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Background
The increasing affordability of high-throughput molecular data 
is enabling the simultaneous measurement of several genomic 
features in the same biological samples. With the consequent 
explosion of various types of molecular data, a general ques-
tion facing biologists and statisticians is how to organize the 
observed molecular data into meaningful structures. Cluster-
ing has been widely explored for this purpose. Hierarchical 
clustering (HC) is probably the most ubiquitous unsupervised 
clustering technique for analyzing molecular data,1 probably 
due to its simplicity and yet ability to represent data at dif-
ferent resolutions. The HC algorithms organize objects into a 
hierarchical cluster tree (called dendrogram) whose branches 
are the desired clusters. However, there are no explicit clusters 
in the HC algorithm output. Normally, a fixed-height cutoff 
is chosen and each contiguous branch of objects below that 
height is considered a separate cluster. This method of cutting 
poses an impediment on the ability of HC algorithms to fully 
exploit the data. There are at least two conceivable drawbacks 
associated with this method of cutting. First, the manner of 

choosing a fixed-height cut, which is in general difficult to 
determine, is heuristic. The user has to visually observe the HC 
tree structure to decide upon the cutoff, which is problematic 
for nonprofessional users. Until now, there is no known and 
reliable heuristic method to choose an optimal cutoff. In some 
cases, no single fixed-height cut can identify clusters deemed 
to underlie the data correctly.2 Second, the fixed-height cut 
may identify cancer molecular subtypes that are unrelated to 
patients’ clinical information.3 Because it does not utilize the 
available clinical data to identify subtypes, there is no guar-
antee that the returned subtypes will exhibit significant func-
tional coherence.

To address the aforementioned issues, we present a semi-
supervised HC tree-snipping framework called HCsnip for 
the open source statistical computing environment R, avail-
able from Bioconductor. This open source package includes a 
novel procedure to induce cut(s) on the HC tree by snipping 
at (possibly) variable heights, subsequently extracting hidden 
clusters ensconced deep down in the tree. The proposed algo-
rithm first extracts all possible partitions in a given HC tree to 
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construct the searching space. Here, a partition corresponds 
to a possible clustering that consists of nonoverlapping clus-
ters. Then, partitions are evaluated using the data type from 
which the HC tree is derived and the available background 
information. Finally, an optimal partition is selected based 
on its aggregated quality scores from the two data sets. One 
may expect that the selected partition at this step captures the 
data structures deemed in the two data sets. Unlike exiting 
packages, our implementation is flexible enough to accom-
modate any type of molecular data and does not have any 
constraint on the format of background information. Espe-
cially, our approach accepts commonly available, clinically 
relevant patient follow-up data as background information. 
To our knowledge, HCsnip is the first implementation of the 
cluster extraction procedure from a HC tree under the par-
tial “guidance” of time-to-event data. To sum up, HCsnip is 
a data-driven, rather than heuristic, exploratory data analysis 
tool that has high potentials in exploiting the enormous and 
yet mostly untapped information latent in the data. Detailed 
descriptions of the methodology implemented in the HCsnip 
package are provided in Obulkasim et al.4

The remainder of the article is organized as follows. 
The section “Semi-supervised HC tree snipping” contains 
succinct descriptions of important ideas and tasks that an 
optimal HC tree-snipping framework should address and 
our motivation to write this package. The section on “The 
Semi-supervised HC tree-snipping routines” elaborates clus-
tering routines such as how to snip a given HC tree within 
our framework, extraction of an optimal partition among 
large number of candidates, unbiased P-value calculation for 
the optimal partition using permutation argument, predic-
tion of cluster membership of a new sample using the semi-
supervised method, visualization of clusters using samples’ 
molecular entropy, and optimal treatment assignment using 
multiple HC trees. Illustrations of the use of package with 
built-in data sets are given in the “Examples” section. The 
section “Illustrations with real-world data sets” presents 
applications of HCsnip to real-world data sets that are not 
included in the package. The article closes with a discussion 
in the “Conclusion” section.

semi-supervised HC tree snipping
One of the reasons that make HC algorithms popular is that 
they are able to represent nested clusters. However, the nested 
clusters are likely to be occluded when the standard fixed-
height cut approach is employed.2,5 A series of works has been 
proposed to surmount this problem. For instance, the Dynamic 
Tree Cut approach (DTC)6 is designed to detect clusters in 
the HC tree according to their shapes. Although the DTC is 
able to extract clusters without using the fixed-height cutoff, it 
inherits the unsupervised nature of the HC algorithms. Thus, 
extracted clusters often exhibit weak (if any) clinical relevance. 
By including partial background information provided by the 
user, the cluster extraction process may produce results that 

come closer to the user’s expectations. To our knowledge, so 
far, there are only two methods available for extracting clus-
ters from the HC tree by integrating prior knowledge into the 
cluster extraction process. They are the Variation Information 
cut (VI-cut) by Navlakha et al (2010)7 and a HC tree-snipping 
approach by Dotan-Cohen et al (2007).8 The former tries to 
induce clusters in the HC tree decompositions that best match a 
partial set of known annotations. The latter seeks a partition on 
the HC tree that requires the minimum number of edge snips 
such that all genes in the cluster have a label in common.

These methods, however, are not immune to prob-
lems. First, both methods were designed for gene cluster-
ing, which is very different from clustering samples.9 Second, 
both placed a constraint on the type of background informa-
tion, viz background information must be in discrete format, 
eg, gene annotation labels. In practice, however, continuous 
scaled clinical data are commonly available, and usually, 
conversion of these into a discrete format is associated with 
information loss. These shortcomings hamper their utility 
in the situation in which the HC tree is derived for sample 
clustering and a direct application of an arbitrary type of 
background information (without preprocessing) in the tree 
snipping process so that the resulting clusters are informa-
tive, as well as robust enough, to extrapolate to new samples 
as wished for.

Alleviating the hurdles in the aforementioned situation is 
directly linked to our motivation to write the HCsnip pack-
age: to develop a general adaptive-height HC tree-snipping 
framework for semi-supervised sample clustering. Besides 
inheriting the advantages of the HC algorithms, HCsnip 
enjoys the following merits that existing packages lack:

•	 HCsnip is designed for sample clustering. 
•	 Flexible implementation accepts any data type for cluster-

ing and lifts the constraint on the format of background 
information. Most notably, it allows clinically relevant 
patient time-to-event data to “guide” the HC tree-snip-
ping process.

•	 The optimal partition selection process aggregates the 
clustering quality scores from the two data sets to dampen 
the effect of noise in the data so that a more stable clus-
tering result is warranted.

•	 A novel application of HCsnip is in optimal treatment 
assignment, which we believe has potentials in personal-
ized medicine paradigm, if implemented.

Functions in Hcsnip have input parameters that are easy 
to understand and determine. The user may also choose to call 
functions with default values that are likely to produce reason-
able results in most cases.

The semi-supervised HC tree-snipping routines
HCsnip can be regarded as a tool to integrate multiple data 
sets for clustering purpose. It comprises many novel functions 
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such as an efficient procedure to extract all possible partitions 
from a given HC tree and a permutation test that is specially 
designed for testing the significance of the association of the 
extracted clusters with data on patient follow-up in an unbiased 
manner. Besides visualizing the cluster differences in terms 
of follow-up, an ancillary visualization scheme that uses the 
samples’ molecular entropy to display the cluster difference at 
the molecular level has been incorporated in HCsnip as well. 
We also implemented a novel procedure to assign new sets of 
samples to given clusters in a semi-supervised way. Two pro-
cedures exclusively designed for optimal treatment assignment 
application are implemented in a computationally efficient 
way. To well integrate with the Bioconductor structure and 
make the package more accessible, HCsnip is implemented to 
accept an ExpressionSet type class (Biobase package), which 
is one of the commonly used Bioconductor classes. In the 
following sections, we present in-depth descriptions of each 
package feature.

