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Introduction
Recent advances in high-throughput technologies in proteomics 
promise to revolutionize cancer treatment and prevention by 
facilitating the discovery of molecular biomarkers, which can 
be used to improve diagnosis, guide targeted therapy, and 
monitor therapeutic response.1 Among all high-throughput 
proteomic technologies, mass spectrometry has increasingly 
become the method of choice for the analysis of complex 
protein samples.2 High molecular specificity and excellent 
detection sensitivity explain the widespread adoption of mass 
spectrometry (MS)-based proteomics as a popular tool for the 
identification and quantification of the composition of complex 
proteome mixtures.

However, to date, the rate of discovery of successful bio-
markers is still unsatisfactory. In addition to challenges such 
as the high dynamic range of proteins3 and inaccurate pro-
tein quantification,4 an important impediment to progress is 
that, in clinical applications of mass spectrometry, the number 
of samples available is extremely small, whereas mass spec-
tra contain hundreds of thousands of intensity measurements 
with signals generated by thousands of proteins/peptides. 
This small-sample, high-dimensionality problem requires the 
experiment and analysis to be carefully designed and validated 

in order to arrive at statistically meaningful results. Through 
model-based approaches and simulation using ground-truthed 
synthetic data, the problem of biomarker discovery can be 
studied and evaluated.

In this paper, we propose the application of a Bayesian 
approach to address the small-sample, high-dimensionality 
problem in the classification of proteomic profiles generated 
by liquid chromatography–mass spectrometry (LC-MS). Our 
approach relies on the detailed LC-MS experiment pipeline 
model developed in Ref. 5, as well as on the theory of the opti-
mal Bayesian classifier (OBC), proposed in Ref. 6. However, 
the complexity of the LC-MS experiment, involving steps 
of sample preparation, protein digestion, peptide ionization, 
peptide detection, and protein quantification, implies that 
the likelihood function for the LC-MS model is exceedingly 
complex, requiring the application of a likelihood-free Bayesian 
approach. In this paper, we apply a new likelihood-free meth-
odology called approximate Bayesian computation (ABC).7 
The basic ABC rejection sampling method generates candidate 
parameters by sampling from the prior distribution and creates 
a model-based simulated dataset. If the dataset conforms to 
the observed dataset, the candidate can be retained as a sample 
from the posterior distribution. Thus, one can avoid evaluating 
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the likelihood function, which is essential for classical Bayesian 
posterior simulation methods. The ABC approach can also 
be implemented via a combination of rejection sampling and 
Markov chain Monte Carlo (MCMC) sampling.8

The detailed implementation of our approach involves first 
the prior calibration of the hyperparameters of the LC-MS 
model using an ABC approach via rejection sampling and then 
using the ABC method implemented via an MCMC procedure 
to obtain samples from the posterior distribution of the protein 
concentrations, which are used to approximate the OBC using 
Monte Carlo integration and kernel smoothing. Numerical 
experiments using synthetic LC-MS data based on an actual 
human proteome indicate that the ABC-MCMC classifica-
tion rule outperforms classical methods such as support vector 
machines (SVMs), linear discriminant analysis (LDA), and 
3-nearest neighbor (3NN) classifiers in the case when sample 
size is small or the number of selected proteins used to classify 
is large. We also quantify the effect of experimental parameters 
such as the coefficient of variation (noise) and instrument 
peptide efficiency factor on classification accuracy.

The paper is organized as follows. The “LC-MS Model” 
section surveys the LC-MS model proposed in Ref. 5, which 
is the basis for our inference approach. The “ABC-MCMC 
Classification Framework” section describes in detail the algo-
rithms for prior calibration, sampling from the posterior, and 
computation of the ABC-MCMC classifier. The “Numerical 
Experiments” section presents the results of a numerical experi-
ment using synthetic LC-MS data corresponding to a subset of 
the human proteome. Finally, the “Conclusion” section brings 
concluding remarks.

