OPEN

HLA Alleles Cw12 and DQ4 in Kidney Transplant Recipients Are Independent Risk Factors for the Development of Posttransplantation Diabetes

Nuvreen Phagura, BMedSci¹ Azm Hussain, MBBS,² Alice Culliford, MBBS,² James Hodson, BSc,³ Felicity Evison, MSc,⁴ Suzy Gallier, MSc,^{4,5} Richard Borrows, MA,² Hanna A. Lane, PhD,⁶ David Briggs, PhD,⁶ and Adnan Sharif, MD^{2,7}

Background. The association between specific HLA alleles and risk for posttransplantation diabetes (PTDM) in a contemporary and multiethnic kidney transplant recipient cohort is not clear. **Methods.** In this single-center analysis, data were retrospectively analyzed for 1560 nondiabetic kidney transplant recipients at a single center between 2007 and 2018, with median follow-up of 33 mo (interquartile range 8–73). HLA typing methodology was by DNA analysis and reported at the resolution required for the national allocation scheme. Diagnosis of PTDM was aligned with International Consensus recommendations. **Results.** PTDM developed in 231 kidney transplant recipients. Exploring 99 HLA alleles, the presence of Cw12, B52, B38, B58, DQ4, A80, and DR13 and the absence of DQ3 and DR04 were associated with significant increases in PTDM risk. In a multivariable Cox regression model, adjusting for other clinical risk factors for PTDM, the presence of Cw12 (hazard ratio [HR], 1.57; 95% CI, 1.08-2.27; P=0.017) and DQ4 (HR, 1.78; 95% CI, 1.07-2.96; P=0.026) were found to be independent risk factors for PTDM. There was also evidence that the presence of B58 increases PTDM risk within the subgroup of recipients of White ethnicity (HR, 5.01; 95% CI, 2.20-11.42; P<0.001). **Conclusion.** Our data suggest that specific HLA alleles can be associated with PTDM risk, which can be used pretransplantation for PTDM risk stratification. However, association is not causality, and this work requires replication and further investigation to understand underlying biological mechanisms.

(Transplantation Direct 2021;00: e00; doi: 10.1097/TXD.000000000001188. Published online 23 July, 2021.)

INTRODUCTION

Posttransplantation diabetes mellitus (PTDM) is a common complication after kidney transplantation, affecting up to a third of solid organ recipients, and is associated with adverse outcomes.¹ International Consensus guidelines recommend identifying transplant candidates at risk

- ¹ College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
- ² Department of Nephrology and Transplantation, University Hospitals Birmingham, Birmingham, United Kingdom.
- ³ Institute of Translational Medicine, Queen Elizabeth Hospital, Birmingham, United Kingdom.
- ⁴ Department of Health Informatics, University Hospitals Birmingham, Birmingham, United Kingdom.
- ⁵ Head of Bioinformatics, PIONEER: HDR-UK hub in Acute Care, Birmingham, United Kingdom.
- ⁶ H&I Birmingham, National Health Service Blood and Transplant, Birmingham, United Kingdom.
- ⁷ Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.
- The authors declare no funding or conflicts of interest.

for PTDM to aid patient counseling and risk stratification strategies based upon underlying risk factors.² Many risk factors have been identified for the development of PTDM, including those that are both modifiable and nonmodifiable, as well as generic and transplant specific,³ with new etiological factors continuing to be identified. However, one commonly cited risk factor, which has weak evidence for an underlying etiological link, is specific HLA alleles.

Received 28 April 2021.

Accepted 17 May 2021.

All authors participated in conception or design, or analysis and interpretation of data, or both. N.P. and A.S. participated in drafting the article or revising

it. N.P., A.Z., A.C., F.E., and S.G. did data extraction. N.P., J.H., and A.S. participated in statistical analysis/support. D.B. and A.S. provided intellectual content of critical importance to the work described. All authors did final approval of the version to be published.

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Supplemental Digital Content; http://links.lww.com/TXD/A347

Correspondence: Adnan Sharif, MD, Department of Nephrology and Transplantation, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2WB, United Kingdom. (adnan.sharif@uhb.nhs.uk).

Copyright © 2021 The Author(s). Transplantation Direct. Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

ISSN: 2373-8731

DOI: 10.1097/TXD.00000000001188

Although HLA genes have a major impact on risk for type 1 diabetes (contributing to approximately 50% of risk),⁴ the heritable contribution to type 2 diabetes is more complex, with confounding from familial and environmental factors.⁵ Other types of diabetes have also been shown to have a degree of heritability, including maturity-onset diabetes of the young (MODY)⁶ and gestational diabetes.⁷ Genetic predisposition for the development of PTDM has been demonstrated in a systematic review and meta-analysis of published studies.⁸ Although 3 candidate genes were cited by Benson and colleagues as contributing to the development of PTDM,⁸ the heritability of PTDM lacks clear definition and understanding. The pathophysiology of PTDM is distinct from type 1 or 2 diabetes, justifying its separate pathophysiological consideration from other forms of diabetes.¹ Underlying biological

mechanisms linking HLA molecules to the development of PTDM are speculative but may include mediation of pathogenetic immune mechanisms which, under the additional influence of special major histocompatibility complex genes of class I and III, lead to diabetes.⁹

Although genome-wide association studies are not readily available at the time of kidney transplantation to guide decision making, HLA typing is known in advance and is easily accessible. Previous studies have linked the development of PTDM to specific HLA alleles, but the evidence base is weak and contradictory.¹⁰⁻²⁰ These heterogeneous reports (see summary overview in Table 1) have several methodological limitations, with the majority being historical in nature, not using contemporary immunosuppression, and lacking robust definitions of PTDM in line with the latest consensus guidelines.² Identifying specific HLA alleles that influence the development of PTDM, which are routinely tested pretransplantation in all kidney transplant candidates, is important as it could facilitate targeted patient counseling and decision making to attenuate risk for PTDM. Therefore, the aim of this study was to explore the link between routinely collected recipient HLA alleles and the risk of PTDM development, after adjustment for known PTDM risk factors, in a large single-center cohort.

MATERIALS AND METHODS

Study Design

We undertook a retrospective cohort analysis of all consecutive kidney-alone transplants performed at a single center in the United Kingdom between January 1, 2007, and June 30, 2018 (with follow-up data to October 13, 2018). Recipients of multiple organs and those with preexisting diabetes were excluded. Data were electronically extracted by the Department of Health Informatics for every study recruit, with manual data linkage to additional electronic patient records. Patient and graft survival outcomes were acquired and linked from NHS Blood and Transplant.

Immunosuppression Protocol

A consistent immunosuppression regimen was initiated throughout the study period, with minimization of tacrolimus exposure, in line with the SYMPHONY protocol.²¹ Induction therapy was with basiliximab ($20 \text{ mg} \times 2$) and methylprednisolone (500 mg). Maintenance therapy included tacrolimus (target 12-h trough level 5–8 ng/L), mycophenolate mofetil (MMF, 2g daily with tapering to 1g daily after 6 mo), and corticosteroids tapered to a maintenance low-dose of 5 mg daily.

Diagnosis of PTDM

PTDM was diagnosed in line with the latest Consensus recommendations² if any of the following occurred: symptoms of diabetes plus random plasma glucose $\geq 200 \text{ mg/dL}$ (11.1 mmol/L); fasting plasma glucose $\geq 126 \text{ mg/dL}$ (7.0 mmol/L); 2-h plasma glucose $\geq 200 \text{ mg/dL}$ (11.1 mmol/L) during an oral glucose tolerance test (rarely undertaken); or HbA1c ≥ 48 mmol/mol. PTDM was not diagnosed for recipients if only present during the immediate 6-wk postoperative period.

TABLE 1.

HLA alleles and PTDM risk in literature

							HLA alleles and PTDM	
Study	Published	olished Cohort	Country	Number of cases Immunosuppression		Associated with increased PTDM risk	No significant association with PTDM	Associated with reduced PTDM risk
Hjelmesaeth	1997	1995–1996	Norway	173	Cyclosporine, azathioprine, steroids	B27	DR3, DR4	
neuuy	2015	2004-2009	Inuia	201	mycophenolate, steroids	DJZ, ATU," DT3"		AZO, DNZ," A I
Torres-Romero	2006	1997–2004	Puerto Rico	525	Not known		A3, DR3, DR4, Dr17, DR18	
Sumrani	1991	1983–1988	United States	337	Cyclosporine, steroids	A30, Bw42		
David	1980	1971–1977	United States	286	Azathioprine, steroids	A28	B18, Bw15	
Nafar	2005	1984–2004	Iran	61	Not clearly stated	DR8, A26		DR6, DR52
Mazali	2008	Not stated	Brazil	67	Tacrolimus, mycophenolate, steroids	DR13		
Pietrzak-Nowacka	2010	1988–2005	Poland	196	Variable	B27		
Addous	2000	1989–1997	Saudi Arabia	153	Cyclosporine, azathioprine, steroids		A28, A30, B8, DR3, DR4, B7, DR2	
Bee	2011	1998–2007	Singapore	388	Variable	BR13, BR15		
von Kiparski	1990	1964–1988	Switzerland	901	Cyclosporine, azathioprine, steroids	B8	A28, B15, DR3, DR4, B7, DR2	

^aOnly for patients receiving cyclosporine.

^bOnly for patients receiving tacrolimus.

PTDM, posttransplantation diabetes.

These data were not available for electronic extraction, and therefore, it was done manually through electronic patient record search.

HLA Typing Methodology

All cases were typed by DNA analysis using Lifecodes SSO kits (supplied by Imucor) and reported at the resolution required for the national allocation scheme. HLA alleles were accordingly assigned as serological equivalents.

Definitions of Variables

Baseline and posttransplant data were extracted and classified from our database as follows. The primary variables of interest were specific HLA alleles for the recipient, with a range of HLA alleles examined for class I and II HLA genes. HLA mismatch levels were defined and graded as level 1 (HLA mismatch 0), level 2 (HLA mismatch 0 DR and 0/1 B), level 3 (HLA mismatch 0 DR and 2B, or 1 DR and 0/1 B), and level 4 (1 DR and 2B, or 2 DR). Matchability was calculated from a standardized pool of 10,000 recent donors, from which the numbers of blood group identical donors that recipients are well or favorably HLA-mismatched were counted. This number was converted to a standardized score between 1 and 10, which was used to categorize recipients into 1 of 3 matchability groups; easy (1–3), moderate (4–6), or hard (7–10) to match.

To calculate the follow-up time of each patient, data for patient survival outcomes were acquired from our hospital informatics team, with record linkage to the national death registry. Data for graft survival outcomes were acquired from NHS Blood and Transplant, with record linkage to electronic patient records for validation.

Statistical Analysis

The primary outcome of interest was development of PTDM. Associations between HLA alleles and PTDM were assessed using a time-to-event approach, with the event of interest being PTDM, and patients being censored at death, graft loss, retransplant, or the final follow-up appointment. Univariable Cox regression models were initially used to compare between patients where each allele was present versus absent. Because of the large number of alleles being assessed, the significance of the factors in the resulting models was assessed at both P < 0.05 and after Bonferroni correction for 99 comparisons (P < 0.0005). All alleles identified as significant at either threshold were then considered for inclusion in a multivariable Cox regression analysis, with a forwards stepwise approach used to produce a parsimonious model.

Alleles selected for inclusion in the parsimonious model of PTDM on the initial analysis were then assessed in further detail. For these, the association with PTDM was visualized using Kaplan–Meier curves, which were used to estimate PTDM rates. The characteristics of recipients were then compared between those with presence versus absence of the alleles, using Mann–Whitney U tests for ordinal or continuous variables and Fisher's exact tests for nominal variables.