The search space construction. The first step in extract-
ing the optimal clustering from a given HC tree is to extract all 
possible partitions from it. Before this step, we presume a HC 
tree that expresses similarities among samples in terms of their 
molecular profiles, which are readily available, reasonably well. 
The user has the freedom to choose a distance metric and a link-
age method from among a large number of options. Herein, we 
illustrate our piecewise cutting scheme with a toy example.

Say we are given a HC tree as in Figure 1. We first split 
the HC tree into two branches. Then, generate the following 
list of partitions by applying the fixed-height cut method to 
cut each branch at all possible heights separately:

on the left branch:
{4, 5} {9, 6, 10}

{4, 5, 9} {6, 10}

{4, 5, 9, 6, 10}

on the right branch:
{1, 8} {2, 3, 7}

{1, 8, 2} {3, 7}

{1, 8, 2, 3, 7}

This way of cutting ensures that the HC tree structure 
shall not be contravened. Hence, the extracted clusters are 
faithful to the data set from which the HC is derived. Because 
we do not allow for singletons (to avoid generating too many 
spurious partitions and to reliably estimate partition quality 
in later stages), we permit one exception to this rule: if a snip 
creates singleton(s), then they are assigned to the closest clus-
ter that is not involved in the particular snip. In the example 
above, if we snip the cluster {9, 6, 10} just below “9,” {9} is then 
merged with {4, 5} to form {4, 5, 9}.

Finally, we make all possible clustering combinations 
between branches. We then receive the following set of unique 
partitions:

This set will be the search space in later stages for 
extracting the optimal partition (clustering). To reduce the 
effect of outliers and reliably estimate the quality of clusters 
in each partition, we introduce a threshold parameter on the 
minimum number of samples in each cluster. The number of 
partitions returned from this step is inversely proportional to 
this threshold.

A function that executes the aforementioned procedures 
is HCsnipper, which has the following arguments:

HCsnipper(X, hc = NULL, dis = NULL,  
dis.method = "cor", link.method = "ward", minclus = 4,  
maxmiss = 30, …)

The available arguments are as follows:

•	 X: An object of class ExpressionSet or data matrix from 
which the HC tree needs to be derived. Columns are 
assumed to represent the samples, and rows repre-
sent the samples’ features (eg, genes). Missing values 
are allowed.

•	 hc: HC tree from which partitions needs to be extracted. 
This must be an object of class hclust (from the stats 
package). This is an optional argument, and if given, “X” 
and “dis” will be ignored.

•	 dis: A square distance matrix or object class of dist (from 
the package stats) from which the HC tree needs to be 
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figure 1. an example HC tree.
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derived. This is an optional argument, and if given, “X” 
will be ignored.

•	 dis.method: This is the distance measure to be used. This 
must be one of the methods acceptable for the function 
dist in the stats package or the Pearson correlation “cor” 
(default).

•	 link.method: The agglomeration method to be used. 
This should be one of “ward” (default), “single,” “com-
plete,” “average,” “mcquitty,” “median,” or “centroid.”

•	 minclus: The minimum number of samples allowed to 
form a cluster. This parameter is inversely proportional 
to the number of partitions returned, ie, a large value 
returns fewer partitions, and vice versa.

•	 maxmiss: Allowed maximum percentage of missing val-
ues per row in “X.”

•	 … Additional arguments for the impute.knn function 
from the impute package to impute missing values in 
“X.”

The number of partitions returned by the function 
depends not only on the “minclus” argument but also on the 
shape of the HC tree. A balanced HC tree results in more 
partitions than a skewed one.

A call to HCsnipper function should at least contain one 
of the first three arguments. This function returns an object-
of-class list. Besides containing the slots that report most of 
the arguments provided in the function call, this list object has 
a slot, “partitions,” which contains a matrix in which rows rep-
resent the partitions – each of which is composed of exhaus-
tive and mutually exclusive clusters – and columns represent 
the samples.

Partition quality assessing. Once the search space is 
ready, the next step is to objectively evaluate the quality of 
each partition. The usefulness of the optimal partition shall 
be returned in a later stage depending on the output of this 
stage. Hence, correct measurement of the quality of parti-
tion is of vital importance. A cluster quality measure is a 
function that uses the given data set and the corresponding 
partition to assign a nonnegative real number to the parti-
tion, which reflects how “good” or “cogent” the clustering is. 
A plethora of cluster quality measures have been proposed, 
but none of them has been proven to perform uniformly 
better than the rest. It is probably impossible to make all 
exiting measures available in this package. However, many 
well-known ones are included for the user to choose from. 
They are subsumed under the following three categories 
based on the input data type:

1. When the input is molecular data: Three well-known 
cluster quality measures for high-dimensional molecu-
lar data, which have been extensively investigated by 
Bolshakova et al.10, are available for this data type. They 
are Within-cluster sum of squares (WSS), C-index,11 and 
Goodman–Kruskal index.12 On simply supplying a par-

tition under consideration and the distance matrix, the 
function produces a score that indicates the optimality 
of solution that the partition represents. Except for the 
C-index, the remaining measures are calculated using 
the fpc package.13

2. When the input data is in discrete format: If the available 
data are in the discrete format (eg, sex, binary tumor 
remission status etc), the user may consider using the 
in-group proportion criteria.14

 A function that generates cluster quality score in the 
above two cases is measure. It has the following input 
arguments:
•	 parti: A partition to be evaluated must comprise 

exhaustive and mutually exclusive clusters.
•	 dis: A square distance matrix or object class of dist 

(from the stats package) corresponds to “parti.”
•	 X: An object of class ExpressionSet or data matrix 

from which the HC tree has been derived. Columns 
are assumed to represent the samples, and rows rep-
resent the samples’ features (genes). Missing val-
ues are allowed. Only needs to be supplied when 
“method” is set to “igp” (in-group proportion).

•	 method: The type of evaluation measure to be 
used for assessing the quality of “parti.” Available 
options are “c-index,” “igp,” and all other measures 
made available in the cluster.stats function from the 
fpc package. Note that values returned by different 
measures have different meanings. For instance, if 
the silhouette coefficient is chosen, a large value 
indicates a high-quality partition, whereas a small 
value denotes a high-quality partition when the 
C-index is used. Thus, interpret the returned values 
accordingly.

•	 maxmiss: Maximum allowed percentage of missing 
values per row in “X.”

•	 … Additional argument for the function cluster.stats 
from the fpc package.

 measure returns a numeric value representing the quality 
of partition under consideration.

3. When the input is follow-up data: Here, a partition is 
used as a covariate and the time-to-event information as 
the response variable to check their association. The fol-
lowing two measures tailored to time-to-event tasks are 
included: modified Akaike information criterion (AIC)15 
and modified Bayesian information criterion (BIC).16 
Unlike P-values, these information criteria allow com-
parison across partitions that include different numbers 
of clusters. Our experiments show that, qualitatively, 
the ordinary AIC and BIC do not lead to considerable 
differences.