LC-MS Model
Here, we describe briefly the label-free LC-MS model pro-
posed in Ref. 5. Two sample classes are considered, control 
(class 0) and treatment (class 1). There are n sample profiles 
from each class, sharing Npro protein species from a specified 
proteome, which is typically input into the model as a FASTA 
file. As argued in Ref. 9, protein concentration in the control 
sample is best described as a Gamma distribution,

γ θl k l N= =Γ( , ), , ,..., ,1 2 pro 	 (1)

where the shape k and scale θ parameters are assumed to be 
uniform random variables, such that k ∼ Unif(klow, khigh) and 
θ ∼ Unif(θlow, θhigh). The values for klow, khigh, θlow, and θhigh 
were chosen to adequately reflect the dynamic range of protein 
abundance levels (see the “Numerical Experiments” section).

According to whether there is a significant difference 
in abundance between control and treatment populations, 
proteins are divided into biomarker (differentially expressed) 
proteins and background (not differentially expressed) 
proteins. The difference in abundance for biomarker proteins 
is quantified by the fold change,
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The multivariate Gaussian distribution is recommended 
as the model for protein concentration variations in each 
class.10 Accordingly, the protein expression level for the lth 
protein in the jth sample profile is modeled as
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In this paper, we assume a diagonal covariance matrix 
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 such that protein concentrations are mutu-
ally independent (the results will still be approximately valid 
as long as the proteins are only weakly correlated):
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and

σ ϕ γll l l N2 2 1 2= × = …, , , , .pro 	 (6)

The coefficient of variation ϕ is calibrated based on the 
observed data.

In order to perform in silico tryptic digestion of the 
protein samples, we use the peptide mixture model from 
openMS.11 Let Ωi be the set of all proteins that contain the 
ith peptide. If there are Npep peptide species, in total, across 
all proteins in a given sample, then their molar concentrations 
are given as

c c i N j nij kj
k i

pep pro
pep= = =

∈
∑

Ω
, , , , , , , , .1 2 1 2 2… … (7)

In general, ion abundance in MS data bears the signa-
ture of the concentration of a peptide type, say i in sample j. 
Taking measurement uncertainty factors in consideration, one 
may envisage that the expected readout µij of the abundance 
of said peptide can be modeled as,

µij ij ic e i N j n= = =pep
pepκ , , , , , , , , ,1 2 1 2 2… …… (8)
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where ei denotes the peptide efficiency factor and κ represents 
the LC-MS instrument response factor.5

The true peptide abundance differs from its readout due 
to noise. Accordingly, the actual abundance of a peptide vij is 
modeled as vij = µij + ∈ij, where ∈ij is additive Gaussian noise 
and follows the distribution

	
∈ij ij ij i N j n∼ … …N ( , ), , , , , , , , ,0 1 2 1 2 22αµ βµ+ = =pep 	 (9)

where α and β specify the quadratic dependence of the noise 
variance on the expected abundance.5,12

Peptide signals observed in mass spectra are in fact the 
result of true signals with interfering noise signals and also 
signals from other peptides. Therefore, the signal-to-noise 
ratio (SNR) affects the true positive rate (TPR) greatly. To 
take account of this, we describe the SNR as

SNR
Var

= =
+

E v
v

[ ]
( )

.
2 1

α β
µ

(10)

Taking interfering signals in consideration, the TPR of 
peptides is defined as

TPR SNR= × + ×( ) ,t b op
ij 	 (11)

where oij is an overlapping factor. If algorithms like NITPICK, 
BPDA, and BPDA2d are used, then oij ≈ 1.5

Finally, we consider in our model three peptide filters, 
in order: (1) nonunique peptides present in more than one 
protein of the proteome in study are discarded; (2) peptides 
with missing value rates greater than 0.7 are discarded; and 
(3)  among the remaining peptides, those having correlation 
larger than 0.6 with all other peptides are kept.

The MS1 output provides information about detected 
peptides, their abundances, and related characteristics. The 
process of filtering these data and compiling the parent pro-
tein abundances from the raw peptide data is called protein 
abundance roll-up. To obtain the identities of the parent pro-
teins from captured peptide sequence information, one will 
often use a second round of MS and search available MS/MS 
(MS2) databases. Alternatively, the accurate mass and time 
approach matches peptides to databases using the monoiso-
topic mass and elution time predictors, obviating the need 
of a second step of MS.13 We will assume here that data are 
available in the form of rolled-up abundances, whereby the 
readout of protein l in sample j can be written as

x
n

v l N j nlj
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i l

= = =
∈
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, , , , , , , , ,… …pro 	 (12)

where κ is the instrument response factor, Νl is the set of all 
peptides present in protein l that are retained after the filter-
ing scheme described in the previous paragraph, and nl is the 

number of peptides in set Νl. The protein abundance is set to 
zero when less than two peptides pass the previous filters.