Univariable Cox regression models were then used to assess the associations between baseline factors and PTDM. These factors were then considered for inclusion in a multivariable Cox regression model, with a backwards stepwise approach used to produce a parsimonious model. To prevent excessive exclusions of cases with missing data in the multivariable analysis, these were replaced with the mean in the case of continuous variables or classified as a separate "missing data" category in the case of categorical variables. A second backwards stepwise procedure was then used to select alleles to be added to the model, with all those found to be significant on previous univariable analysis considered for inclusion.

To assess the interplay between recipient ethnicity and selected alleles, Cox regression models were then produced, with the presence of the allele, recipient ethnicity, and an interaction term as covariates. These were followed by subgroup analyses by recipient ethnicity to quantify the associations between the allele and PTDM for each ethnicity.

All analyses were performed using IBM SPSS 22 (IBM Corp., Armonk, NY), with P < 0.05 deemed to be indicative of statistical significance, unless stated otherwise.

Approvals

This study received institutional review board approval (identifier; CARMS-12578). The corresponding author had full access to all data.

RESULTS

Cohort Characteristics

Data were available for a total of N=1560 transplants, for which donor and recipient characteristics are reported in Table 2. Patients were followed up for a median of 33 mo (interquartile range, 8–73) posttransplant, during which time N=350 patients were censored for the analysis of PTDM due to death, graft loss, or retransplant. In total, N=231 patients developed PTDM, giving Kaplan–Meier estimated rates of 12.7%, 19.1%, and 27.4% at 1, 5, and 10 y, respectively (see Figure 1).

Associations Between HLA Alleles and PTDM

Data relating to HLA alleles were recorded in N=1501 cases, with a total of 99 alleles considered in the analysis, a full list of which is reported in Table 3. Of these, 8 were not observed in any patients in the cohort and so were not considered in subsequent analysis. The prevalence of the remaining alleles ranged widely, from being present in a single patient (A43, B73, and A80; 0.1%) to over half of the cohort (DQ3; 53.2%).

On univariable analysis, a total of N=9 alleles were found to be significantly associated with PTDM (see Table 3). Of these, only the presence of Cw12 (HR, 2.23; P < 0.001) was found to be significantly associated with PTDM using the Bonferroni-corrected threshold of P < 0.0005. Using the standard P < 0.05 threshold, the presence of B52, B38, B58, DQ4, A80, and DR13, and the absence of DQ3 and DR4 were additionally found to be associated with a significant increase in the risk of PTDM. All of these alleles were then considered for inclusion in a multivariable Cox regression model, using a forwards stepwise approach, to identify those that were independently associated with PTDM. Cw12 remained the strongest predictor of PTDM in this model (P < 0.001), with B58 (P = 0.025) and DQ4 (P = 0.031) also identified as significant.

TABLE 2.Baseline characteristics of the study cohort

	Ν	Statistic
Donor factors		
Age (y)	1291	49 (38–58)
Sex (% Male)	1291	654 (50.7%)
Ethnicity	1300	
White		1182 (90.9%)
South Asian		69 (5.3%)
Other		49 (3.8%)
Body mass index (kg/m ²)	758	25.8 (23.4–28.7)
CMV (% positive)	1214	611 (50.3%)
Туре	1504	
Living		605 (40.2%)
Donation after brain death		690 (45.9%)
Donation after circulatory death		209 (13.9%)
Donor risk index	991	1.68 (1.36-2.06)
Recipient factors		
Age (y)	1560	47 (36–57)
Sex (% Male)	1560	906 (58.1%)
Ethnicity	1560	
White		1045 (67.0%)
South Asian		281 (18.0%)
Other		234 (15.0%)
Body mass index (kg/m ²)	1517	26.5 (23.5–29.8)
CMV (% positive)	1073	375 (34.9%)
Hepatitis C (% positive)	1506	6 (0.4%)
Polycystic kidney disease	1353	248 (18.3%)
Glomerular causes	1353	411 (30.4%)
Tubulointerstitial causes	1353	142 (10.5%)
Renovascular disease	1353	42 (3.1%)
Hypertension	1353	186 (13.7%)
Other causes	1353	274 (20.3%)
Unknown	1353	50 (3.7%
Dialysis	1386	1061 (76.6%)
Previous transplant	1504	174 (11.6%)
Waiting list time (mo)	1216	29.4 (11.6–54.8)
Matching/transplant factors		
Calculated reaction frequency	1290	
0%		848 (65.7%)
1%-85%		332 (25.7%)
>85%		110 (8.5%)
Matchability	972	
Easy		374 (38.5%)
Moderate		434 (44.7%)
Hard		164 (16.9%)
HLA mismatch	1560	
Level 1		175 (11.2%)
Level 2		415 (26.6%)
Level 3		744 (47.7%)
Level 4		226 (14.5%)
ABO incompatible	1560	77 (4.9%)
Cold ischemic time (h)	1211	11.6 (3.2–17.1)

Data are reported as N (column %), or as median (interquartile range), as applicable. CMV, cytomegalovirus.

Further Analysis of Cw12, B58, and DQ4

The 3 alleles selected by the forwards stepwise procedure were then analyzed in further detail. Kaplan–Meier curves of the associations between these alleles and PTDM are shown in Figure 2. These returned Kaplan–Meier estimated PTDM rates at 5 y for patients with the allele present versus absent

FIGURE 1. Kaplan–Meier curve of PTDM. PTDM, posttransplantation diabetes.

of 35.5% versus 17.3% for Cw12, 33.3% versus 18.4% for B58, and 28.8% versus 18.6% for DQ4.

Analysis of recipient characteristics found all 3 alleles to be significantly associated with the distribution of ethnicity (all P < 0.001, see Table 4). In the case of Cw12 and B58, South Asian patients were overrepresented in the present (versus absent) allele groups, making up 48.1% versus 14.7% and 42.6% versus 17.2% of cases, respectively. For DQ4, the "other" ethnicities (ie, neither White nor South Asian) were overrepresented in the present group (34.2% versus 13.9% in the absent group).

Independent Predictors of PTDM

A multivariable model was then produced to identify donor-, recipient-, and transplant-related factors that were independent predictors of PTDM (see Table 5). This identified increasing recipient age (hazard ratio [HR], 1.49 per decade; P < 0.001) and BMI (HR, 1.35 per 5 kg/m²; P < 0.001) to be independently associated with a significantly increased PTDM risk. In addition, recipient ethnicity was significantly independently associated with PTDM risk, with HRs of 2.37 (P < 0.001) for South Asian recipients, and 1.68 (P = 0.007) for other Non-White ethnicities, relative to White recipients. The model additionally selected donor cytomegalovirus positivity (P = 0.089) and increasing calculated reaction frequency (P = 0.090) for inclusion, although neither reached statistical significance.

The model was then extended to additionally consider the 9 alleles previously identified as significant on univariable analysis (Table 6). Of these, the stepwise procedure identified the presence of Cw12 (HR, 1.57; P = 0.017) and DQ4 (HR, 1.78; P = 0.026) to be significant independent predictors of PTDM after adjusting for the previously described factors.

Interplay Between Alleles and Recipient Ethnicity

Because recipient ethnicity was found to be significantly associated with both PTDM and the alleles included in the further analysis (Cw12, B58, and DQ4), the interactions between these alleles and ethnicity were assessed (see Table 7). This found no evidence of a significant interaction

TABLE 3.					
Prevalence of	of HLA alleles	and univariable	analysis of	associations	with PTDM