In the follow-up data setting, surv_measure can be called to 
calculate the quality of a partition. Next to the inputs required 
in the function measure, this function requires survival time 
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of patients “surv.time” and patients’ survival status indicator 
“status” to be supplied. The former has to be a numeric vector, 
and the latter has to be in binary format (0, 1), where 1 denotes 
an event (dead). Note that, for convenience, the output is mul-
tiplied by –1 inside the function so that a large value denotes a 
high-quality partition.

If the user has precalculated quality scores of partitions, 
this step can be skipped. It is worthwhile to mention that the 
optimal partition selected in later stages depends, to some 
extent, on the type of cluster quality measure used. Which 
measure suits which data type is beyond the scope of this 
package. However, it may be useful to evaluate a partition 
with more than one method and take their average.

The optimal partition selection and bias-corrected 
P-value calculation. The previous two steps are designed 
to generate inputs required for this step. Here, the optimal 
partition is selected from among a large number of candi-
dates based on their quality scores from the two input data 
sets. The optimal one should be selected in such a way that 
it unravels the structure deemed to underlay the data, and 
most importantly, is stable enough to extrapolate to new 
samples.

We presume that besides the molecular data set (from 
which the HC has been derived), we may also have (i) par-
tial clinical data of the same patients (normally obtained 
before measuring the former) such as follow-up data3 or 
(ii) another type of molecular data measured on the same 
genome. Assume that the available extra data comprises 
patient follow-up. If the optimal partition is selected solely 
based on the quality scores from molecular data, returned 
clusters may not exhibit relevance to the follow-up infor-
mation. Whereas, yield clusters may not be faithful to the 
molecular data if only the quality scores from follow-up data 
are utilized. To obtain a robust clustering and to represent 
the data structure in both data spaces, HCsnip selects a par-
tition that is ranked high by both data types as the optimal 
one (Fig. 2). Specifically, it ranks the quality scores from the 
two data sets from good to bad, separately. The final score 
of a partition is the summation of the two ranking values.  
A partition with the smallest ranking value (after summation) 
is returned as the optimal clustering in the data. We argue 
that, this way of judging the cluster quality may dampen 
the effect of noise in the molecular data used, and eases the 
interpretation of the optimal clustering.

Next to the quality score generated earlier, perhaps it 
is helpful to express the quality of the optimal partition in 
terms of probability, such as the statistical lingua franca of 
biomedical research, the P-value. However, when studying 
the association of cluster membership with clinical follow-up 
information, such as survival data, we cannot use the standard 
testing procedures when our semi-supervised approach has 
been applied: we would use the follow-up data twice, and the 
resulting P-value is likely to be too small. HCsnip avoids this 
bias by also applying the semi-supervised cluster construction 

under the null hypothesis. This null hypothesis is simply the 
absence of association between the samples’ molecular infor-
mation and the follow-up data. Then, our cluster construc-
tion in combination with a suitable test statistic is designed 
to detect associations that can be represented by groups of 
samples. We adapt the P-value computation as follows.

1. For the observed data, compute the clusters using a semi-
supervised approach (piecewise or fixed-height cut).

2. Use a suitable test statistic (eg, log-rank for time-to-event 
data and chi-square for nominal data) to compute the 
conditional P-value given the resulting clusters: pobs.

3. For i = 1,…, B (eg, B = 1000):
a. Randomly permute the follow-up data among the 

samples.
b. Apply exactly the same semi-supervised approach 

for each instance.
c. Conditional on the resulting clusters, compute 

P-value pi.
4. Finally, compute the P-value of interest: p = P(pobs $ pi) 

= {#i|pobs $ pi for i = 1,…, B}/B.

Here, p satisf ies a crucial property of P-values: it is 
uniformly distributed when the null hypothesis is true, 
because then pobs and pi are exchangeable random variables. 
The exchangeability is a result from the null hypothesis 
and the use of exactly the same procedures to compute pobs 
and pi.

The function perm_test in this package is designed to per-
form the optimal partition selection and an unbiased P-value 
calculation. It has the following input arguments:

•	 partitions: A matrix in which rows represent the parti-
tions and columns represent the samples. Each row must 
contain exhaustive and mutually exclusive clusters.

The optimal
partition (clustering)
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figure 2. schemata of the optimal partition selection procedure.
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•	 surv.time: A numeric vector that contains patients’ 
survival times.

•	 status: A numeric binary vector (0, 1) that contains 
patients’ survival status indicator, where 1 denotes an 
event (dead).

•	 score1: A numeric vector that includes the quality scores 
of partitions calculated using the data type from which 
the HC tree has been derived. This vector must be pre-
pared in such a way that a large value indicates a high-
quality partition.

•	 score2: A numeric vector that includes the quality scores 
of partitions calculated using the follow-up data. This 
vector must be prepared in such a way that a large value 
indicates a high-quality partition.

•	 method: The type of partition quality measure that has 
been used to calculate “score1.”

•	 nperm: The number of permutations to be performed. 
This function returns an object-of-class list with the fol-
lowing slots: “obs.p,” observed P-value of the optimal 
partition; “perm.p,” containing the P-values generated by 
permutations; “best,” the optimal partition.

Clustering on new sets of samples. HCsnip includes a 
novel method (PNN +	Concordance) to assign new samples to 
one of the predefined clusters in a semi-supervised manner. 
PNN +	Concordance attempts to directly assess the similarity 
between a new sample and a given partition using their molec-
ular profiles, as well as indirectly assess their similarity in terms 
of time-to-event information using the pseudo nearest neigh-
bor (PNN).17 Herein, we illustrate the working principle of  
PNN +	Concordance with an example of a toy.

Say we have 10 samples for which both gene expres-
sion data and time-to-event information are available. Going 
through the aforementioned multiple steps, a partition with 
two clusters is selected as the optimal one. Suppose the cluster 
labels and time-to-event information of these 10 samples are 
as follows:

  cluster = (1, 1, 1, 1, 2, 2, 2, 2, 2, 2), 
  surv.time = (2.6, 4.0, 4.5, 4.9, 5.4, 25.3, 26.8, 28.2,  
       28.3, 29.4), 
  event = (0, 1, 0, 0, 0, 1, 1, 1, 0, 0).

A new sample arrives, of which only the gene expression pro-
file is available. We project this new sample onto the expres-
sion data space and measure its similarity with each of the 10 
training samples. Say after ordering (descending) the similari-
ties, we obtain the following order indexes:

ordtest = (10, 3, 6, 4, 1, 9, 5, 2, 7, 8).

Save the indexes of the first k = 3 samples (nearest neigh-
bors) in the list. Note that both expression profiles and time- 
to-event information are available for these samples. We 
regard these samples as the PNNs of the new sample in the 

patient time-to-event data space (Fig. 3). The logic behind 
this is that when two samples have similar molecular char-
acteristics, they may also share clinical characteristics 
due to the potential association between the two types of 
features.