ABC-MCMC Classification Framework
Bayesian analysis for complex models used in recent appli-
cations involve intractable likelihood functions, which has 
prompted the development of new algorithms generally 
called approximate Bayesian computation (ABC). In this 
approach, one generates candidate parameters by sam-
pling from the prior distribution and creating a model- 
based simulated dataset. If the dataset conforms to the 
observed dataset, the candidate can be retained as a sample 
from the posterior distribution. Thus, one can avoid evaluat-
ing the likelihood function, which is essential for classical 
Bayesian posterior simulation methods. The ABC approach 
can be implemented via rejection sampling, MCMC, and 
sequential Monte Carlo methods.8 Utilizing the LC-MS 
proteomics model described in the last section, we first do 
prior calibration of the hyperparameters using an ABC 
approach via rejection sampling, and then use the ABC 
method implemented via an MCMC procedure to obtain 
samples from the posterior distribution of the protein con-
centrations in order to derive the ABC-MCMC classifier 
for LC-MS data.

Overview of the inference procedure. The sample data 
S = S0 ∪ S1 consist of two subsamples S0 and S1, correspond-
ing to the control group (eg, healthy volunteers) and treat-
ment group (eg,  cancer patients), respectively, where each 
subsample contains n protein abundance profiles. Given the 
sample data, the total number of proteins Npro is reduced via 
feature selection (eg,  ranking by the two-sample t-test sta-
tistic) to a tractable number d of selected proteins. Accord-
ing to the adopted LC-MS model, described in the “LC-MS 
Model” section, the protein abundance profiles are a func-
tion of the baseline protein concentration vector γ = (γ1, …, 
γd), (b) the prior hyperparameters k, θ, ϕ, f, consisting of shape 
and scale parameters of the Gamma distribution in (1), the 
fold change parameters in (2), and the coefficient of variation 
in (6); and (c) the LC-MS instrument-related parameters κ, 
α, β, e, b, t, p, which are assumed to be known for a given 
instrument (see Table 1 for the value of these parameters in 
our numerical experiment). Figure 1 displays the relationship 
among these various parameters.

Our approach consists of treating γ as the hidden parameter 
vector, posterior samples of which are obtained using an ABC-
MCMC sampling method, after a step of calibration of the 
hyperparameters using ABC rejection sampling. The samples 
from the posterior allow us to calculate the OBC for the prob-
lem. All these steps are described in detail in the sequel.

Algorithm 1 Prior calibration of k, θ, and ϕ using ABC 
rejection sampling.

1. Generate Mcal triplets of parameters of {k(t),θ (t), ϕ(t)}
such that,
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and T denotes the vector sample mean.
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accepted triplets. The calibrated k can be approximated 
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Similar Monte Carlo integrations are performed to cal-
culate θcal and ϕcal.

Prior calibration via ABC rejection sampling. Calibra-
tion of the hyperparameters k, θ, ϕ, f is accomplished using the 
ABC rejection sampling method. Unlike Knight et al.14, who 
proposed using discarded features to perform prior calibration 
for an MCMC implementation of the OBC, here we use the 
selected features, as we need to calibrate the fold change as 
well, which is specific to each selected protein.

First, we calibrate k, θ, and ϕ using the control sam-
ple only, since these parameters are common across control 
and treatment populations and f has not been calibrated 
yet. The procedure used is displayed in Algorithm 1. In this 
algorithm, ∈ is the error tolerance. It has been proved7 that 
smaller ∈ gives better approximation of the posterior p(k|Sn). 
However, this must be balanced against the possibility that 
P S St( ( ), ( ) )( ) T T0 0 0< ≈∈ , which would prevent convergence 
to the posterior.