	HLA Allele	Prevalence	Hazard ratio (95% CI)	Р	HLA allele	Prevalence	Hazard ratio (95% CI)	Р
B52 63 (4 2%) 2.29 (1.4 ⁺³ , 27) -4.001 A68 12 (8.1%) 1.15 (0.74-1.81) 0.351 B58 25 (1.7%) 2.77 (1.37-6.6) 0.005 B37 (2.5%) 1.29 (0.5-2.6) 0.658 D54 61 (4.1%) 1.84 (1.0-3.05) 0.034 A35 4 (0.3%) NA* 0.593 D64 438 (2.2.%) 0.74 (0.5-0.99) 0.043 B62 15 (10.1%) NA* 0.593 D74 0.37 (2.0.5-0.99) 0.043 B62 15 (10.1%) 0.89 (0.6-1.27) 0.633 D74 0.38 (22.2%) 0.57 (2.0.5-0.99) 0.043 B61 3 (0.2%) NA* 0.640 D74 0.48 (9.2%) 0.54 (0.27-1.04) 0.067 B41 17 (1.1%) 1.38 (0.43-4.22) 0.067 D74 0.44 (1.0.51-1.10) 0.677 C43 10.073% 0.82 (0.06-1.33) 0.640 D85 63 (4.2%) 0.56 (0.39-1.30) 0.657 B41 20 (1.1%) 0.82 (0.6-1.33) 0.644 D86 74 (4.9%) 1.56 (0.39-2	Cw12	158 (10.5%)	2.23 (1.58–3.15)	<0.001ª	B49	42 (2.8%)	1.27 (0.60-2.71)	0.528
B38 25 (1,7%) 2.77 (137-5.61) 0.005 B37 37 (2.5%) 1.75 (0.59-2.68) 0.569 D33 798 (5.2%) 0.74 (0.56-0.66) 0.022 0.74 285 (17.5%) 0.91 (0.53-1.29) 0.588 D04 79 (5.3%) 1.71 (1.04-2.80) 0.038 R7 202 (1.3%) 0.91 (0.66-1.27) 0.538 D13 0.12 (0.2%) 0.72 (0.53-0.99) 0.043 B62 151 (10.1%) 0.99 (0.56-1.40) 0.67 D13 0.31 (0.2%) N/A* 0.56 0.42 (2.8%) 0.33 (0.2%) 0.34 (0.43-4.22) 0.60 D14 0.36 (0.9%) 0.54 (0.27-1.04) 0.067 D06 642 (4.2%) 0.33 (0.21-1.22) 0.60 D16 0.54 (0.27-1.04) 0.067 D06 642 (4.2%) 0.32 (0.24-1.22) 0.60 D16 0.54 (0.27-1.04) 0.067 D06 642 (4.2%) 0.42 (0.43-4.22) 0.60 D16 0.54 (0.27-1.04) 0.057 0.41 24 (0.2%) 0.42 (0.43-4.22) 0.60 D16 0.54 (0.25-1.10)	B52	63 (4.2%)	2.29 (1.41-3.72)	<0.001	A68	132 (8.8%)	1.15 (0.74–1.81)	0.531
B68 61 (4,1%) 1.84 (1,10-3.05) 0.019 B46 5 (0.3%) NA* 0.578 D04 79 (5.3%) 1.71 (1.04-2.80) 0.034 A36 4 (0.3%) NA* 0.588 D04 1 (0.1%) NA* 0.033 B62 151 (10.1%) 0.93 (0.06-1.27) 0.638 D141 438 (29.2%) 0.72 (0.35-0.99) 0.043 B62 151 (10.1%) 1.50 (0.46-1.47) 0.603 D143 301 (20.1%) 1.36 (1.00-1.84) 0.046 B81 3 (0.2%) NA* 0.604 D144 438 (59%) 0.54 (0.27-1.04) 0.067 D05 642 (42.8%) 0.23 (0.71-1.22) 0.660 D155 63 (4.2%) 0.14 (0.15-1.10) 0.077 A34 10 (0.7%) 0.62 (0.09-4.4) 0.638 D161 35 (2.3%) 1.73 (0.92-3.27) 0.095 A1 1.47 (72.1%) 0.54 (0.53-1.33) 0.649 D164 40 (2.3%) NA* 0.710 D32 (0.63-1.33) 0.644 D164 1.64 (1.0-3.04) 0.65 (0.	B38	25 (1.7%)	2.77 (1.37-5.61)	0.005	B37	37 (2.5%)	1.25 (0.59-2.66)	0.558
D03 798 (532%) D.74 (0.56-0.96) D.022 Ow4 P26 (17.5%) N10 (16.3-1.23) 0.580 A80 1 (0.1%) N/A* D038 B7 320 (21.3%) 0.91 (0.66-1.27) 0.583 DF14 436 (29.2%) 0.72 (0.53-0.59) D.048 B81 3 (0.2%) N/A* 0.664 DF13 301 (20.1%) 1.36 (10.0-1.84) D.046 B81 3 (0.2%) N/A* 0.664 Ox66 0.36 (6.9%) 0.464 (0.27-1.04) 0.667 D66 642 (4.2%) 0.32 (0.1-1.22) 0.669 DF16 0.55 (2.3%) 1.76 (0.92-2.7) 0.690 A11 240 (7.2%) 0.62 (0.09-4.4) 0.680 DF16 0.55 (0.39-1.08) 0.096 A1 407 (27.1%) 0.94 (0.69-1.27) 0.690 B60 158 (10.5%) 0.56 (0.93-2.60) 0.132 DF11 26 (1.7%) 1.09 (0.69-1.73) 0.690 B61 158 (10.5%) 1.52 (0.84-2.42) 0.111 B27 (1.7%) 0.47 (0.47.4) 0.480 D74 49 (3.3%)	B58	61 (4.1%)	1.84 (1.10-3.05)	0.019	B46	5 (0.3%)	N/A ^b	0.579
D04 79 (6,3%) 1.71 (1.04–2.60) 0.038 F7 200 (21.3%) 0.91 (0.66-1.20) 0.633 DR4 438 (29.2%) 0.72 (1.53–0.99) 0.043 B62 151 (10.1%) 0.89 (0.56–1.40) 0.663 DR4 301 (20.1%) 1.36 (1.00–1.84) 0.046 B61 3 (0.2%) N/A* 0.660 CV16 134 (8.9%) 0.54 (0.27–1.04) 0.067 D067 B61 17 (1.1%) 13.6 (0.44–4.22) 0.060 DR5 63 (4.2%) 0.44 (0.15–1.10) 0.077 A34 10 (0.7%) 0.62 (0.09–4.44) 0.650 DR8 74 (4.9%) 1.56 (0.33–1.08) 0.095 A11 243 (16.2%) 0.92 (0.65–1.33) 0.644 DR4 44 (4.3%) 1.66 (0.34–3.2) 0.116 B27 16 (1.1%) 0.94 (0.69–1.27) 0.689 DC43 268 (24.6%) 1.32 (0.86–4.20) 0.132 DR11 226 (1.3%) N/A* 0.710 A23 0.64 (0.47%) 1.52 (0.36–1.2%) 0.59 (0.47–1.4%) 0.16 (0.70–7.41,5%) 0.16 (0.57–2.4%)	DQ3	798 (53.2%)	0.74 (0.56-0.96)	0.022	Cw4	263 (17.5%)	0.91 (0.63-1.29)	0.588
A60 1 (0.1%) NA* 0.038 B7 202 (21.3%) 0.04 (0.65-1-27) 0.683 DR4 438 (29.2%) 0.72 (0.53-0.99) 0.043 B62 151 (10.1%) 0.89 (0.55-1.40) 0.664 Cv16 134 (6.9%) 1.48 (0.99-2.21) 0.057 B41 177 (1.1%) 1.35 (0.43-4.22) 0.067 Cv68 103 (5.9%) 0.54 (0.27-1.04) 0.067 D66 642 (42.8%) 0.062 (0.09-4.44) 0.680 DE16 35 (2.3%) 1.73 (0.32-2.87) 0.090 A11 243 (62.2%) 0.94 (0.69-1.27) 0.680 DE16 153 (10.5%) 0.65 (0.39-1.08) 0.095 A1 407 (27.1%) 0.94 (0.69-1.27) 0.680 DE33 21 (1.4%) 1.52 (0.82-8.20) 0.115 B78 2.0.1%) 1.07 (0.19-3.04) 0.899 B63 21 (1.4%) 1.52 (0.82-4.22) 0.115 B78 2.0.1%) 1.05 (0.54-2.45) 0.713 Cv14 94 (3.3%) 0.79 (0.58-1.30) 0.79 (0.77 (-1.55) 0.712 0.73 1.01 (0.17%) 0.74 (55) 0.713 2.0.1%) 1.05 (0.54-2.45) 0.713 <t< td=""><td>DQ4</td><td>79 (5.3%)</td><td>1.71 (1.04-2.80)</td><td>0.034</td><td>A36</td><td>4 (0.3%)</td><td>N/A^b</td><td>0.590</td></t<>	DQ4	79 (5.3%)	1.71 (1.04-2.80)	0.034	A36	4 (0.3%)	N/A ^b	0.590
DF4 438 (22.%) 0.72 (0.53-0.59) 0.043 B62 151 (0.1%) 0.80 (0.5-1.40) 0.603 DR13 301 (20.1%) 1.36 (1.00-1.84) 0.048 B81 3 (0.2%) NA* 0.604 Cv16 124 (8.9%) 1.48 (0.99-2.1) 0.057 B41 177 (1.1%) 1.35 (0.42-4.22) 0.606 Cv86 103 (6.9%) 0.41 (0.15-1.10) 0.077 A04 100 (7%) 0.62 (0.09-4.44) 0.668 DF16 35 (2.3%) 1.73 (0.92-3.27) 0.090 A11 243 (16.2%) 0.92 (0.62-1.27) 0.690 DF18 74 (4.9%) 1.56 (0.93-6.26) 0.101 B27 122 (8.1%) 0.92 (0.62-1.7) 0.66 DF33 1.66 (0.91-3.05) 0.101 B27 122 (8.1%) 0.80 (0.69-1.7) 0.64 Cv14 49 (6.3%) 0.52 (0.38-4.20) 0.132 DF11 206 (13.7%) 0.97 (0.74-4.45) 0.713 Cv3 368 (2.46%) 0.79 (0.58-1.09) 0.159 DF19 40 (2.7%) 0.88 (0.47-1.68) 0.72	A80	1 (0.1%)	N/A ^b	0.038	B7	320 (21.3%)	0.91 (0.66-1.27)	0.593
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DR4	438 (29.2%)	0.72 (0.53-0.99)	0.043	B62	151 (10.1%)	0.89 (0.56-1.40)	0.603
	DR13	301 (20.1%)	1.36 (1.00-1.84)	0.048	B81	3 (0.2%)	N/A ^b	0.604
Cw8 103 (6.9%) 0.54 (0.27-1.04) 0.067 D06 642 (428) 0.93 (0.71-1.22) 0.683 855 63 (4.2%) 0.41 (0.15-1.16) 0.077 A34 10 (0.7%) 0.62 (0.09-4.44) 0.683 DR16 35 (2.3%) 1.56 (0.39-2.64) 0.095 A11 4243 (15.2%) 0.92 (0.65-1.33) 0.644 DR8 74 (4.9%) 1.56 (0.39-2.64) 0.095 A1 407 (27.1%) 0.49 (0.49-1.27) 0.689 B80 158 (10.5%) 0.66 (0.39-1.02) 0.112 DR11 206 (13.7%) 1.07 (0.4-1.55) 0.712 Cv3 369 (24.6%) 0.79 (0.58-1.09) 0.159 DR9 40 (2.7%) 1.15 (0.54-2.45) 0.713 S64 2.5 (1.7%) 0.25 (0.03-1.27) 0.164 B48 4 (0.3%) NA* 0.715 S74 340 (2.7%) 0.59 (0.69-1.30) 0.729 Cw65 248 (16.5%) 0.89 (0.47-1.64) 0.713 S74 240 (2.7%) 0.59 (0.69-1.30) 0.759 340 (2.7%) 0.59 (0.69-1.30) 0.729 <td>Cw16</td> <td>134 (8.9%)</td> <td>1.48 (0.99-2.21)</td> <td>0.057</td> <td>B41</td> <td>17 (1.1%)</td> <td>1.35 (0.43-4.22)</td> <td>0.607</td>	Cw16	134 (8.9%)	1.48 (0.99-2.21)	0.057	B41	17 (1.1%)	1.35 (0.43-4.22)	0.607