Select the first sample from the PNN list (blue), make all 
possible pairs of cases with samples in the first cluster (black). 
The results are as follows:

(29.4, 2.6) (0, 0)

(29.4, 4.0) (0, 1)

(29.4, 4.5) (0, 0)

(29.4, 4.9) (0, 0)

Take the first pair from the pairing list, label them as the 
active set and the remaining eight samples (nine if the active 
set pairs are the same) as the reference set (ω). Select a sample 
from the reference set and combine it with the active set to 
form a triplet. Calculate the similarity of the active set pair 
according to the censoring status of the triplet (Fig. 4) using 
the Concordance index,18 which is defined as follows:

1. If the reference sample has an event and the active set 
pairs are censored

   
 (1)

2. If both the reference sample and the active set have 
events

 
  

(2)

3. If the reference sample is censored and the active set has 
events

   
 (3)

where I{⋅} = 1 if the argument is true and I{⋅} = 0 otherwise. 
Here, t1 is the survival time of the first sample in the active set, 
ti

ref  is the survival time of the ith reference sample. The final 
similarity of the active set is

   
 (4)

where Φ is the set that consists of all triplets that satisfy 
one of the aforementioned conditions. Following these cal-
culation steps, we obtain the following similarities between 
the samples in the PNN list and the two clusters under 
consideration:
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PNN cluster1 cluster2

10 0.357 0.516

3 0.727 0.667

6 0.571 0.08

Weight the similarities with cluster1 by the inverse of the 
ordering indexes, we obtain

   
 (5)

Analogously, we obtain 0.796 for cluster2. Thus, PNN +	
Concordance assigns the new sample to cluster1.

Note that the value of k varies according to the cluster 
size. This may bias toward the big cluster. One may reweight 
the similarities according to the cluster size. We do not do so 
because 1) we apply the inverse weighting scheme. This way of 
weighting diminishes the effect of a neighbor located far from 
the test sample. Thus, large k (equals more summation terms 
in Equation 5) does not affect the final similarity value much.  
2) The prior probability for a test sample to be assigned to a large 
cluster should be somewhat larger than that for a small cluster.

The function that performs semi-supervised clustering 
on a new set of samples is cluster_pred, which has the follow-
ing arguments:

cluster_pred(X, partition, surv.time = NULL,  
 status = NULL, te.index, minclus = 4, te.surv. 
 time = NULL, te.status = NULL, method = "conc",  
 maxmiss = 30, plot.it = FALSE, …)

•	 X: An object of class ExpressionSet or data matrix in which 
columns are assumed to represent the samples and rows 
represent the samples’ features. “X” can also be a square 
distance matrix or an object class of dist. It must comprise 
the data set from which “partition” has been obtained and 
the data set corresponds to the new set of samples.

•	 partition: A numeric vector containing exhaustive and 
mutually exclusive clusters that have been induced on the 
training set.

•	 surv.time: An optional numeric vector that contains 
patients’ survival times. Only needs to be specified when 
“method = conc.”

•	 status: An optional numeric binary vector (0, 1) that 
contains patients’ survival status indicator, where 1 
denotes an event (dead). Only needs to be specified when 
“method = conc.”

•	 te.index: Indexes of the columns in “X” that correspond 
to the new set of samples.

•	 minclus: The minimum number samples allowed to form 
a cluster on the new set. This is to avoid returning tiny 
clusters and to reduce the effect of outliers.

•	 te.surv.time: An optional numeric vector that contains 
new patients’ survival times. Only needs to be specified 
when “plot.it = TRUE.”

•	 te.status: An optional numeric binary vector (0, 1) that 
contains new patients’ survival status indicator, where 1 
denotes an event (dead). Only needs to be specified when 
“plot.it = TRUE.”

•	 method: The type of method desired to assign the new 
set to one of the clusters in “partition.” Must be either 

Expression data space Time-to-event data space

Cluster1

Cluster2 Cluster1

Cluster2

PNN

Test sample

KNN

figure 3. Illustration of the indirect projection principle.
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figure 4. Illustration of the three scenarios considered in the 
Concordance index calculation.
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Ward distance “ward” or PNN +	 Concordance “conc” 
(default). The latter takes advantage of the correlation 
between molecular (“X”) and follow-up (“surv.time” and 
“status”) data of the training set. If this correlation is 
weak, the two options, then, are equal. We suggest using 
the globaltest19 as pretest to check this correlation before 
choosing one of them.

•	 maxmiss: Maximum allowed percentage of missing val-
ues per row in “X.”

•	 plot.it: If “TRUE” and the follow-up data of the new set 
are given, a Kaplan–Meier plot will be generated for each 
cluster induced on the new set.

•	 … Additional arguments for the function impute.knn 
from the impute package to impute missing values in 
“X.”

When the follow-up data of the new set is not given, the 
function returns a vector of cluster labels of the new set. If 
supplied, an object of class list with the following slots will be 
returned instead:

•	 st: A data frame with five columns. The first column 
contains the unique survival time in “te.surv.time.” The 
second column includes the cluster labels of the new set, 
and the number of patients at risk at each unique time 
point is given in the third column. The survival prob-
ability and the variance of the survival probability at each 
unique time point are provided in the last two columns.

•	 P-value: The log-rank test P-value of the new set.

error rate calculation using the random survival 
Forest. To objectively quantify the “goodness” of clustering 
on the new set of samples, the association between the test 
samples’ cluster labels and the actual survival time is evalu-
ated. HCsnip uses the Random Survival Forest (RSF)20 for 
this purpose. The parametric model, eg, the Cox model, seems 
inappropriate here because, if a cluster is purely composed of 
nonevent patients, which is what actually we are after, the 
variance of the coefficient will be inflated, thus making the 
P-value unreliable.

The function RSF_eval in this package is designed to serve 
this end. This function constructs the survival forest (SF) using 
the training samples’ follow-up as response and the cluster 
labels as covariates. The constructed forest is used to predict the 
test samples’ survival time based on that of the cluster labels. 
The predicted survival times are compared with the actual ones 
by C.index to calculate the error rate. “Calculating the error rate 
on the test set using the Harrell’s concordance index, which is 
related to the area under the receiver operating characteristic 
curve, can be interpreted as a misclassification probability.”20 
The error rate ranges from 0 to 1, 0 being the perfect match.  
A low error rate, ie, high concordance between the predicted 
survival and actual ones, indicates that the partition found in 
the training phase is highly extrapolatable to new patients.

RSF_eval has the following input arguments:

•	 partition: Cluster labels of the training set samples.
•	 surv.time: A numeric vector that contains patients’  

survival times.
•	 status: A binary vector (0, 1) that contains patients’  

survival status indicator, where 1 denotes an event (dead).
•	 te.partition: Cluster labels of the test samples for which 

error rate is to be calculated.
•	 te.surv.time: Actual survival time of the test samples.
•	 te.status: Actual survival outcomes of the test samples.
•	 … Additional argument for the rfsrc function from the 

randomForestsrC package.21

This function returns a numeric vector of error rates with 
lengths equaling the number of trees constructed. Default 
is 1000.

Visualization of cluster differences using samples’ 
molecular entropy. To visually delineate the cluster differ-
ences in terms of the samples’ molecular profiles, the func-
tion EnvioPlot in this package is designed to visualize the 
samples’ molecular entropy using a violin plot. In the study 
of van Wieringen and van der Vaart (2010),22 the effect of 
DNA copy number aberrations on the transcriptome has 
been investigated via the genomic and transcriptomic entropy 
of a cancer cell. In our context, entropy is used to measure 
the diversity (at the molecular level) of samples in a cluster. 
If a cluster is composed of samples with similar molecular 
signatures, one may, then, expect smaller entropy. Whereas 
in a cluster with samples of heterogeneous origin (high degree 
of dissimilarity), one may, then, expect large entropy. Inter-
pretation of the entropy estimates depends on the input data 
type. If the input is gene expression data, large entropy cor-
responds to high level of overall expression of genes in the 
profile. If the input data comprise DNA copy number, large 
entropy corresponds to a large number of copy number aber-
rations in the profile.22

EnvioPlot has the following input arguments:

•	 X: An object of class ExpressionSet or high-dimensional 
molecular data matrix from which “parti” has been 
obtained, eg, gene expression. Columns are assumed to 
represent the samples, and rows represent the samples’ 
features. Missing values are allowed.