Next we calibrate the fold change parameter f = (f1,..., fd) 
for each selected protein. If sample size is large (n . 50) then 
the simple sample estimate

f
T S
T S

l dl
l

l
,

( )
( )

, , , ,cal for= =1

0

1… (13)

where Tl denotes the sample mean for the lth selected protein 
only, is fairly accurate, and may be used as the prior calibra-
tion. However, for smaller sample sizes, we follow the steps 
enumerated below in Algorithm 2.

Posterior sampling via an ABC-MCMC procedure. 
After prior calibration, we would like now to draw samples from 
the posterior distribution of the protein baseline expression 
vector γ = (γ1,...,γd), namely, p S p S pn n( ) ( ) ( )γ γ γ ∝ , in order 
to derive the OBC. In our case, no closed-form expressions for 
either the likelihood function or posterior distribution exist, 
so Bayesian analysis is performed using an ABC-MCMC 
procedure, described in Algorithm 3. After a burn-in interval 

of ts time steps, the Markov chain is assumed to have become 
stationary, and γ γ( ) ( ), ,t t Ms s+ +…1  may be considered to be 
samples from the baseline expression posterior distribution 
p y Sn( , )γ = 0 , while γ γ( ) ( ), ,t

cal
t M

cal
s sf f+ +…1  (where vector 

multiplication is defined as componentwise multiplication) 
may be taken to be samples from the altered expression poste-
rior distribution p y Sn( , )γ =1 .

Algorithm 2 Prior calibration of fl  , l = 1,..., d, using ABC 
rejection sampling.

1. Generate Mcal baseline expression values γ θl
t

cal calk( ) ( , )∼Γ  
for t = 1,…,Mcal.

2. Simulate a control sample S t
0
( )  of size n using the base-

line expression mean γ l
t( ) , for t = 1,…,Mcal (in fact, only

the abundances for the lth protein need to be generated).
3. Accept γ l

t( ) if  T S T Sl
t

l( ) ( )( )
0 0 1− <∈  and p S Sl

t( , )( )
0 0 21> − ∈ ,  

where Tl denotes the sample mean and ρl denotes the sam-
ple correlation for the abundances of the lth protein only.

4. Generate Mcal fold change parameters f l
t( )  such that

If T S T Sl l( ) / ( )1 0 1≥ , then f l
t( ) , ),∼Unif( low highα α

If T S T Sl l( ) / ( )1 0 1< , then f l
t( ) , / ),∼Unif( / high low1 1α α

for t = 1,…, Mcal.
5. Simulate a treatment sample S t

1
( )  of size n using the altered 

expression mean f l
t

l
t( ) ( )γ , for t = 1, 2,…, Mcal (in fact, only 

the abundances for the lth protein need be generated).
6. Accept f l

t
l
t( ) ( )γ  if  T S T Sl

t
l( ) ( )( )

1 1 1− <∈  and 
ρ ∈l

tS S( , ) .( )
1 1 21> −

7. Let na
0  be the number of accepted baseline expression

means in step 3 and let na
1  be the number of accepted 

altered expression means in step 6. Define
λ0 0=n Ma / cal , the rate of acceptance of control means,
λ0 1=n Ma / cal , the rate of acceptance of treatment means.

8. If λ0 . λ1 then assign fl,cal = 1 (ie, background protein) 
and return from the algorithm.

9. Otherwise, fcal,l ≠ 1 (ie, marker protein). For all the accepted 
altered expression means, we perturb each of the fold 
changes f f Nl l l

* = + , where Nl is zero-mean Gaussian
noise with a small variance. With these perturbed fold 
changes, we again apply the ABC rejection algorithm, 
this time with error tolerances, ′< ′ <∈ ∈ ∈ ∈1 1 2 2and .

10. The mean of all accepted fold change parameters in
step 9 is a reasonably accurate fold changed fcal for the
given protein.

Optimal Bayesian classifier. Let ψ: Rd → {0, 1} be a 
classifier that takes a protein abundance profile X ∈ Rd into 
one of the two labels 0 or 1, which code for the control (base-
line expression) and treatment (altered expression) popula-
tions, respectively. The error of the classifier is the probability 
of a mistake given the sample data:

ε ψ ψ[ ] ( ( ) ),= ≠P Y SX  � (14)

where Y ∈ {0, 1} denotes the true label corresponding to X.
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Algorithm 3 Posterior sampling of γ using an ABC-
MCMC procedure.