BE5 63 (4.2%) 0.41 (0.15-1.10) 0.077 A34 10 (0.7%) 0.62 (0.09-4.4) 0.638 DR16 35 (2.3%) 1.73 (0.92-327) 0.090 A11 243 (16.2%) 0.02 (0.63-1.33) 0.644 DR8 74 (4.9%) 1.56 (0.93-2.64) 0.098 B75 16 (1.1%) 0.76 (0.19-3.04) 0.689 B63 21 (1.4%) 1.92 (0.85-4.32) 0.115 B78 2 (0.1%) N/A* 0.710 A23 64 (4.3%) 1.52 (0.88-2.60) 0.132 DR11 206 (13.7%) 1.07 (0.74-1.55) 0.712 Cv3 369 (24.6%) 0.79 (0.58-1.09) 0.159 DP89 40 (2.7%) 1.15 (0.54-2.6) 0.713 Dc41 94 (6.3%) 0.76 (0.58-1.09) 0.159 DP81 40 (2.7%) 0.18 (0.47-1.68) 0.77 A22 10.2 (6.8%) 0.68 (0.36-1.21) 0.175 DR7 3.40 (22.7%) 0.89 (0.47-1.68) 0.733 DC41 94 (6.3%) 0.52 (0.20-1.41) 0.201 B73 1.10 (0.89 -0.57) 0.733	Cw8	103 (6.9%)	0.54 (0.27-1.04)	0.067	DQ6	642 (42.8%)	0.93 (0.71-1.22)	0.608
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B55	63 (4.2%)	0.41 (0.15-1.10)	0.077	A34	10 (0.7%)	0.62 (0.09-4.44)	0.636
DR8 74 (4.9%) 1.56 (0.93-2.64) 0.095 A1 407 (27.1%) 0.94 (0.69-1.27) 0.690 B60 158 (10.5%) 0.65 (0.39-1.08) 0.098 B75 16 (1.1%) 0.76 (0.19-3.04) 0.699 B63 21 (1.4%) 1.92 (0.85-4.32) 0.115 B78 2 (0.1%) NA* 0.710 A23 64 (4.3%) 1.52 (0.88-2.60) 0.132 DR11 206 (13.7%) 1.07 (0.74-1.55) 0.712 Cv3 399 (24.6%) 0.79 (0.58-1.09) 0.159 DP9 40 (2.7%) 0.89 (0.47-1.68) 0.718 Cv4 94 (6.3%) 0.63 (0.32-1.22) 0.169 B61 75 (5.0%) 0.89 (0.47-1.68) 0.718 A22 102 (6.6%) 0.63 (0.32-1.21) 0.176 A66 15 (1.0%) 1.22 (0.39-3.81) 0.733 B51 179 (119%) 1.28 (0.88-1.65) 0.191 Cw15 1.27 (8.5%) 0.80 (0.84-1.70) 0.755 DR10 76 (5.1%) 1.39 (0.82-2.35) 0.221 DR18 16 (1.1%) 0.81 (0.2-3.27) 0.70	DR16	35 (2.3%)	1.73 (0.92–3.27)	0.090	A11	243 (16.2%)	0.92 (0.63-1.33)	0.644
B60 158 (10.5%) 0.65 (0.39-1.08) 0.098 B75 16 (1.1%) 0.76 (0.19-3.04) 0.684 Cn14 49 (3.3%) 1.66 (0.91-3.05) 0.101 B27 122 (1.1%) 1.09 (0.69-1.73) 0.689 B63 21 (1.4%) 1.92 (0.85-4.32) 0.115 B78 2 (0.1%) N/A* 0.710 A23 64 (4.3%) 1.52 (0.88-2.60) 0.152 DR11 206 (13.7%) 1.07 (0.74-1.55) 0.712 Cw3 369 (24.6%) 0.025 (0.03-1.77) 0.164 B48 4 (0.3%) N/A* 0.715 Dv1 94 (6.3%) 0.63 (0.32-1.22) 0.169 B61 75 (0.0%) 0.89 (0.47-1.68) 0.718 A32 102 (6.8%) 0.66 (0.36-1.21) 0.175 DR7 340 (22.7%) 0.95 (0.69-1.30) 0.723 Cw15 248 (16.5%) 0.77 (0.52-1.13) 0.176 A66 15 (1.0%) 1.22 (0.39-3.81) 0.733 B5 49 (3.3%) 0.52 (0.20-1.41) 0.201 B73 1.0.1%) N/A* 0.755 DR10 77 (5.1%) 1.39 (0.82-1.40) 0.221 DR18 16 (DR8	74 (4.9%)	1.56 (0.93-2.64)	0.095	A1	407 (27.1%)	0.94 (0.69–1.27)	0.690
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B60	158 (10.5%)	0.65 (0.39-1.08)	0.098	B75	16 (1.1%)	0.76 (0.19-3.04)	0.694
B63 21 (1.4%) 1.92 (0.85–4.32) 0.115 B78 2 (0.1%) NA* 0.710 A23 64 (4.3%) 1.52 (0.88–2.60) 0.132 DR11 206 (13.7%) 1.07 (0.74–1.55) 0.712 CN3 369 (24.6%) 0.79 (0.58–1.09) 0.159 DR9 40 (2.7%) 1.15 (0.54–2.45) 0.713 B64 25 (1.7%) 0.25 (0.03–1.27) 0.164 B48 4 (0.3%) NA* 0.713 Cv1 94 (6.3%) 0.63 (0.32–1.22) 0.169 B61 75 (5.0%) 0.88 (0.47–1.68) 0.718 A32 102 (6.8%) 0.63 (0.32–1.22) 0.169 B61 75 (1.0%) 1.22 (0.39–3.81) 0.733 B45 91 (1.9%) 1.28 (0.88–1.85) 0.191 Cw15 127 (8.5%) 1.08 (0.68–1.70) 0.755 DR10 77 (5.1%) 1.39 (0.82–2.35) 0.221 DR13 16 (1.1%) 0.81 (0.20–3.27) 0.707 DR12 58 (3.9%) 0.58 (0.24–1.40) 0.223 Cw17 32 (2.1%) 1.12 (0.46–2.72) 0.800 A24 256 (17.1%) 1.23 (0.86–1.14) 0.227 A24	Cw14	49 (3.3%)	1.66 (0.91-3.05)	0.101	B27	122 (8.1%)	1.09 (0.69–1.73)	0.699
A23 64 (4.3%) 1.52 (0.88-2.60) 0.132 DR11 206 (13.7%) 1.07 (0.74-1.55) 0.772 Cw3 369 (24.6%) 0.79 (0.58-1.09) 0.159 DR9 40 (2.7%) 1.15 (0.54-2.45) 0.713 B84 25 (1.7%) 0.25 (0.03-1.77) 0.164 B44 40 (2.7%) 1.15 (0.54-2.45) 0.713 Cw1 94 (6.3%) 0.63 (0.32-1.22) 0.169 B61 75 (5.0%) 0.89 (0.47-1.68) 0.718 A32 102 (6.8%) 0.77 (0.52-1.13) 0.176 A66 15 (1.0%) 1.22 (0.33-3.81) 0.733 B51 179 (1.9%) 1.28 (0.88-1.85) 0.191 Cw15 127 (8.5%) 1.08 (0.68-1.70) 0.754 B65 49 (3.3%) 0.52 (0.20-1.41) 0.223 Cw17 32 (2.1%) 1.12 (0.46-2.72) 0.801 DR10 77 (5.1%) 1.39 (0.82-2.35) 0.221 DR18 61 (1.1%) 0.81 (0.20-3.27) 0.770 DR12 58 (3.9%) 0.58 (0.64-1.40) 0.223 Cw17 32 (2.1%) 1.12 (0.46-2.72) 0.801 DR14 248 (3.9%) 0.58 (0.64-1.40) 0.227	B63	21 (1.4%)	1.92 (0.85-4.32)	0.115	B78	2 (0.1%)	N/A ^b	0.710
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A23	64 (4.3%)	1.52 (0.88–2.60)	0.132	DR11	206 (13.7%)	1.07 (0.74–1.55)	0.712
B64 25 (1.7%) 0.25 (0.03-1.77) 0.164 B48 4 (0.3%) NA 0.715 Cv1 94 (6.3%) 0.63 (0.32-1.22) 0.169 B61 75 (5.0%) 0.89 (0.47-1.68) 0.714 A32 102 (6.8%) 0.66 (0.36-1.21) 0.175 DR7 340 (22.7%) 0.95 (0.69-1.30) 0.729 Cw05 248 (16.5%) 0.77 (0.52-1.13) 0.176 A66 15 (1.0%) 1.22 (0.39-3.81) 0.733 B61 179 (11.9%) 1.28 (0.88-1.85) 0.191 Cw15 127 (6.5%) 1.08 (0.68-1.70) 0.754 B65 49 (3.3%) 0.52 (0.20-1.41) 0.201 B73 1 (0.1%) NA* 0.757 DR10 77 (5.1%) 1.39 (0.82-2.35) 0.221 DR18 16 (1.1%) 0.81 (0.20-3.27) 0.770 DR12 58 (3.9%) 0.58 (0.24-1.40) 0.223 Cw17 32 (2.1%) 1.12 (0.46-2.72) 0.801 A24 256 (17.1%) 1.33 (0.60-1.14) 0.273 B18 91 (6.1%) 0.92 (0.41-2.68) 0.832 </td <td>Cw3</td> <td>369 (24.6%)</td> <td>0.79 (0.58-1.09)</td> <td>0.159</td> <td>DR9</td> <td>40 (2.7%)</td> <td>1.15 (0.54-2.45)</td> <td>0.713</td>	Cw3	369 (24.6%)	0.79 (0.58-1.09)	0.159	DR9	40 (2.7%)	1.15 (0.54-2.45)	0.713
Cw194 (6.3%)0.63 (0.32-1.22)0.169B6175 (5.0%)0.89 (0.47-1.68)0.718A32102 (6.8%)0.66 (0.36-1.21)0.175DR7340 (22.7%)0.95 (0.69-1.30)0.729Cw05248 (16.5%)0.77 (0.52-1.13)0.176A6615 (1.0%)1.22 (0.39-3.81)0.733B51179 (11.9%)1.28 (0.88-1.85)0.191Cw15127 (8.5%)1.08 (0.68-1.70)0.745B6549 (3.3%)0.52 (0.20-1.41)0.201B731 (0.1%)NA*0.755DR1077 (5.1%)1.39 (0.82-2.35)0.221DR1816 (1.1%)0.81 (0.20-3.27)0.770DR12258 (3.9%)0.58 (0.24-1.40)0.223Cw1732 (2.1%)1.12 (0.46-2.72)0.801A24256 (17.1%)1.23 (0.88-1.71)0.227A2694 (46.2%)1.03 (0.79-1.34)0.803A3347 (23.1%)0.83 (0.60-1.14)0.278B431 (0.1%)VA*0.850DR15453 (30.2%)0.85 (0.64-1.14)0.278A431 (0.1%)VA*0.851DR1246 (16.4%)0.82 (0.56-1.19)0.300Cw6264 (17.6%)0.98 (0.70-1.36)0.881DR1246 (16.4%)0.82 (0.56-1.19)0.300Cw6264 (17.6%)0.98 (0.70-1.36)0.881DR1246 (16.4%)0.82 (0.56-1.19)0.300Cw6264 (17.6%)0.98 (0.70-1.36)0.882DR1246 (16.4%)0.82 (0.56-1.19)0.300Cw6264 (17.6%)0.98 (0.70-1.36) <t< td=""><td>B64</td><td>25 (1.7%)</td><td>0.25 (0.03–1.77)</td><td>0.164</td><td>B48</td><td>4 (0.3%)</td><td>N/A^b</td><td>0.715</td></t<>	B64	25 (1.7%)	0.25 (0.03–1.77)	0.164	B48	4 (0.3%)	N/A ^b	0.715
A32 102 (6.8%) 0.66 (0.36-1.2!) 0.175 DR7 340 (22.7%) 0.95 (0.69-1.30) 0.729 Cw05 244 (16.5%) 0.77 (0.52-1.13) 0.176 A66 15 (1.0%) 1.22 (0.39-3.81) 0.733 B51 179 (11.9%) 1.28 (0.88-1.85) 0.191 Cw15 127 (8.5%) 1.08 (0.68-1.70) 0.754 B65 49 (3.3%) 0.52 (0.20-1.41) 0.201 B73 1 (0.1%) N/A* 0.753 DR10 77 (5.1%) 1.39 (0.82-2.35) 0.221 DR18 16 (1.1%) 0.81 (0.20-3.27) 0.770 DR12 58 (3.9%) 0.58 (0.24-1.40) 0.223 Cw17 32 (2.1%) 1.12 (0.46-2.72) 0.803 A24 256 (17.1%) 1.23 (0.88-1.71) 0.227 A2 694 (46.2%) 1.03 (0.79-1.34) 0.803 A3 347 (23.1%) 0.83 (0.60-1.14) 0.252 B45 41 (2.7%) 0.92 (0.41-2.08) 0.881 DR15 453 (30.2%) 0.85 (0.64-1.26) 0.287 B13 58 (3.9%) 1.05 (0.56-1.98) 0.881 DR1 246 (16.4%) 0.82 (0.56-1.19) 0.300	Cw1	94 (6.3%)	0.63 (0.32-1.22)	0.169	B61	75 (5.0%)	0.89 (0.47-1.68)	0.718