•	 method: The type of method used to calculate the sam-
ple’s molecular entropy. Either “knn” (default) or “nor-
mal.” See the hdEntropy function in the sigar package.

•	 parti: A partition for which the violin plot is to be 
made.

•	 horizontal: Should boxes be organized horizontally? Its 
default value is set to “FALSE.”

•	 col: A vector of colors for each cluster. Length should be 
equal to the number of clusters in “parti.”

•	 names: A vector of cluster labels.

http://www.la-press.com
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•	 … Additional arguments for the hdEntropy function in 
sigar package.

This function returns a numeric vector containing the 
entropy estimate for each sample.

optimal treatment assignment using HCsnip. Besides 
being a semi-supervised tool that extracts clusters from the 
HC tree, HCsnip package can be used in optimal treatment 
assignment. The setting is as follows: molecular profiles and 
survival information of two groups of patients treated with 
two different drugs are available. We wish to evaluate the 
potential use of our method for better assignment of one of the 
two treatments to new patients using cross-validation. Specifi-
cally, for each left-out test sample (representing a new patient), 
a HC tree is constructed for both treatment groups separately, 
and the new patients’ molecular profiles (assuming that new 
patients’ group labels and survival information are missing) 
are compared with the optimal partitions extracted from each 
of the two HC trees (Fig. 5). The new patient is then assigned 
to a cluster in each of the two trees separately using the previ-
ously described approach. Finally, the actual survival data of 
the members of the two clusters (eg, in Figure 5 clust1 and 
clust3) are used to decide which of the two treatments is pre-
dicted to be the most beneficial for the new patient.

HCsnip includes the following two functions to assign 
new patients to one of the multiple groups in an optimal 
manner and to objectively evaluate the quality of overall 
assignment.

TwoHC_assign. This function constructs a HC tree and 
extracts the optimal partition for each treatment group sepa-
rately using the semi-supervised approach previously described. 
When a new patient arrives for whom only the molecular pro-
file is given, PNN +	Concordance is utilized to find a cluster 
(competing cluster) in each optimal partition with which the 
new sample is most similar. Finally, the function examines 
the follow-up information of the two competing clusters and 
assigns the new sample to the cluster that has better overall 
survival. The new sample is recommended to receive the treat-
ment that has been administered to the group from which the 
winner cluster is obtained. A complete workflow is portrayed 
in Figure 5.

The TwoHC_assign function has the following input arguments:
TwoHC_assign (X, index1, index2, new.X, dis.method = "cor",
link.method = "ward", minclus = 4, maxmiss = 30,
surv.time, status, method1 = "BIC", method2 = "g2")

•	 X: An object of class ExpressionSet or data matrix in which 
columns are assumed to represent the samples, and rows 
represent the samples’ features. It must include the data 
sets from which the two HC trees need to be derived. 
Missing values are allowed.

•	 Index1: Indexes of the columns in “X”; corresponds to 
the samples in the first treatment group.

•	 Index2: Indexes of the columns in “X”; corresponds to 
the samples in the second treatment group.

•	 new.X: An object of class ExpressionSet or data matrix in 
which columns are assumed to represent the samples and 
rows represent the samples’ features. It must include the 
data set that corresponds to new samples. Missing values 
are allowed.

•	 dis.method: The distance measure to be used. This must 
be one of the methods acceptable for the dist function 
from the stats package or the Pearson correlation “cor” 
(default).

•	 link.method: The agglomeration method to be used. 
This should be one of “ward” (default), “single,” “com-
plete,” “average,” “mcquitty,” “median,” or “centroid.”

•	 minclus: The minimum number of samples allowed to 
form a cluster.

•	 maxmiss: Maximum allowed percentage of missing val-
ues per row in “X.”

•	 surv.time: A numeric vector that contains patients’ sur-
vival times in “X.”

•	 status: A numeric binary vector (0, 1) that contains 
patients’ survival status indicator in “X,” where 1 denotes 
an event (dead).

•	 method1: The type of measure desired to assess the qual-
ity of a partition in terms of follow-up. Default is “BIC.”

•	 method2: The type of measure desired to assess the qual-
ity of a partition in terms of data matrix “X.” Default is 
Goodman–Kruskal index “g2.”

This function returns an object-of-class list. The list contains 
slots that report most of the arguments provided in the func-
tion call, as well as the following slots:

•	 hc1: HC tree corresponding to the first treatment group.
•	 hc2: HC tree corresponding to the second treatment 

group.
•	 partitions.hc1: A matrix containing the partitions 

extracted from “hc1”; rows represent the partitions, each 
of which is composed of exhaustive and mutually exclu-
sive clusters, and columns represent the samples.

•	 partitions.hc2: A matrix containing the partitions 
extracted from “hc2”; rows represent the partitions, each 
of which is composed of exhaustive and mutually exclu-
sive clusters, and columns represent the samples.

•	 best.hc1: The optimal partition retrieved from “hc1.”
•	 best.hc2: The optimal partition retrieved from “hc2.”
•	 score.hc1: A matrix with two columns; the first column 

contains the quality scores of partitions in “partitions.
hc1,” which have been calculated using the follow-up 
data; the second column contains the quality scores cal-
culated using “X.”

•	 score.hc2: A matrix with two columns. The first column 
contains the quality scores of partitions in “partitions.
hc2,” which have been calculated using the follow-up 
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data; the second column contains the quality scores 
calculated using “X.”

•	 Assign: A matrix with three columns. The first column 
contains the indexes of groups to which new samples 
have been assigned; the second column contains the 
indexes of the competing clusters in “best.hc1”; the third 
column contains the indexes of the competing clusters in 
“best.hc2.”
TwoHC_perm. This function is designed to assess 

whether the predicted gain in survival is significant when 
the treatment assignment from TwoHC_assign is taken. For 
a new patient, the predicted gain in survival is quantified by 
the absolute value of the estimated treatment parameter  
in the Cox model, which compares the survival times of the 
patients in the two competing clusters. On its turn, it is trans-
formed to rrobs = −( )exp ,| |βobs  which quantifies the gain in 
the relative risk in the Cox model. However, this results in a 
biased estimate, as TwoHC_assign already has been used  
in the clustering on the new samples. Thus, even when the two 
treatments would be equally good for the genomic profiles in 
the two competing clusters, we obtain . To resolve this 
issue, the permutation argument is utilized to correct for this 
bias. Specifically, for each new sample i, the survival data of 
the two competing clusters are the permuted p times. Then, 
for each permutation, j j

irrperm, , which contains the same bias 
as rrobs

i , is recalculated. After p permutations, the P-value is 
calculated in the following manner:

1. Calculate the test statistics for the observed relative risk 
ratio using their geometric mean (suits well for the ratio 
scaled data)

   
rrobs

obsi
i

iZ
=

−( )exp | |β

   

where

   

 is a vector of length n containing the observed coef-
ficients.  is a matrix containing the coefficients 
generated by permutations.
2. Generate test statistics from the null distribution. For 

j = 1, …, p:

   
rrperm

permj
ji

iZ
=

−( )exp | |β
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figure 5. schemata of group assignment from TwoHC_assign function for a new sample.
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3. Finally, compute the P-value of interest using the follow-
ing equation:

   

where I(⋅) = 1 if the argument is true and = 0 otherwise.
A call to this function requires the output from TwoHC_

assign and the number of permutations desired (“nperm”). The 
function returns an object-of-class list with the following slots:

•	 obs.betas: A numeric vector that contains the observed 
coefficients corresponding to the new samples.

