers, MA, USA) to remove very short
library fragments from the population. The amplified DNA library
was analyzed using the 2100 Bioanalyzer instrument (Agilent
Technologies, Santa Clara, CA, USA) to ensure that the sizes of
the amplified products were from 250 bp to 1500 bp. Purified
sequencing library was quantified using KAPA library quantifica-
tion kit (Kapa Biosystems, Wilmington, MA, USA) and subse-
quently sequenced on Illumina HiSeq 2500 with 151 bp paired-
end reads (Rapid Run Mode). Image analysis and base calling were
performed with SCS2.8/RTA1.8 (Illumina, San Diego, CA, USA).
FASTQ file generation and the removal of failed reads were
performed using CASAVA ver.1.8.2 (Illumina, San Diego, CA, USA).
The Illumina data are available from the NCBI SRA database
(http://www.ncbi.nlm.nih.gov/sra) accession number SRP047227.

Analysis of sequence reads

Illumina sequence reads were adapter and quality trimmed
using Trimmomatic with the Nextera adapter fasta sequences and
following parameters: leading 3, trailing 3, sliding window 4:15,
minimum length 36 bp (Lohse et al., 2012). Trimmed paired-end
reads were de novo assembled in silico with IDBA-UD 1.1.1 with
default parameters and fixed threshold for a minimum contig
length of 200 bp (Peng et al., 2012). IDBA-UD algorithm is based on
the de Bruijn graph approach for assembling reads. The contigs
that aligned to rRNA sequences from the SILVA rRNA database
were initially removed using Bowtie2 (Langmead and Salzberg,
2012). The remaining contigs were compared to non-redundant
protein sequences (nr) database from NCBI (http://www.ncbi.nlm.
nih.gov), which contains non-redundant sequences from GenBank
translations (i.e. GenPept) and sequences from other databanks
(Refseq, PDB, SwissProt, PIR and PRF), using BLASTx with an
E-value cutoff of 10�5. BLAST results were parsed to save the best
hits for each sequence. The best-hit sequences were individually
annotated to note the sources of the matching sequences (virus,
phage, bacteria, archaea and eukaryotes). Sequences were also
analyzed using a metagenomic annotation tool, MEGAN version
4.70.4, to assign each sequence into different taxa present in the
metagenomic sequences using the NCBI taxonomic database
(Huson et al., 2011).

Phylogenetic analysis of sequences in Circoviridae and
Picobirnaviridae

After de novo assembly, there were 598 and 1236 contigs
belonging to the families Circoviridae and Picobirnaviridae respec-
tively. Fourteen contigs containing complete circular genomes of
the Circoviridae family were used for phylogenetic analysis. The 14
complete genome sequences have been submitted to GenBank
with accession numbers KM573763–KM573776. Twelve and 21
contigs that covered complete RdRp and capsid genes respectively
in the picobirnavirus genome were used for phylogenetic analysis.
The 12 RdRp and 21 capsid sequences have been submitted to
GenBank with accession numbers KM573798–KM573809 and
KM573777–KM573797, respectively.

Phylogenetic analysis was performed by the neighbor-joining
method, using Jukes–Cantor substitution model with gamma
distributed rate variation and bootstrap values calculated from
1000 trees.
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