1. Generate γ  (0) = (γ0, γ1, …, γd) such that γl ∼ Γ(k, θ), for
l = 1, 2, …, d.

2. Simulate control and treatment samples S0
0( ) and S1

0( ) of
size n using γ  (0) and γ  (0) fcal, respectively (where vector
multiplication is defined as componentwise multiplication).

3. Accept γ  (0) if  T T( ( )( )S S0
0

0 0− <∈  and T( ( )S1
0 −

T( )S1 1<∈ , otherwise repeat steps 1 and 2 until the con-
dition is met.
For t = 0,1,..., ts, ts+1,...,ts  +  M where ts is the burn-in

period, repeat:
4. Generate γ  (t+1) ∼ g(γ ; γ  (t)), where the proposal density

g(γ ; γ  (t)) is multivariate Gaussian Nd
t

dI( , )( )γ σ 2 , with a 
small variance σ2.

5. Simulate control and treatment samples S t
0

1( )+  and S t
1

1( )+

of size n using γ  (t+1) and γ  (t+1) fcal, respectively.

6.	 Let q
p g
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t t t
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where p(⋅) is the Gamma prior for protein baseline expression.
5. Accept γ  (t+1) with probability q, or let γ  (t+1) = γ  (t) with

probability 1 – q.

Now, consider a Bayesian setting, where the joint distri-
bution of (X,Y) depends on a random parameter vector θ. In 
this case, the classification error εθ[ψ] also becomes a random 
variable, as a function of θ. The expected value of the classi-
fication error over the posterior distribution of θ becomes the 
quantity of interest:

E E P X Y S
S Sθ θ θ

ε ψ ψ θ
  [ [ ]] [ ( ( ) , )].= ≠ 	 (15)

The OBC6 is the classifier that minimizes the quantity 
in (15):

ψ ε ψ
ψOBC =

∈
arg min [ [ ]],

C
E

Sθθ θθ
	 (16)

where C is the space of classifiers. It was shown in Ref. 6 that 
the OBC is given by

ψ OBC

if
otherw

( )
, [ ] ( , ) ( [ ]) ( , ),
,

x
x x

=
= > − =1 1 1 0

0

E c S p Y S E c S p Y S   
iise,






	 (17)

where c = P(Y = 1 | θ) is the prior probability of class 1, and

	
p Y y S p Y y S p Y y S d y( , ) ( , , ) ( , ) , , ,x x  = = = = =∫ θθ θθ θθ 0 1

Θ
� (18)

are the effective class-conditional densities.
In the present case of the LC-MS model discussed 

in the “LC-MS Model” section, the random parameter 
vector θ corresponds to the baseline expression vector γ. We 

approximate the integral in (18) using the MCMC samples 
γ γ( ) ( ), ,t t Ms s+ +…1  from the posterior distribution of γ, obtained 
with Algorithm 3:

p Y y S
M

p x Y y S yt

t t

t M
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s
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0 1

1

γ � (19)

Now, the densities p(x|γ  (t),Y = y, S), y = 0, 1, cannot be 
directly determined for the LC-MS model, and hence we 
approximate them using a kernel-based approach. For each 
MCMC sample γ  (t), we simulate control and treatment 
samples S t

0
( )  and S t

1
( )  of size n based on γ  (t+1) and γ  (t+1) fcal, 

respectively. Let S t t
n

t
0 1
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where K is a zero-mean, unit-covariance, multivariate Gaussian 
density, and h . 0 is a suitable kernel bandwidth parameter.