•	 Perm.betas: A matrix that contains the coefficients 
that have been generated by the permutations. The 
columns correspond to samples, rows correspond to 
permutations.

•	 ranks: A numeric vector that contains the ranks of the 
observed coefficients among the “nperm” coefficients that 
have been generated by permutations.

•	 riskratios: A numeric vector that contains the ratio of 
relative risks of the new samples.

•	 P-value: The P-value for the overall group assignment.

examples
This section is dedicated to the illustration of the use of func-
tions in HCsnip with built-in data sets. The illustrations are 
geared toward such a case: the HC is derived from molecular 
data and patients’ time-to-event data are used as background 
information. Two publicly available data sets are included 
in this package. The leukemia data set23 contains the subset 
of gene expression profiles of adult acute myeloid leukemia 
patients. It contains the measurements of 116 samples on 
1571 genes, and follow-up data are also included. The complete 
data set is available at the Gene Expression Omnibus (www.
ncbi.nlm.nih.gov/geo/) with accession number GSE425. The 
second data set is a subset of the latest version of The Can-
cer Genome Atlas (TCGA) glioblastoma multiforme (GBM) 
level 3 gene expression data with partial clinical info.24 It con-
tains the expression data of 120 samples on 3000 genes. The 
clinical data include patient follow-up and the types of drugs 
that patients have been administered. The complete data set is 
available at the TCGA data portal (https://tcga-data.nci.nih.
gov/tcga/).

HCsnipper. Here, we constructed a HC tree using the 
first 30 samples in the leukemia data set and retrieved all pos-
sible partitions using HCsnipper. Except for minclus = 5, default 

settings are applied to the remaining parameters. We use R 
package wGCNA to display the partitions. This package can 
be directly installed using install.packages(“WGCNA”).

library(“HCsnip”)
library(“WGCNA”)
data(BullingerLeukemia)
attach(BullingerLeukemia)
res ,- HCsnipper(em[, 1:30], minclus = 5)
cl ,- res$partitions
plotDendroAndColors(res$hc, t(cl), hang = -1, main = "", 

dendroLabels = FALSE)
The function yielded eight partitions that are shown in 

Figure 6. It is clear that the partitions 4–7 cannot be discov-
ered if the standard fixed-height cut is applied.

Generate partition quality scores. In order to select the 
optimal partition, here, each partition is evaluated using the 
given expression and the follow-up data, separately.

a ,- apply(cl, 1, function(x) measure(parti = x,
dis = 1–cor(em[, 1:30])))
b ,- apply(cl, 1, function(x) surv_measure
(x, surv.time[1:30], status[1:30]))
select an optimal partition. Now, the optimal partition 

will be obtained using the perm_test function. The perm_test 
selected a partition with two clusters, the eighth partition in 
Figure 6, as the optimal one.

result ,- perm_test(cl, surv.time[1:30], status[1:30], score1  
= a, score2 = b, nperm = 10)

table(result$best)
Clustering on the new samples using the predefined 

partition. Here, we take 50 new samples and assign them to 
one of the two clusters in the optimal partition obtained in the 
previous step. The function cluster_pred induced two clusters 
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figure 6. The HC tree that is derived from the first 30 samples’ 
expression profiles in the Leukemia data set. Partitions induced by the 
piecewise snipping are displayed at the bottom of the HC tree.
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on the new samples, and their difference in terms of follow-
up is visualized in Figure 7. Observe that the two clusters are 
composed of patients with substantially different survival out-
comes (P-value = 0.01). This shows that the optimal partition 
is highly extrapolatable for new samples.

 pred ,- cluster_pred(X = em[, 1:80], partition = result 
$best,
surv.time = surv.time[1:30], status = status[1:30],
te.index = 31:80, te.surv.time = surv.time[31:80],
te.status = status[31:80], plot.it = TRUE)

Visualization of cluster differences using samples’ 
molecular entropy. For visual inspection, the difference 
between the two clusters induced on the 50 new samples in 
terms of their expression profiles is visualized via the Envio 
Plot function. As we observe from Figure 8, the samples in 
the first cluster exhibit somewhat higher entropy (although 
nonsignificant) than the samples in the second cluster, which 
indicates that the two clusters are relatively similar at the 
molecular level. In order to visualize the observed difference 
in the entropy levels, we project the gene expression profiles 
of these 50 samples on the first two principal components. 
The projected data are plotted in Figure 9. It is apparent that 
the samples in the first cluster are much more scattered out, 
indeed indicating a large entropy. Note that, albeit includ-
ing samples with similar expression profiles, the two clusters 
exhibit considerably different survival outcomes. Due to its 
semi-supervised nature, HCsnip successfully identified these 
two groups.

H ,- EnvioPlot(X = em[, 31:80], parti = pred$St[, 2])
gr ,- pred$St[, 2]

pc ,- princomp(em[, 31:80])$loadings[, 1:2]
a ,- pc[which(cls = = 1), 1]
b ,- pc[which(cls = = 1), 2]
par(mfrow = c(1, 2), mar = c(10, 4, 10, 1))
plot(a, b, xlim = range(pc[, 1]), ylim = range(pc[, 2]),
pch = 19, col = 2, xlab = "PC1", ylab = "PC2")
ch ,- chull(a, b)
ch ,- c(ch, ch[1])
lines(a[ch], b[ch])
a ,- pc[which(cls = = 2), 1]
b ,- pc[which(cls = = 2), 2]
plot(a, b, xlim = range(pc[, 1]), ylim = range(pc[, 2]),
pch = 15, col = 3, xlab = "PC1", ylab = "PC2")
ch ,- chull(a, b)
ch ,- c(ch, ch[1])
lines(a[ch], b[ch])

error rate calculation for the new set. Finally, we inves-
tigate whether the clustering induced on the test set yields sur-
vival estimates that are reasonably concordant with the actual 
survival data. If the clustering on the training set well repre-
sents the input data structure, which is subsequently reflected 
on the clustering on the test set, one may expect smaller error 
rates from the RSF_eval function. The error rate 0.48 indi-
cates that the survival estimates are relatively concordant with 
their actual data.