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A32	102 (6.8%)	0.66 (0.36–1.21)	0.175	DR7	340 (22.7%)	0.95 (0.69–1.30)	0.729
B51179 (11.9%)1.28 (0.88-1.85)0.191Curl5127 (8.5%)1.08 (0.68-1.70)0.744B6549 (3.3%)0.52 (0.20-1.41)0.201B731 (0.1%)NA*0.755DR1077 (5.1%)1.39 (0.82-2.35)0.221DR1816 (1.1%)0.81 (0.20-3.27)0.770DR1258 (3.9%)0.58 (0.24-1.40)0.223Cwrl732 (2.1%)1.12 (0.46-2.72)0.801A24256 (17.1%)1.23 (0.88-1.71)0.227A2694 (46.2%)1.03 (0.79-1.34)0.803A3347 (23.1%)0.83 (0.60-1.14)0.252B4541 (2.7%)0.92 (0.41-2.08)0.849D05487 (32.4%)1.16 (0.89-1.53)0.273B1891 (6.1%)0.95 (0.54-1.66)0.850DR15453 (30.2%)0.85 (0.64-1.14)0.278A431 (0.1%)NA*0.867B77124 (8.3%)0.76 (0.46-1.26)0.287B1358 (3.9%)1.05 (0.56-1.98)0.881DR1246 (16.4%)0.82 (0.56-1.19)0.300Cw6264 (17.6%)0.98 (0.71-1.35)0.892B7119 (1.3%)1.67 (0.62-4.48)0.312A2535 (2.3%)1.05 (0.47-2.36)0.911A2986 (5.7%)1.29 (0.77-2.14)0.329B4710 (0.7%)1.07 (0.26-4.33)0.923B7413 (7.5%)1.35 (0.69-2.63)0.373DR17379 (25.2%)1.01 (0.75-1.37)0.954B35212 (14.1%)0.40 (0.66-2.82)0.575Cw2110 (7.3%)1.01 (0.62-1.68)<	Cw05	248 (16.5%)	0.77 (0.52–1.13)	0.176	A66	15 (1.0%)	1.22 (0.39–3.81)	0.733
B65 49 (3.3%) 0.52 (0.20-1.41) 0.201 B73 1 (0.1%) NA* 0.755 DR10 77 (5.1%) 1.39 (0.82-2.35) 0.221 DR18 16 (1.1%) 0.81 (0.20-3.27) 0.770 DR12 58 (3.9%) 0.56 (0.24-1.40) 0.223 Cw17 32 (2.1%) 1.12 (0.46-2.72) 0.801 A24 256 (17.1%) 1.23 (0.88-1.71) 0.227 A2 694 (46.2%) 1.03 (0.79-1.34) 0.803 A3 347 (23.1%) 0.83 (0.60-1.14) 0.252 B45 41 (2.7%) 0.92 (0.41-2.08) 0.849 DQ5 487 (32.4%) 1.16 (0.89-1.53) 0.273 B18 91 (6.1%) 0.96 (0.54-1.66) 0.850 DR15 453 (30.2%) 0.85 (0.64-1.14) 0.278 A43 1 (0.1%) NA* 0.857 B57 124 (8.3%) 0.76 (0.46-1.26) 0.287 B13 58 (3.9%) 1.05 (0.56-1.98) 0.883 DR103 37 (2.5%) 0.55 (0.18-1.72) 0.306 B8 316 (21.1%) 0.98 (0.71-1.35) 0.892	B51	179 (11.9%)	1.28 (0.88–1.85)	0.191	Cw15	127 (8.5%)	1.08 (0.68–1.70)	0.754
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B65	49 (3.3%)	0.52 (0.20-1.41)	0.201	B73	1 (0.1%)	N/A ^b	0.755
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DB10	77 (5.1%)	1 39 (0 82-2 35)	0.221	DR18	16 (1 1%)	0.81 (0.20-3.27)	0 770
DriftDriftDriftDriftDriftDriftDriftDriftDriftDriftDriftA24256 (17.1%)1.23 (0.88-1.71)0.227A2694 (46.2%)1.03 (0.79-1.34)0.830A3347 (23.1%)0.83 (0.60-1.14)0.252B4541 (2.7%)0.92 (0.41-2.08)0.849DQ5487 (32.4%)1.16 (0.89-1.53)0.273B1891 (6.1%)0.95 (0.54-1.66)0.850DR15453 (30.2%)0.85 (0.64-1.14)0.278A431 (0.1%)NA*0.857B57124 (8.3%)0.76 (0.46-1.26)0.287B1358 (3.9%)1.05 (0.56-1.98)0.881DR1246 (16.4%)0.82 (0.56-1.19)0.300Cw6264 (17.6%)0.98 (0.70-1.36)0.883DR10337 (2.5%)0.55 (0.18-1.72)0.306B8316 (21.1%)0.98 (0.70-1.36)0.882B7119 (1.3%)1.67 (0.62-4.48)0.312A2535 (2.3%)1.05 (0.47-2.36)0.911A2986 (5.7%)1.29 (0.77-2.14)0.329B4710 (0.7%)1.07 (0.26-4.33)0.923B7119 (1.3%)1.67 (0.66-2.63)0.373DR17379 (25.2%)1.01 (0.75-1.37)0.954B3952 (3.5%)1.35 (0.66-2.63)0.378A26110 (7.3%)1.02 (0.62-1.64)0.961B44384 (25.6%)0.87 (0.64-1.19)0.383B5019 (1.3%)1.02 (0.33-3.20)0.993B55212 (14.1%)1.16 (0.81-1.67)0.411A690 (0.0%) </td <td>DR12</td> <td>58 (3.9%)</td> <td>0.58 (0.24–1.40)</td> <td>0.223</td> <td>Cw17</td> <td>32 (2 1%)</td> <td>1 12 (0 46-2 72)</td> <td>0.801</td>	DR12	58 (3.9%)	0.58 (0.24–1.40)	0.223	Cw17	32 (2 1%)	1 12 (0 46-2 72)	0.801
A3347 (23.1%)0.83 (0.60-1.14)0.252B4541 (2.7%)0.92 (0.41-2.08)0.849DQ5487 (32.4%)1.16 (0.89-1.53)0.273B1891 (6.1%)0.95 (0.54-1.66)0.850DR15453 (30.2%)0.85 (0.64-1.14)0.278A431 (0.1%)NA*0.867B67124 (8.3%)0.76 (0.46-1.26)0.287B1358 (3.9%)1.05 (0.56-1.98)0.881DR10246 (16.4%)0.82 (0.56-1.19)0.300Cw6264 (17.6%)0.98 (0.70-1.36)0.882DR10337 (2.5%)0.55 (0.18+1.72)0.306B8316 (21.1%)0.98 (0.71-1.35)0.882B7119 (1.3%)1.67 (0.62-4.48)0.312A2535 (2.3%)1.05 (0.47-2.36)0.911A2986 (5.7%)1.29 (0.77-2.14)0.329B4710 (0.7%)1.07 (0.26-4.33)0.923B74113 (7.5%)1.23 (0.78-1.95)0.373CM2110 (7.3%)1.02 (0.62-1.68)0.930DR14113 (7.5%)1.35 (0.69-2.63)0.378A26110 (7.3%)1.01 (0.62-1.64)0.961B44384 (25.6%)0.87 (0.64-1.19)0.383B5019 (1.3%)1.02 (0.33-3.20)0.993DQ2603 (40.2%)1.12 (0.86-1.46)0.393Cw7766 (51.0%)1.00 (0.77-1.30)0.993B35212 (14.1%)1.16 (0.81-1.67)0.411A690 (0.0%)A3084 (5.6%)0.78 (0.43-1.43)0.427B770 (0.0%)<	A24	256 (17.1%)	1 23 (0 88-1 71)	0.227	Δ2	694 (46 2%)	1.03 (0.79–1.34)	0.803
No.One of the termOne of term </td <td>A3</td> <td>347 (23.1%)</td> <td>0.83 (0.60–1.14)</td> <td>0.252</td> <td>B45</td> <td>41 (2 7%)</td> <td>0.92 (0.41-2.08)</td> <td>0.849</td>	A3	347 (23.1%)	0.83 (0.60–1.14)	0.252	B45	41 (2 7%)	0.92 (0.41-2.08)	0.849
DateInfo (0.1 + N)Info (0.50 + 1.60)0.12 forDiffDiff0.60 (0.41 + 1.60)0.60 (0.41 + 1.60)DR15453 (30.2%)0.76 (0.46 - 1.26)0.287B1358 (3.9%)1.05 (0.56 - 1.98)0.881DR1246 (16.4%)0.82 (0.56 - 1.19)0.300Cw6264 (17.6%)0.98 (0.70 - 1.36)0.883DR10337 (2.5%)0.55 (0.18 - 1.72)0.306B8316 (21.1%)0.98 (0.71 - 1.35)0.892B7119 (1.3%)1.67 (0.62 - 4.48)0.312A2535 (2.3%)1.05 (0.47 - 2.36)0.911A2986 (5.7%)1.29 (0.77 - 2.14)0.329B4710 (0.7%)1.07 (0.26 - 4.33)0.923B5617 (1.1%)0.40 (0.06 - 2.82)0.355Cw2110 (7.3%)1.02 (0.62 - 1.68)0.930DR14113 (7.5%)1.23 (0.78 - 1.95)0.373DR17379 (25.2%)1.01 (0.75 - 1.37)0.954B3952 (3.5%)1.35 (0.69 - 2.63)0.378A26110 (7.3%)1.02 (0.33 - 3.20)0.969DQ2603 (40.2%)1.12 (0.86 - 1.46)0.393Cw7766 (51.0%)1.00 (0.77 - 1.30)0.933B35212 (14.1%)1.16 (0.81 - 1.67)0.411A690 (0.0%)A3084 (5.6%)0.78 (0.43 - 1.43)0.427B770 (0.0%)B7213 (0.9%)1.52 (0.49 - 4.76)0.470B540 (0.0%)B7213 (0.9%)1.52 (0.49 - 4.76)0.470B540 (0.0%)	D05	487 (32.4%)	1 16 (0 89–1 53)	0.273	B18	91 (6 1%)	0.95 (0.54–1.66)	0.850
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DR15	453 (30.2%)	0.85 (0.64–1.14)	0.278	A43	1 (0.1%)	N/A ^b	0.857
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B57	124 (8.3%)	0.76 (0.46–1.26)	0.287	B13	58 (3.9%)	1.05 (0.56–1.98)	0.881
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DB1	246 (16.4%)	0.82 (0.56-1.19)	0.300	Cw6	264 (17 6%)	0.98 (0.70–1.36)	0.883
BindoBit (E.S.N)Bit (D. (B. 1.1.2)Bit (D. (B. 1.1.2))Bit (D. (C. 1.1.1.0))Bit (D. (D. (C. 1.1.1.0))Bit (D. (D. (C. 1.1.1.0))Bit (D.	DR103	37 (2 5%)	0.55 (0.18–1.72)	0.306	B8	316 (21.1%)	0.98 (0.71–1.35)	0.000