In addition, we will assume c to be known (eg, from epi-
demiological data) and fixed, so E[c | S] = c. After some simpli-
fication, the resulting OBC, which we call an ABC-MCMC 
Bayesian classifier, is a kernel-based classifier given by
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Numerical Experiments
We demonstrate the application of the proposed ABC-
MCMC classification rule to synthetic LC-MS data gener-
ated from a subset of the human proteome, containing around 
4000 drug targets, which was compiled as a FASTA file from 
DrugBank15 – this is the same proteome that was used in the 
numerical experiments of Ref. 5 – and compare its perfor-
mance against that of popular classification rules: linear sup-
port vector machines, LDA, and 3NN.16 As our interest is 
on small-sample performance, we selected methods that are 
simple and known to perform well with small samples and 
avoid overfitting: linear SVMs are sophisticated methods 
widely used in the pattern recognition and machine learning 
communities, which displays minimal overfitting, while LDA 
and 3NN are classical methods that are well known to have 
superior small-sample performance.17

We select randomly among these data 500 proteins to 
play the role of background proteins, along with 20 proteins 
to serve as biomarkers. Synthetic LC-MS protein abundance 
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data were generated using realistic sample preparation, 
LC-MS instrument characteristics, and protein quantification 
parameters – see Table 1. These are the “LC-MS experiment 
parameters” of Figure  1, which are assumed to be known 
and are held constant throughout the simulation. (For the 
peptide efficiency factor, values uniformly distributed in the 
indicated range are randomly generated for each peptide, and 
then held constant.) As argued in Ref. 5, the values and ranges 
adopted in Table 1 adequately represent the peptide mixture, 
peptide abundance mapping, peptide detection and identi-
fication, and protein abundance roll-up that is typical in an 
LC-MS workflow.

The hyperparameter priors for k, θ, ϕ, f are the uniform 
distributions shown in Table  2 (except where noted below). 
The lower and upper bounds of each interval are chosen while 
keeping in consideration that, in practice, the dynamic range 
of protein expression level has approximately 4 orders of mag-
nitude.5 The synthetic sample data were generated using the 
middle point of each interval as parameters: k = 2, θ = 1000, 
ϕ = 0.4, and αl = 1.55 (again, except where noted below).

We consider sample sizes from n = 10 through n = 
50 per class, and select d = 3, 5, 8, or 10 proteins from the 

original 520 proteins using the two-sample t-test (notice 
that background proteins could be erroneously selected by 
the t-test, especially for small sample sizes, which makes the 
experiment realistic).

For the MCMC step, M = 10,000 samples were drawn 
from the posterior distribution of γ, after a burn-in stage of 
ts = 3000 iterations, which confers a high degree of accuracy to 
the approximation. A constant value c = 0.5 was assumed in (21).

A total of 12 runs of the experiment were run for each 
combination of sample size, dimensionality, and parameter 
settings, and the average true error rate for each classification 
rule was obtained using a large synthetic test set containing 
1000 sample points. This is a comprehensive simulation, given 
the relatively large computational burden required for accurate 
prior calibration and ABC-MCMC computation.

The root mean square error (RMS) of the test set error 
estimator, which reflects the expected distance between the 
estimate and the true error, is bounded by equation (2.29) in 
Ref. 17 as follows

RMS≤ 1

2 m
,	 (22)

where m is the number of test points. With m  =  1000, we 
obtain RMS # 0.016, which is of the order of the differences 
in average error rates observed in the plots. While not imply-
ing statistical significance, this result means that we can assign 
a large degree of confidence to the comparative results.

Effect of sample size. Figure  2 displays the expected 
error rates of the various classification rules for varying sample 
size and fixed number of selected proteins d = 8. We can see 
that, as expected, the expected error rates of all classifiers tend 
to go down as sample size increases, but the ABC-MCMC 
classifier has the smallest expected error at small sample 
sizes. This is in agreement with the predicted superiority of 
the Bayesian approach in small-sample scenarios. Though 
the difference in performance among the classification rules 
may seem to be small, the point to be emphasized is that the  

Table 1. LC-MS parameters used in the experiment.

Parameter symbol value/range

Instrument response κ 5

Noise severity α, β 0.03, 3.6

Peptide efficiency factor ei [0.1–1]

Peptide detection algorithm b, t, p 0,0.0016,2
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Figure 2. Expected classification error rates for varying sample size and 
fixed number of selected proteins d = 8.

κ, θ, ϕ
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LC-MS experiment
parameters

Treatment
sampleS0 S1

Control
sample

Figure 1. Relationship among all parameters of the LC-MS model (see text).