Err ,- RSF_eval(result$best, surv.time[1:30], status[1:30],
pred$St[, 2], surv.time[31:80], status[31:80])
mean(Err)
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figure 7. Kaplan–meier survival analysis by clusters that were induced 
on the new samples.
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figure 8. the gene expression entropy distributions of the two clusters 
that were induced on the 50 new samples. the shape of the violin plot 
shows the distribution of the gene expression entropy values within 
each cluster and the white dot in each denotes the mean entropy level. 
Distributions are relatively different between cluster1 and cluster2, with a 
larger mean gene expression entropy value observed in cluster1.
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optimal treatment assignment using HCsnip. We close 
the “Examples” section by applying HCsnip to an application 
outside the realm of clustering: optimal treatment assignment. 
The latest version of TCGA GBM24 data set included in the 
package is used for this illustration. GBM is the most common 
and most aggressive type of malignant primary brain tumor 
in humans. The level 3 gene expression and clinical data up 
to January 2013 were downloaded from the TCGA data por-
tal. We selected patients treated with Avastin® (bevacizumab) 
and Temodar® (temozolomide). The setup for this illustration 
is as follows: we select 30 samples from each treatment group 
(training set) and derive two HC trees separately. HCsnip is 
applied to each HC tree separately to extract an optimal parti-
tion. Then, 60 new samples are selected (30 from each group) to 
form a test set. The function TwoHC_assign is used to assign the 
test set to one of the treatment groups in the semi-supervised 
manner. The significance of treatment assignment on the test 
set is evaluated using TwoHC_perm with 100 permutations.

From Figure 10A, we observe that large numbers of 
samples have bias-corrected relative risk ratios smaller than 
one. This means these samples have reduced relative risks that 
are better than that of random. The reduction of risk with 
respect to current treatment assignment, as quantified by rrobs, 
is highly significant (Fig. 10B). The R scripts for realization of 
this illustration are provided in the Supplementary File.

Illustrations with real-world data sets
In this section, we illustrate the performances of HCsnip 
with multiple real-world data sets that are not included in the 
package. These illustrations aim to (1) compare the quality of 
the optimal partitions produced by HCsnip and the standard 
fixed-height cut method; (2) test the value of utility of HCsnip  
in optimal treatment assignment application. The results 
reported herein are meant to offer, to some extent, unique 
insights into the novel aspects of semi-supervised snipping, 
central to HCsnip.

HCsnip vs fixed-height cut. The latest version of GBM24 
gene expression data and DNA copy number data with partial 
clinical information are used for this comparison. Details of 
array platforms, preprocessing, etc are provided in Appendix A.  
To make a thorough comparison, the following three scenar-
ios are considered:

•	 The HC tree is derived from DNA copy number data, 
and gene expression data are used as background 
information.

•	 The HC tree is derived from DNA copy number data, and 
time-to-event data are used as background information.

•	 The HC tree is derived from gene expression data, and 
time-to-event data are used as background information.

Main data: DNA copy number; background info: gene 
expression. We derived a HC tree from DNA copy number 
data using the dedicated R package weCCA25 with para-
meters “ordinal” and “heterogeneity.” We use “GK” to measure  
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statistics.
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the cluster quality in both data settings. The HC tree and 
the optimal partitions retrieved by the two approaches are 
displayed in Figure 11. HCsnip returned an optimal parti-
tion that comprises 13 clusters (cluster.p), the fixed-height cut 
approach; on the other hand, HCsnip generated a partition 
with two clusters (cluster.s). To examine the usefulness of the 
extracted clusters from the two approaches, their correlations 
with follow-up data are investigated. Analysis shows that the 
differences in survival between cluster.p are more significant 
(unbiased P-value = 0.093) than those in cluster.p (unbiased 
P-value = 0.439).

To assist in visually inspecting the differences among 
clusters, we summarize them 1) in terms of follow-up data; 
2) in terms of samples’ molecular entropy values. As observed 
from Figures 12 and 13, the clusters that are induced by the 
fixed-height cut approach contain many subclusters that are 
different in terms of both their survival outcomes (some of 
them are highly significant) as well as their molecular pro-
files. Particularly, cluster.p6 and its two neighbors cluster.p7  
and cluster.p8 are noteworthy. The samples in cluster.p6 
exhibit better overall survival than the samples in the 
latter two. The entropy distributions in these three clusters 
(Fig. 13) further confirm their dissimilarities. However, the 

fixed-height cut approach fails to “see” them and merge them 
into one cluster.

Main data: DNA copy number; background info: time- 
to-event. Performances of the two approaches are evaluated 
and compared through a split-sample validation procedure. 
Specifically, the original data set size N becomes a parent pop-
ulation from which 70% samples are randomly drawn without 
replacement and used for training, and the remaining samples 
are used for testing purpose. HC is derived and the optimal 
partition is selected using the training set. Each test sample 
is assigned to one of the clusters found in the training phase. 
To obtain reliable results, we repeat this procedure 100 times. 
Note that, to make the comparison evenhanded, the optimal 
partition from the fixed-height cut approach is selected in the 
same manner as in HCsnip. Results from the two approaches 
when different cluster quality measures were used are pre-
sented in Table 1.

Observe that, irrespective of the cluster quality mea-
sures used, HCsnip produced clusterings in which clusters are 
superior to those produced by the fixed-height cut.

Main data: gene expression; background info: time-to-event. 
Similar phenomena are observed in this setting as well. The 
superiority is more pronounced when PNN +	 Concordance 
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is used for the test sample assignment (Table 2). This is not 
unexpected because the follow-up data exhibit strong correla-
tion with the expression data (P-value = 0.005) than with the 
copy number data.

The comparisons with the standard fixed-height cut 
approach in different scenarios show that the superior per-
formances of HCsnip are not an artifact of the larger search 
space, and the superior performance remains when evaluated 
on independent test samples.

optimal treatment assignment. Besides being a tool 
for decomposing the HC into meaningful clusters, HCsnip 
may be used in clinical practice, especially in making medical 
decisions that need to be tailored to the individual patient, 
known as “personalized medicine.” We illustrate this by the 
ovarian serous cystadenocarcinoma (OV) data sets,26 which 
can be the basis for further research. The latest version of 
OV gene expression data with partial clinical information 
has been downloaded from TCGA data base. Details of the 
data set are provided in Appendix A (including preprocessing 
details). We compare our optimized strategy with the original 
treatment assignment. Because TCGA does not require the 
Tissue Source Sites to complete the treatment form, we were 
not able to retrieve information regarding why a patient has 
been administered a particular drug. Still, we may assume that 
the original treatment assignment was done under usual care. 
Hence, comparison of the predicted performance under our 
treatment assignment with the original one is relevant.

The performance of HCsnip is evaluated through leave-
one-out cross-validation, ie, we leave out one patient and con-
struct a HC tree for each treatment group using the remaining 
patients’ expression profiles. Partitions are extracted and, using 
the survival information, the optimal partition is selected for 
each HC tree. In each of the two partitions, the cluster that 
matches the expression profile of the left-out patient best is 
determined using TwoHC_assign. Finally, the survival pat-
terns of the other patients in those two clusters are compared 

with a two-group Cox model, and the left-out sample is given 
the group label of the HC tree corresponding to the best (in 
terms of survival) cluster. Note that only the expression profile 
of the left-out sample is used during the whole process.

We observe that 107 (49%) samples have assigned labels 
that are discordant with the actual ones. Among these, 24 actu-
ally received carboplatin and 83 received taxol. The predicted 
improvement in survival when using the treatment assignment 
from TwoHC_assign instead of the actual one is tested through 
TwoHC_perm. For this illustration, we use n = 107 discordant 
samples, with p = 10000 permutations. Figure 14A shows the 
empirical distribution of rrobs

i  for the 107 discordant samples. 
Considerable amount of samples have relative risk ,1, which 
means, for these samples, the decrease in relative risk is smaller 
than the one in which patients are assigned to different treat-
ment groups in random. Figure 14B shows Tobs against the 
background of its null distribution, as obtained by the permu-
tations. The reduction of risk with respect to the current treat-
ment assignment, as quantified by the bias-corrected risk ratio, 
is highly significant: P-value ,, 0.001.