D1110 (10.10)100 (0.12 - 1.10)0.1121.200.00 (2.0.3)1.00 (0.11 - 1.00)0.101A2986 (5.7%)1.29 (0.77 - 2.14)0.329B4710 (0.7%)1.07 (0.26 - 4.33)0.923B5617 (1.1%)0.40 (0.06 - 2.82)0.355Cw2110 (7.3%)1.02 (0.62 - 1.68)0.930DR14113 (7.5%)1.23 (0.78 - 1.95)0.373DR17379 (25.2%)1.01 (0.75 - 1.37)0.954B3952 (3.5%)1.35 (0.69 - 2.63)0.378A26110 (7.3%)1.01 (0.62 - 1.64)0.961B44384 (25.6%)0.87 (0.64 - 1.19)0.383B5019 (1.3%)1.02 (0.33 - 3.20)0.969D02603 (40.2%)1.12 (0.86 - 1.46)0.393Cw7766 (51.0%)1.00 (0.77 - 1.30)0.993B35212 (14.1%)1.16 (0.81 - 1.67)0.411A690 (0.0%)B429 (0.6%)N/A ^b 0.427B760 (0.0%)B7213 (0.9%)1.52 (0.49 - 4.76)0.470B540 (0.0%)A3365 (4.3%)1.26 (0.67 - 2.38)0.476B590 (0.0%)B5331 (2.1%)0.71 (0.27 - 1.92)0.505B670 (0.0%)Cw186 (0.4%)N/A ^b 0.506B820 (0.0%)A7426 (1.7%)0.68 (0.22 - 2.13)0.508B830 (0.0%)A3187 (5.8%)1.21 (0.69 - 2.11)0.513- <td>B71</td> <td>19 (1.3%)</td> <td>1 67 (0 62-4 48)</td> <td>0.312</td> <td>Δ25</td> <td>35 (2.3%)</td> <td>1.05 (0.47-2.36)</td> <td>0.002</td>	B71	19 (1.3%)	1 67 (0 62-4 48)	0.312	Δ25	35 (2.3%)	1.05 (0.47-2.36)	0.002
IntermInte	A29	86 (5.7%)	1 29 (0 77-2 14)	0.329	R47	10 (0.7%)	1.00 (0.26-4.33)	0.923
DB3 In (11.16) D.100 (0.50 2.162) D.000 DR12 In (11.16) In (21.06) D.000 DR14 113 (7.5%) 1.23 (0.78–1.95) D.373 DR17 379 (25.2%) 1.01 (0.75–1.37) 0.954 B39 52 (3.5%) 1.35 (0.69–2.63) D.378 A26 110 (7.3%) 1.01 (0.62–1.64) 0.961 B44 384 (25.6%) D.87 (0.64–1.19) D.383 B50 19 (1.3%) 1.02 (0.33–3.20) 0.969 DQ2 603 (40.2%) 1.12 (0.86–1.46) D.393 Cw7 766 (51.0%) 1.00 (0.77–1.30) 0.993 B35 212 (14.1%) 1.16 (0.81–1.67) D.411 A69 0 (0.0%) – – B42 9 (0.6%) N/A ^b 0.427 B76 0 (0.0%) – – A30 84 (5.6%) 0.78 (0.43–1.43) 0.427 B77 0 (0.0%) – – B72 13 (0.9%) 1.52 (0.49–4.76) 0.470 B54 0 (0.0%) – – A33 65 (4.3%) 1.26 (0.67–2.38) 0.476 B59 0 (0.0%) – –	R56	17 (1 1%)	0.40 (0.06-2.82)	0.355	Cw2	110 (7.3%)	1.02 (0.62–1.68)	0.020
Bits 113 (1.6.16) 11.35 (0.69–2.63) 0.378 $A26$ 110 (7.3%) 1.01 (0.62–1.64) 0.961 B39 52 (3.5%) 1.35 (0.69–2.63) 0.378 $A26$ 110 (7.3%) 1.01 (0.62–1.64) 0.961 B44 384 (25.6%) 0.87 (0.64–1.19) 0.383 $B50$ 19 (1.3%) 1.02 (0.33–3.20) 0.969 DQ2 603 (40.2%) 1.12 ($0.86-1.46$) 0.393 $Cw7$ 766 (51.0%) 1.00 ($0.77-1.30$) 0.993 B35 212 (14.1%) 1.16 ($0.81-1.67$) 0.411 $A69$ 0 (0.0%) $ -$ B42 9 (0.6%) N/A^b 0.427 $B76$ 0 (0.0%) $ -$ A30 84 (5.6%) 0.78 ($0.43-1.43$) 0.427 $B77$ 0 (0.0%) $ -$ B72 13 (0.9%) 1.52 ($0.49-4.76$) 0.470 $B54$ 0 (0.0%) $ -$ A33 65 (4.3%) 1.26 ($0.67-2.38$) 0.476 $B59$ 0 (0.0%) $ -$ B53 31 (2.1%) 0.71 ($0.27-1.92$) 0.505 $B67$ 0 (0.0%) $ -$ Cw18 6 (0.4%) N/A^b 0.506 $B82$ 0 (0.0%) $ -$ A74 26 (1.7%) 0.68 ($0.22-2.13$) 0.508 $B83$ 0 (0.0%) $ -$ A31 87 (5.8%) 1.21 ($0.69-2.11$) 0.513 $ -$	DR14	113 (7.5%)	1 23 (0 78–1 95)	0.333	DR17	379 (25.2%)	1.02 (0.02 1.00)	0.000
B44 384 (25.6%) 0.87 (0.64–1.19) 0.383 B50 19 (1.3%) 1.01 (0.02 (1.6%) 0.969 0.969 DQ2 603 (40.2%) 1.12 (0.86–1.46) 0.393 Cw7 766 (51.0%) 1.00 (0.77–1.30) 0.993 B35 212 (14.1%) 1.16 (0.81–1.67) 0.411 A69 0 (0.0%) – – B42 9 (0.6%) N/A ^b 0.427 B76 0 (0.0%) – – A30 84 (5.6%) 0.78 (0.43–1.43) 0.427 B77 0 (0.0%) – – A30 84 (5.6%) 0.78 (0.43–1.43) 0.427 B77 0 (0.0%) – – A33 65 (4.3%) 1.26 (0.67–2.38) 0.476 B59 0 (0.0%) – – B53 31 (2.1%) 0.71 (0.27–1.92) 0.505 B67 0 (0.0%) – – Cw18 6 (0.4%) N/A ^b 0.506 B82 0 (0.0%) – – A74 26 (1.7%) 0.68 (0.22–2.13) 0.508 <td>R39</td> <td>52 (3 5%)</td> <td>1.35 (0.69-2.63)</td> <td>0.378</td> <td>A26</td> <td>110 (7 3%)</td> <td>1.01 (0.62–1.64)</td> <td>0.004</td>	R39	52 (3 5%)	1.35 (0.69-2.63)	0.378	A26	110 (7 3%)	1.01 (0.62–1.64)	0.004
D44 304 (23.0 h) 0.07 (0.04 1.13) 0.000 100 (1.00) 1.02 (0.03 0.20) 0.000 DQ2 603 (40.2%) 1.12 (0.86–1.46) 0.393 Cw7 766 (51.0%) 1.00 (0.77–1.30) 0.993 B35 212 (14.1%) 1.16 (0.81–1.67) 0.411 A69 0 (0.0%) - - B42 9 (0.6%) N/A ^b 0.427 B76 0 (0.0%) - - A30 84 (5.6%) 0.78 (0.43–1.43) 0.427 B77 0 (0.0%) - - B72 13 (0.9%) 1.52 (0.49–4.76) 0.470 B54 0 (0.0%) - - A33 65 (4.3%) 1.26 (0.67–2.38) 0.476 B59 0 (0.0%) - - B53 31 (2.1%) 0.71 (0.27–1.92) 0.505 B67 0 (0.0%) - - Cw18 6 (0.4%) N/A ^b 0.506 B82 0 (0.0%) - - A74 26 (1.7%) 0.68 (0.22–2.13) 0.508 B83 0 (0.0%) - - A31 87 (5.8%) 1.21 (0.69–2.11) <td< td=""><td>B44</td><td>384 (25.6%)</td><td>0.87 (0.64–1.19)</td><td>0.383</td><td>R50</td><td>19 (1.3%)</td><td>1.07 (0.32-3.20)</td><td>0.001</td></td<>	B44	384 (25.6%)	0.87 (0.64–1.19)	0.383	R50	19 (1.3%)	1.07 (0.32-3.20)	0.001
B32 0.00 (40.2 h) 1.12 (0.00 1.40) 0.000 0.000 0.000 0.000 B35 212 (14.1%) 1.16 (0.81-1.67) 0.411 A69 0 (0.0%) - - B42 9 (0.6%) N/A ^b 0.427 B76 0 (0.0%) - - A30 84 (5.6%) 0.78 (0.43-1.43) 0.427 B77 0 (0.0%) - - B72 13 (0.9%) 1.52 (0.49-4.76) 0.470 B54 0 (0.0%) - - A33 65 (4.3%) 1.26 (0.67-2.38) 0.476 B59 0 (0.0%) - - B53 31 (2.1%) 0.71 (0.27-1.92) 0.505 B67 0 (0.0%) - - Cw18 6 (0.4%) N/A ^b 0.506 B82 0 (0.0%) - - A74 26 (1.7%) 0.68 (0.22-2.13) 0.508 B83 0 (0.0%) - - A31 87 (5.8%) 1.21 (0.69-2.11) 0.513 - - -		603 (40.2%)	1 12 (0 86-1 46)	0.303	Cw7	766 (51 0%)	1.02 (0.33 3.20)	0.000
B33 212 (14.17a) 1.10 (0.01 1.01) 0.411 1.60 0 (0.00)B429 (0.6%) N/A^b 0.427 $B76$ 0 (0.0%) $ -$ A30 84 (5.6%) 0.78 (0.43–1.43) 0.427 $B77$ 0 (0.0%) $ B72$ 13 (0.9%) 1.52 (0.49–4.76) 0.470 $B54$ 0 (0.0%) $ -$ A33 65 (4.3%) 1.26 (0.67–2.38) 0.476 $B59$ 0 (0.0%) $ -$ B53 31 (2.1%) 0.71 (0.27–1.92) 0.505 $B67$ 0 (0.0%) $ -$ Cw18 6 (0.4%) N/A^b 0.506 $B82$ 0 (0.0%) $ -$ A74 26 (1.7%) 0.68 (0.22–2.13) 0.508 $B83$ 0 (0.0%) $ -$ A31 87 (5.8%) 1.21 (0.69–2.11) 0.513 $ -$	B35	212 (14 1%)	1 16 (0 81–1 67)	0.000	469	0 (0 0%)	-	0.000
A30 84 (5.6%) 0.78 (0.43-1.43) 0.427 B77 0 (0.0%) - - B72 13 (0.9%) 1.52 (0.49-4.76) 0.470 B54 0 (0.0%) - - A33 65 (4.3%) 1.26 (0.67-2.38) 0.476 B59 0 (0.0%) - - B53 31 (2.1%) 0.71 (0.27-1.92) 0.505 B67 0 (0.0%) - - Cw18 6 (0.4%) N/A ^b 0.506 B82 0 (0.0%) - - A74 26 (1.7%) 0.68 (0.22-2.13) 0.513 - - -	B/2	9 (0.6%)	N/Δ ^b	0.411	R76	0 (0.0%)	_	_
A33 65 (4.3%) 1.52 (0.49-4.76) 0.470 B54 0 (0.0%) - - A33 65 (4.3%) 1.26 (0.67-2.38) 0.476 B59 0 (0.0%) - - B53 31 (2.1%) 0.71 (0.27-1.92) 0.505 B67 0 (0.0%) - - Cw18 6 (0.4%) N/A ^b 0.506 B82 0 (0.0%) - - A74 26 (1.7%) 0.68 (0.22-2.13) 0.508 B83 0 (0.0%) - - A31 87 (5.8%) 1.21 (0.69-2.11) 0.513 - - -	V30	84 (5.6%)	0.78 (0.43_1.43)	0.427	B77	0 (0.0%)	_	_
A33 65 (4.3%) 1.26 (0.67-2.38) 0.476 B59 0 (0.0%) - - B53 31 (2.1%) 0.71 (0.27-1.92) 0.505 B67 0 (0.0%) - - Cw18 6 (0.4%) N/A ^b 0.506 B82 0 (0.0%) - - A74 26 (1.7%) 0.68 (0.22-2.13) 0.508 B83 0 (0.0%) - - A31 87 (5.8%) 1.21 (0.69-2.11) 0.513 - - -	R72	13 (0.9%)	1 52 (0 49-4 76)	0.427	B5/	0 (0.0%)	_	_
Hoto Hoto <td>Δ33</td> <td>65 (4 3%)</td> <td>1.02 (0.40-4.70)</td> <td>0.476</td> <td>850</td> <td></td> <td>_</td> <td>_</td>	Δ33	65 (4 3%)	1.02 (0.40-4.70)	0.476	850		_	_
Cw18 6 (0.4%) N/A ^b 0.506 B82 0 (0.0%) -	R53	31 (2 1%)	0.71 (0.97_1.09)	0.470	B67		_	_
A74 26 (1.7%) 0.68 (0.22–2.13) 0.508 B83 0 (0.0%) -	Cw18	6 (0.4%)	N/Ab	0.505	B82		_	_
A31 87 (5.8%) 1.21 (0.69–2.11) 0.513 – – –	Δ7/	26 (1 7%)	0 68 (0 22-2 12)	0.500	B83		_	_
	A31	87 (5.8%)	1.21 (0.69–2.11)	0.513	000	0 (0.070)	_	_