Table 2. Hyperparameter priors used in the experiment.

Parameter symbol range/value

Shape (gamma distribution) k Unif(1.6, 2.4)

Scale (gamma distribution) θ Unif(800, 1200)

Coefficient of variation φ Unif(0.3, 0.5)

Fold change αl Unif(1.5, 1.6)
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ABC-MCMC displays a consistently smaller error rate for 
small sample sizes.

Effect of dimensionality. Figure 3 displays the expected 
error rates of the various classification rules for varying num-
ber of selected proteins and fixed sample size n = 10 per 
class. Here we can see that, as the number of selected pro-
teins increases, expected classification error rates tend to go 
down at first, but then increase slightly, which is in agreement 
with the well-known peaking phenomenon of classification.18 
We can see that the ABC-MCMC classification rule displays 
the smallest expected error rate when d is large, which once 
again agrees with the prediction that Bayesian methods per-
form comparatively well under small-sample scenarios (here, 
small n/d ratio).

Effect of coefficient of variation. Here we keep both the 
sample size and the dimensionality fixed at n = 10 per class 
and d = 8, respectively, and investigate the impact on classifi-
cation error rate of an increased variability in the true protein 
concentration values, by changing the value of the coefficient 
of variation ϕ used to generate the LC-MS data. To accom-
modate this change, the hyperparameter prior for ϕ is changed 
from the value displayed in Table 2 to Unif(ϕ0 – 0.1, ϕ0 + 0.1), 
where ϕ0 is the value used to generate the data. Increasing the 

coefficient of variation corresponds to the effect of very noisy 
background proteins in the LC-MS channel. Accordingly, it 
can be seen in Figure 4 that as ϕ increases the expected error 
rates for all classification rules approach the no-information 
value 0.5, ie, the same error rate of flipping a coin. However, 
the expected error rate of the ABC-MCMC classification rule 
approaches 0.5 error rate rather more slowly than the others, 
indicating superiority in classifying noisy data.

Effect of peptide efficiency factor. Finally, we investi-
gate the impact of varying the peptide efficiency factor on the 
classification error rates. We do this by changing the lower 
bound in the range for ei displayed in Table 1 from α = 0.1 
to a value varying between 0 and 1. The peptide efficiency 
factor affects how many ions an instrument can detect for a 
given peptide. Larger values for ei imply a smaller transmis-
sion loss for the corresponding peptide. Increasing the lower 
bound a will uniformly increase efficiency for all peptides, 
which corresponds to a better LC-MS instrument. We can 
see in Figure 5 that, indeed, the expected classification error 
rates tend to decrease with an increasing lower bound on 
the peptide efficiency factor, though somewhat modestly (all 
other things being equal). We can also observe that among all 
algorithms, the ABC-MCMC classification rule displays the 
smallest error rate over nearly the entire range in the plot.

Conclusion
We proposed in this paper a model-based Bayesian approach 
for classification of LC-MS proteomics data with the ultimate 
goal of facilitating biomarker discovery for cancer research. 
Our approach combines state-of-the-art Bayesian computa-
tion techniques, namely, ABC and MCMC, for the calcula-
tion of the OBC. As expected, the proposed Bayesian classifier 
outperforms other approaches when sample size is small or 
the number of selected proteins to classify is large. We believe 
that our simulation using a subset of 4000 human protein 
drug targets and realistic parameter settings is indicative of 
the performance of the proposed methodology on real data. 
The challenges associated with designing experiments and 
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Figure 3. Expected classification error rates for varying number of 
selected proteins and fixed sample size n = 10 per class.
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Figure 4. Expected classification error rates for fixed sample size 
n = 10 per class, fixed number of selected proteins d = 8, and varying 
coefficient of variation φ.
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Figure 5. Expected classification error rates for fixed sample size n = 10 
per class, fixed number of selected proteins d = 8, and varying lower 
bound a for the peptide efficiency factor ei ∼ Unif(α, 1).
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obtaining appropriate real data to calibrate and validate the 
methodology go beyond the scope of the present paper and are 
intended to be part of future work.
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