Note that we are not trying to overrule the previously 
made treatment decisions. These decisions may have been 
based on grounds other than efficacy alone, eg, toxicity. We 
simply use these data to illustrate the potential of our pro-
posed methodology in a real-life application outside the realm 
of clustering. Because treatment is irreversible and the origi-
nal decision strategy is unclear, a formal clinical trial-based 
comparison is not possible here. But, statistically, we demon-
strate that, based on predicted survival, group assignments are 
better than the original one. Hence, this illustration, to some 
extent, does provide information on the usefulness of HCsnip 
in this type of application.

Conclusion
Nowadays, almost all major statistical computing prod-
ucts offer HC functionality. Consequently, desiderata for an 

Table 2. Cross-validation results when the main data comprise gene 
expression profiles. The column “Measure” specifies the measure 
used for the main data; the last two columns denote the results when 
applying the two different methods used in clustering on the test 
set; the subcolumns “AIC” and “BIC” denote the results when two 
different measures are used for the follow-up data. numbers denote 
the number of times HCsnip produces smaller error rates than the 
fixed-height cut approach in 100 repetitions, and the opposite holds 
for numbers in parentheses. note that, for some values, the two 
numbers do not sum to 100. this is because in some repetitions, the 
two approaches produce ties.

meASuRe WARd Pnn + ConCoRdAnCe

AIC BIC AIC BIC

Wss 63(37) 62(38) 65(35) 84(16)

C-index 52(48) 56(43) 66(33) 79(21)

GK 60(39) 48(51) 63(36) 80(19)
 

Table 1. Cross-validation results when the main data comprise Dna 
copy number. The column “Measure” specifies the measure used 
for the main data; the last two columns denote the results when 
applying the two different methods used in clustering on the test 
set; the subcolumns “AIC” and “BIC” denote the results when two 
different measures are used for the follow-up data. numbers denote 
the number of times HCsnip produces smaller error rates than that 
produced by the fixed-height cut in 100 repetitions, and the opposite 
holds for numbers in parentheses. note that, for some values, the 
two numbers do not sum to 100. this is because in some repetitions, 
the two approaches produce ties.

meASuRe WARd Pnn + ConCoRdAnCe

AIC BIC AIC BIC

Wss 66(34) 69(31) 63(37) 62(38)

C-index 65(35) 72(28) 60(39) 55(45)

GK 59(35) 46(31) 47(46) 48(30)
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figure 14. (A) the empirical distribution of rrobs. (b) the distribution of the test statistics from the null model obtained by permutation Tperm.  
note: the black broken line denotes the location of the observed test statistics.

automatic procedure, which requires no user interaction, to 
extract clusters from a HC representation are surged.

We have described and implemented the HCsnip pack-
age, a novel semi-supervised HC tree-snipping procedure that 
combines available background information with molecular 
data to tease out clinically relevant cancer subtypes located 
deep down in the tree. To our knowledge, HCsnip is the first 
package that accepts patient follow-up data as background 
information without discretization. Application of HCsnip to 
high-dimensional molecular data seems to originate with the 
large amount of valuable information latent in data because 1) 
piecewise snipping is able to extract hidden clusters located 
deep down in the tree to unravel the true data structure;  
2) fully supervised learning cannot, in practice, learn models 
with deep hierarchies. Say the data set under consideration 
has some patients who have relatively different survival out-
comes than the remaining patients and located deep in the 
HC tree, and that their molecular profiles are characterized 
by only small numbers of features (common case in molecular 
data). Because of linearity, they may not be able to capture 
small changes in expression values of these features, thus fail-
ing to “see” this group of patients. Whereas cutting the HC 
tree at variable heights can be regarded as a nonlinear clus-
tering that is, therefore, highly likely to identify this group.4 
Consequently, clustering returned by the piecewise cut may be 
a better predictor, although this is not the package is designed 
for, of survival prediction than the input data.

Consistent promising performances on built-in data sets 
and other multiple data sets with different setups corrobo-
rate the superiority of HCsnip. Usage of HCsnip in optimal 
treatment assignment perhaps does not exhaust the range of 
applications the package is capable of, which deserves to be 
explored. We believe the flexibility in handling different data 
types and many novel functions that the package comprises, 

make this package not just a respectable alternative to existing 
packages but, more often, one regarded as a preferred choice.

There are, however, still many areas open for further 
improvement. For instance, the cluster quality evaluation 
procedure currently does not take into account the heights 
at which clusters are formed. Clusters that are formed deep 
in the HC tree indicate that there is strong evidence in the 
data that samples in these clusters are most similar. One may 
incorporate this information into the partition evaluation pro-
cess by giving a higher score to a partition in which clusters are 
composed of samples that are merged at comparatively lower 
height differences. If the two input data types (main data and 
background information) are of different importance levels, 
instead of simply summing the ranks of the two quality scores, 
one may combine them by giving different weights. Another 
extension would be to apply the instance-level constraints27 to 
prefilter “dull” partitions (exploiting prior knowledge), which 
may prevent the algorithm from generating an optimal parti-
tion that is too much deviated from the user’s expectation.

With ongoing research in analyzing heterogeneous high-
dimensional molecular data sets, we believe HCsnip will be 
among the first to take advantage of new technology.
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Appendix A: data sets
Glioblastoma multiforme data set 

•	 Sample type: Glioblastome multiforme. 
•	 Molecular levels: DNA copy number and gene expression.
•	 Reference: Verhaak et al (2010).24

•	 DNA copy number platform: 244 K Agilent Memorial 
Sloan–Kettering Cancer Center.

•	 Gene expression platform: Affymetrix 133A.
•	 Number of samples: 158.
•	 Availability: The Cancer Genome Atlas (TCGA) (http://

cancergenome.nih.gov/)
•	 Preprocessing: Level 1 DNA copy number data with 

160 samples with partial clinical information were down-
loaded. The Agilent copy number platform consists of 
235834 probes; 223554 were available after preprocess-
ing by using the package CGHcall.28 The preprocessed 
data matrix was segmented and called using the same 
package. The called data matrix was regioned (to prepare 
a computer-generated hologram region object, which is 
the required input type), and the HC tree was obtained 
by using the package WECCA.25 The functions used 
in different steps were called with default settings. The 

Affymetrix gene expression array contains 62980 probes. 
We followed the filtering approach described in Yu et al, 
(2011)29 to reduce the probe set to 15750. Due to lack 
of follow-up information, two samples were deleted from 
the downstream analysis.

ovarian cancer data set 

•	 Sample type: Ovarian serous cystadenocarcinoma (OV).
•	 Molecular levels: gene expression.
•	 Reference: Spellman et al (2011).26

•	 Gene expression platform: 244 K Agilent.
•	 Number of samples: 218.
•	 Availability: The Cancer Genome Atlas (TCGA) (http://

cancergenome.nih.gov/)
•	 Preprocessing: Level 3 gene expression data and full clini-

cal data were downloaded. The Agilent gene expression 
platform consists of 17811 probes; 17440 were avail-
able after deleting missing values. We selected patients 
treated with carboplatin (109) and taxol (109). The former 
is a random selection of a total of 254 available samples to 
match group sizes of the two treatment groups.
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