Results are based on the N = 1501 for whom details of HLA alleles were available. The prevalence represents the number and percentage of patients for whom the stated allele was present. Hazard ratios are from Cox regression models, with PTDM as the event of interest, and are reported for the allele present vs. absent. The table is sorted by the resulting P value, with bold values being significant at P < 0.05.

Remains significant after Bonferroni correction for 99 comparisons (P<0.0005).

^bThe hazard ratio could not be reliably estimated due to the small number of cases in the allele present group.

Cl, confidence intervals; PTDM, posttransplantation diabetes.

between recipient ethnicity and either Cw12 (P=0.373) or DQ4 (P=0.197), implying that the associations between these alleles and PTDM were not mediated by ethnicity. However, a

significant interaction effect was observed for B58 (P=0.004), which is visualized in Figure 3. Subgroup analysis by recipient ethnicity found no significant association between the

FIGURE 2. Kaplan-Meier curve of PTDM stratified by (A) HLA Cw12, (B) HLA B58, and (C) HLA DQ4 status. PTDM, posttransplantation diabetes.

presence of B58 and PTDM risk for South Asian (HR, 0.58; P = 0.297) or Other Non-White (HR, 1.48; P = 0.381) ethnicities. However, a significant association was observed in White recipients (HR, 5.01; P < 0.001), with Kaplan–Meier estimated PTDM rates at 5 y of 58.7% versus 15.0% for those with present versus absent B58.

DISCUSSION

In this single-center study, we have identified the presence of either Cw12 or DQ4 HLA alleles in kidney transplant recipients as independent risk factors for the development of PTDM. An array of other HLA alleles did not meet statistical significance, either in univariable analysis or after adjustment with baseline clinical variables associated with PTDM. These novel associations have not been previously reported. However, these findings do not necessarily imply causality, and further research is warranted to investigate this association and replicate the findings in other contemporary cohorts.

As shown in Table 1, the association between HLA typing and risk of PTDM is heterogeneously reported in the

literature. These small studies are historical, do not use current tacrolimus-based immunosuppression protocol, and have inconsistent diagnostic criteria for PTDM (none compatible with international Consensus recommendations).² In addition, the distributions of ethnicity are variable and reflect the diverse prevalence of HLA alleles. For example, previous studies were conducted in diverse cohorts including Norwegian,¹¹ south Asian,¹⁰ Puerto Rican,¹² United States (majority African-American),13 United States (majority White),14 Brazilian,15 Polish,16 Saudi Arabian,17 Singaporean,¹⁸ and Swiss¹⁹ kidney transplant recipients. Because of such heterogeneous data, the original international consensus guidelines from 2003²² dismissed the reliability of HLA alleles as specific risk factors for PTDM. Although the 2013 guidelines recommended further research for identification of risk factors for PTDM,² no specific discussion was made on the issue of HLA alleles.

Our study addresses several of the limitations in the existing literature. It is representative of a large, ethnically diverse kidney transplant cohort receiving contemporary immunosuppression aligned with the SYMPHONY study.²¹ As the largest cohort analyzed, it has a lower risk of type 2 statistical errors, which are common issues when investigating a high number

TABLE 4.

Associations betweer	Cw12, B58	and DQ4 and	recipient	characteristics
----------------------	-----------	-------------	-----------	-----------------

	Cw12				B58			DQ4		
	Absent	Present	Р	Absent	Present	Р	Absent	Present	Р	
Age (y)	46 (36-57)	49 (37-60)	0.082	47 (36-57)	45 (34-56)	0.765	47 (36-57)	45 (37-55)	0.574	
Sex (% male)	793 (59.0%)	84 (53.2%)	0.172	838 (58.2%)	39 (63.9%)	0.427	834 (58.6%)	43 (54.4%)	0.483	
Ethnicity			<0.001			<0.001			<0.001	
White	942 (70.1%)	62 (39.2%)		990 (68.8%)	14 (23.0%)		968 (68.1%)	36 (45.6%)		
South Asian	197 (14.7%)	76 (48.1%)		247 (17.2%)	26 (42.6%)		257 (18.1%)	16 (20.3%)		
Other	204 (15.2%)	20 (12.7%)		203 (14.1%)	21 (34.4%)		197 (13.9%)	27 (34.2%)		
BMI (kg/m ²)	27 (24-30)	27 (23-29)	0.763	27 (24-30)	26 (24-29)	0.474	27 (24-30)	26 (24-29)	0.431	
CMV (% positive)	320 (33.6%)	51 (45.9%)	0.012	351 (34.5%)	20 (43.5%)	0.268	349 (34.8%)	22 (37.3%)	0.676	
HCV (% positive)	4 (0.3%)	0 (0.0%)	1.000	2 (0.1%)	2 (3.5%)	0.009	3 (0.2%)	1 (1.3%)	0.191	
PKD	210 (17.9%)	23 (17.0%)	0.906	226 (18.0%)	7 (14.6%)	0.701	223 (18.0%)	10 (14.9%)	0.624	
Dialysis	925 (76.4%)	113 (79.0%)	0.531	993 (76.5%)	45 (80.4%)	0.629	986 (77.0%)	52 (71.2%)	0.257	
Previous transplant	148 (11.4%)	18 (11.7%)	0.893	160 (11.5%)	6 (10.0%)	1.000	161 (11.7%)	5 (6.5%)	0.198	
Waiting list time (mo)	29 (12-55)	34 (14-57)	0.366	29 (11-54)	43 (17-64)	0.022	28 (11-54)	38 (15-65)	0.031	

Data are reported as N (Column %), with *P* from Fisher's exact tests, or as median (interquartile range), with *P* from Mann–Whitney *U* tests, as applicable. Bold *P* are significant at *P*<0.05. BMI, body mass index; CMV, cytomegalovirus; HCV, hepatitis C; PKD, polycystic kidney disease.

TABLE 5.

Other factors associated with PTDM

	Univariable anal	ysis	Multivariable analysis		
	Hazard ratio (95% CI)	Р	Hazard ratio (95% CI)	Р	
Donor factors					
Age (per decade)	1.12 (1.01-1.24)	0.037	_	NS	
Sex (female)	0.83 (0.63-1.09)	0.178	_	NS	
Ethnicity		0.768	_	NS	
White	1	-	_	_	
South Asian	1.05 (0.57-1.94)	0.866	_	_	
Other	0.73 (0.30-1.77)	0.484	_	_	
BMI (per 5 kg/m ²)	0.95 (0.79–1.15)	0.613	_	NS	
CMV (Positive)	1.46 (1.10-1.93)	0.008	1.28 (0.96-1.70)	0.089	
Туре		0.006			
Living	1	-	_	_	
DBD	1.48 (1.11–1.99)	0.009	_	_	
DCD	1.77 (1.20-2.62)	0.004	_	_	
DRI (per point)	1.52 (1.19–1.94)	<0.001	_	NS	
Recipient factors					
Age (per decade)	1.46 (1.32–1.61)	<0.001	1.49 (1.35-1.66)	<0.001	
Sex (Female)	1.22 (0.94–1.57)	0.138		NS	
Ethnicity		<0.001	_	<0.001	
White	1	-	1	-	
South Asian	2.13 (1.58–2.87)	<0.001	2.37 (1.76-3.21)	<0.001	
Other	1.51 (1.04–2.18)	0.030	1.68 (1.15–2.44)	0.007	
BMI (per 5 kg/m ²)	1.34 (1.20–1.50)	<0.001	1.35 (1.20–1.51)	<0.001	
CMV (Positive)	1.39 (1.04–1.87)	0.028		NS	
HCV (Positive)	3.22 (0.80–12.96)	0.100	_	NS	
PKD	1.23 (0.89–1.71)	0.214	_	NS	
Dialysis	1.07 (0.78–1.47)	0.677	_	NS	
Previous transplant	0.77 (0.49–1.21)	0.263	_	NS	
Waiting list time (per year)	1.04 (0.99–1.10)	0.109	-	NS	
Matching/transplant factors					
CRF		0.024		0.090	
0%	1	-	1	-	
1-85%	1.50 (1.11-2.01)	0.007	1.43 (1.06–1.92)	0.020	
>85%	0.99 (0.57–1.72)	0.972	1.21 (0.69–2.12)	0.501	
Matchability		0.775		NS	
Easv	1	-	_	_	
Moderate	0.94 (0.67-1.33)	0.729	_	_	
Hard	1.10 (0.71–1.71)	0.670	_	_	
HLA mismatch		0.485	_	NS	
Level 1	1	-	-	_	
Level 2	1.15 (0.70–1.90)	0.582	_	_	
Level 3	1.36 (0.85-2.16)	0.197	_	_	
Level 4	1.15 (0.67–1.99)	0.614	-	_	
ABO incompatible	0.72 (0.38–1.35)	0.306	-	NS	
CIT (per h)	1.02 (1.00–1.04)	0.031	-	NS	
	1.02 (1.00-1.04)	0.031		112	

Results are from univariable Cox regression models. Hazard ratios are reported for the stated category, relative to the reference for categorical variables, or for the stated number of units increase for continuous variables. For the univariable analysis, each factor was assessed separately, and cases with missing data were excluded on a per-analysis basis. The multivariable analysis replaced missing values with the mean in the case of continuous variables or considered these as a separate "missing data" category for categorical variables (these categories are not reported in the table). A backwards stepwise approach was then used to produce a parsimonious model. Bold *P* are significant at *P* < 0.05. NS = not selected for inclusion in the model by the stepwise procedure.

-, not significant; BMI, body mass index; CI, confidence intervals; CMV, cytomegalovirus; CRF, calculated reaction frequency; DBD, donor after brain death; DCD, donor after cardiac death; DRI, donor risk index; HCV, hepatitis C; PKD, polycystic kidney disease; PTDM, posttransplantation diabetes.

of HLA alleles in small study populations. Previous studies tended to limit their HLA typing to the A, B, and DR loci, whereas this analysis includes a more comprehensive major histocompatibility complex analysis by including HLA-C and HLA-DQ. In addition, most of the previous studies were unable to undertake multivariable analysis, which is important considering the disparate frequency of certain HLA alleles among specific ethnic groups. For example, although we observed a greater prevalence of HLA-Cw12 and HLA-DQ4 in kidney transplant recipients of south Asian ethnicity, our adjusted analysis and interaction studies confirmed the independent association of both HLA alleles with risk for PTDM. Reddy and colleagues did not observe any similar association in their analysis of South Asian kidney transplant recipients

 TABLE 6.

 Multivariable analysis of PTDM, including HLA alleles

	Hazard ratio (95% CI)	Р
Cw12 (present)	1.57 (1.08–2.27)	0.017
DQ4 (present)	1.78 (1.07-2.96)	0.026
Donor CMV (positive)	1.24 (0.93-1.66)	0.136
Recipient age (per decade)	1.50 (1.35–1.66)	<0.001
Recipient ethnicity		<0.001
White	1	_
South Asian	2.07 (1.50-2.87)	<0.001
Other	1.63 (1.10-2.40)	0.014
Recipient BMI (per 5 kg/m ²)	1.35 (1.21–1.52)	<0.001
CRF		0.122
0%	1	_
1-85%	1.41 (1.04–1.91)	0.026
>85%	1.26 (0.72-2.21)	0.411

Results are from a multivariable Cox regression analysis. The factors selected for inclusion in the multivariable analysis in Table 5 were initially entered into the model. A backward-stepwise approach was then used to select alleles for inclusion in the model from the subset of N=9 that were identified as significant on the univariable analysis in Table 3. Bold *P* are significant at P < 0.05.

 –, not significant; BMI, body mass index; CMV, cytomegalovirus; CRF, calculated reaction frequency; PTDM, posttransplantation diabetes.

TABLE 7.

Associations between alleles and PTDM by recipient ethnicity

	N	Hazard ratio (95% CI)	Interaction P
Cw12			0.373
White	1004	2.08 (1.17-3.69)	
South Asian	273	1.41 (0.84-2.37)	
Other	224	3.21 (1.31-7.87)	
Overall	1550	2.23 (1.58-3.15)	
B58			0.004
White	1004	5.01 (2.20-11.42)	
South Asian	273	0.58 (0.21-1.61)	
Other	224	1.48 (0.61-3.58)	
Overall	1550	1.84 (1.10-3.05)	
DQ4			0.197
White	1004	2.42 (1.23-4.77)	
South Asian	273	1.44 (0.58-3.59)	
Other	224	0.72 (0.22-2.36)	
Overall	1550	1.71 (1.04–2.80)	

Hazard ratios are for allele present vs. absent and are reported for the cohort as a whole ("overall"), as well as within each subgroup of recipient ethnicity. P is from the interaction term of the Cox regression model, with the allele, recipient ethnicity and an interaction as covariates. As such, these represent comparisons between the hazard ratios in the 3 recipient ethnicity subgroups. Bold P are significant at P < 0.05.

Cl, confidence intervals; PTDM, posttransplantation diabetes.

(termed Indo-Asian in their study), although our observation that HLA-Cw12 is in positive linkage disequilibrium with HLA-B52 was also flagged in their analysis.¹⁰ Similarly, Nafar et al suggest that HLA-DR8 is a predisposing factor for PTDM, but HLA-DR8 and -DQ4 exhibit strong linkage, which supports our primary association with DQ4.²⁰ Although the work from Reddy and colleagues¹⁰ was conducted in a South Asian cohort, their diagnostic classification of PTDM was not aligned with international consensus guidelines,² and the choice of calcineurin inhibitor was mixed. This confounds findings, as the risk of PTDM is stronger for tacrolimus versus cyclosporine,^{23,24} and tacrolimus remains the calcineurin inhibitor of choice as primary immunosuppressant at most

FIGURE 3. Kaplan–Meier curve of PTDM by recipient ethnicity and HLA B58 status. PTDM, posttransplantation diabetes.

transplant centers. The only other study utilizing similar immunosuppression, the work from Mazali and colleagues,¹⁵ reported a higher frequency of HLA-DR13 in Brazilian kidney transplant recipients who developed PTDM in a retrospective analysis of 67 kidney transplant recipients. This mirrors our findings, where HLA-DR13 was observed in 20.1% of our study cohort and was significantly associated with PTDM in univariable analysis.

HLA-DQ4 is well documented for its association with the development of type 1 diabetes^{25,26} and is recognized as a susceptibility gene. Our association between DQ4 and risk for PTDM is a new description among kidney transplant recipients and may reflect our analysis of a larger cohort. Howson and colleagues have shown an association between glutamic acid decarboxylase autoantibodies, islet autoantibodies that typically appear before the diagnosis of type 1 diabetes, and HLA-DQ4.²⁶ It could be postulated that the presence of diabetic susceptibility genes in the presence of transplant specific PTDM risk factors may underlie our observed association. However, further mechanistic work is necessary to investigate how the milieu of immunosuppression and posttransplantation pathophysiology links HLA-DQ4 and development of PTDM.

In contrast to previous publications, we performed a more comprehensive analysis of all the HLA genes from Class I and II, which may explain our novel finding of HLA-Cw12 being associated with PTDM. This is interesting, as the clinical significance of HLA-Cw12 alleles are poorly described in the medical literature and never been associated with development of diabetes. Reviewing the literature, a handful of publications report an association with HLA-Cw12 and psoriasis in Chinese²⁷ and Turkish²⁸ nontransplant populations. A review of published observational studies suggests an increased prevalence of diabetes among patients with psoriasis, but any underlying mechanistic or biological pathophysiology remains elusive.²⁹ Some HLA genes are associated with drug hypersensitivity (eg, HLA-B*5701 association with abacavir)³⁰ and could speculatively accentuate diabetogenicity of certain immunosuppressants like tacrolimus or steroids after kidney transplantation. However, this requires further investigation, and the paucity of data in this area is a major limiting factor to further our understanding of the role of HLA-Cw12 in development of clinical disease states like PTDM. Taken together, our findings reinforce recommendations from the international consensus guidelines² for PTDM to be considered as a distinct

9

pathophysiological entity in the overall classification system of diabetes mellitus.

The principal limitation of our analysis is the acknowledgment that HLA is tremendously variable in terms of individual alleles and in the distributions of combinations and haplotypes between populations. For example, whether PTDM risk is due to Cw12 or a linked drug-metabolizing gene, this could be linked to different A, B, DR, or DQ alleles in different ethnic groups and could explain why studies so far have made different observations. Therefore, our findings are important for demonstrating the importance of HLA association with risk for PTDM but also introducing the C locus into the discussion, which has previously been overlooked. The DQ4 association is interesting and appears independent from Cw12 but could hypothetically be a genetic linkage association with both linked to a "PTDM locus" or something similar.

Other limitations include being a single-center analysis, despite being the largest analysis of its type. As a retrospective study, unmeasured variables may confound the associations we have identified. Our study cohort also lacks data on some established risk factors for PTDM, such as family history of diabetes; therefore, we could not adjust for this and other potential confounders. Our analysis also focused on baseline risk variables and posttransplant factors that can contribute to PTDM (eg, rejection episodes, cytomegalovirus infection) were not incorporated. Despite having comprehensive electronic patient records to evaluate patient level data, they are susceptible to missing data, which is an inherent bias in epidemiological analyses. Correct interpretation of our results may be also affected by misclassified data and coding errors. Although we utilized contemporary diagnostic classification for PTDM, oral glucose tolerance tests were rarely performed at our center, meaning we likely underestimate the true prevalence of PTDM. In addition, some kidney transplant recipients were repatriated back to their referral hospitals (and were subsequently censored in the analysis), which may further contribute to an underestimate of the true incidence of PTDM in our baseline cohort. Our study findings may not be translatable to other populations with a different ethnic composition. Although our study cohort is representative of the local demographics of Birmingham and the broader West Midlands region of England, caution should be applied in translation of our findings nationally and internationally. Finally, our analysis is only establishing an association and should not be interpreted as implying any causality.

To conclude, our study has identified the presence of HLA-Cw12 and HLA-DQ4 in kidney transplant recipients as independent risk factors for the development of PTDM. Associations between DQ4 and development of diabetes are well described in the literature but have never been linked with PTDM, while the association between Cw12 and PTDM is completely novel, although predictable from known linkage disequilibrium with associated alleles seen in other studies. However, we believe further studies are warranted to both corroborate our observations and investigate any underlying biological mechanisms. Raising awareness of these additional risk factors, if validated in other study cohorts, can guide targeted patient counseling and improve PTDM attenuation strategies before surgery for kidney transplant candidates. However, it is likely that specific HLA alleles will vary across

different patient cohorts, based upon baseline demographics, and personalized PTDM risk mitigation strategies will require obtaining insight into predominant HLA alleles within local transplant cohorts.

REFERENCES

- Sharif A, Cohney S. Post-transplantation diabetes-state of the art. Lancet Diabetes Endocrinol. 2016;4:337–349.
- Sharif A, Hecking M, de Vries AP, et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. *Am J Transplant*. 2014;14:1992–2000.
- Sharif A, Baboolal K. Risk factors for new-onset diabetes after kidney transplantation. Nat Rev Nephrol. 2010;6:415–423.
- Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. *Diabetes*. 1990;39:1315–1319.
- Gaulton KJ, Ferreira T, Lee Y, et al; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. *Nat Genet*. 2015;47:1415–1425.
- Billings LK, Jablonski KA, Warner AS, et al; Diabetes Prevention Program Research Group. Variation in maturity-onset diabetes of the young genes influence response to interventions for diabetes prevention. J Clin Endocrinol Metab. 2017;102:2678–2689.
- Lowe WL Jr, Scholtens DM, Sandler V, et al. Genetics of gestational diabetes mellitus and maternal metabolism. *Curr Diab Rep.* 2016;16:15.
- Benson KA, Maxwell AP, McKnight AJ. A HuGE review and metaanalyses of genetic associations in new onset diabetes after kidney transplantation. *PLoS One*. 2016;11:e0147323.
- Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. *Curr Diab Rep.* 2011;11:533–542.
- Reddy YN, Abraham G, Sundaram V, et al. Is there a genetic predisposition to new-onset diabetes after kidney transplantation? Saudi J Kidney Dis Transpl. 2015;26:1113–1120.
- Hjelmesaeth J, Hartmann A, Kofstad J, et al. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. *Transplantation*. 1997;64:979–983.
- Torres-Romero LF, Santiago-Delpín EA, de Echegaray S, et al. HLA is not predictive of posttransplant diabetes mellitus. *Transplant Proc.* 2006;38:914–915.
- Sumrani NB, Delaney V, Ding ZK, et al. Diabetes mellitus after renal transplantation in the cyclosporine era–an analysis of risk factors. *Transplantation*. 1991;51:343–347.
- David DS, Cheigh JS, Braun DW Jr, et al. HLA-A28 and steroid-induced diabetes in renal transplant patients. JAMA. 1980;243:532–533.
- Mazali FC, Lalli CA, Alves-Filho G, et al. Posttransplant diabetes mellitus: incidence and risk factors. *Transplant Proc.* 2008;40:764–766.
- Pietrzak-Nowacka M, Safranow K, Nowosiad M, et al. HLA-B27 is a potential risk factor for posttransplantation diabetes mellitus in autosomal dominant polycystic kidney disease patients. *Transplant Proc.* 2010;42:3465–3470.
- Addous A, Mohamed AS, Ismail G, et al. Post-transplant diabetes mellitus in kidney transplant recipients with special reference to association with HLA antigens. Saudi J Kidney Dis Transpl. 2000;11:559–562.
- Bee YM, Tan HC, Tay TL, et al. Incidence and risk factors for development of new-onset diabetes after kidney transplantation. *Ann Acad Med Singap*. 2011;40:160–167.
- von Kiparski A, Frei D, Uhlschmid G, et al. Post-transplant diabetes mellitus in renal allograft recipients: a matched-pair control study. *Nephrol Dial Transplant*. 1990;5:220–225.
- Nafar M, Pour-Reza-Gholi F, Amouzegar A, et al. Is HLA-DR6 a protective factor against posttransplantation diabetes mellitus? *Transplant Proc.* 2005;37:3098–3100.
- Ekberg H, Tedesco-Silva H, Demirbas A, et al; ELITE-Symphony Study. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357:2562–2575.
- Davidson J, Wilkinson A, Dantal J, et al. New-onset diabetes after transplantation: 2003 International Consensus Guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. *Transplantation*. 2003;75:SS3–S24.
- 23. Torres A, Hernández D, Moreso F, et al. Randomized controlled trial assessing the impact of tacrolimus versus cyclosporine on

the incidence of posttransplant diabetes mellitus. *Kidney Int Rep.* 2018;3:1304-1315.

- 24. Vincenti F, Friman S, Scheuermann E, et al; DIRECT (Diabetes Incidence after Renal Transplantation: Neoral C Monitoring Versus Tacrolimus) Investigators. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. *Am J Transplant*. 2007;7:1506–1514.
- Guja C, Guja L, Nutland S, et al. Type 1 diabetes genetic susceptibility encoded by HLA DQB1 genes in Romania. J Cell Mol Med. 2004;8:249–256.
- 26. Howson JM, Stevens H, Smyth DJ, et al. Evidence that HLA class I and II associations with type 1 diabetes, autoantibodies

to GAD and autoantibodies to IA-2, are distinct. *Diabetes*. 2011;60:2635-2644.

- Liao HT, Lin KC, Chang YT, et al. Human leukocyte antigen and clinical and demographic characteristics in psoriatic arthritis and psoriasis in Chinese patients. *J Rheumatol.* 2008;35:891–895.
- Onsun N, Pirmit S, Ozkaya D, et al. The HLA-Cw12 allele is an important susceptibility allele for psoriasis and is associated with resistant psoriasis in the Turkish population. *ScientificWorldJournal*. 2019;2019:7848314.
- 29. Holm JG, Thomsen SF. Type 2 diabetes and psoriasis: links and risks. *Psoriasis (Auckl).* 2019;9:1–6.
- 30. Mallal S, Phillips E, Carosi G, et al; PREDICT-1 Study Team. HLA-B*5701 screening for hypersensitivity to abacavir. *N Engl J Med.* 2008;358:568–579.