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Analysis and observation 
of the breakdown of Babinet’s 
principle in complementary 
spoof surface plasmon polariton 
structures
Go Itami* & Osamu Sakai

A metal plate array (MPA) which is a structure complimentary to a metal hole array (MHA), supports 
spoof surface plasmon polaritons (SSPP) as well as an MHA does. Babinet’s principle attributes the 
phenomenon of duality to transmission characteristics of the complimentary impedance surfaces 
because of the symmetry of the behaviors of electric and magnetic fields. However, it is also a fact 
that the complimentary structures do not follow this principle if they have wavelength-size thickness, 
because electromagnetic waves do not treat such thick structures as a boundary surface but as 
propagation spaces with the specific boundaries such as a waveguide which shows SSPP modes. If the 
thickness is so small that it is negligible, Babinet’s principle is still valid, while it has been uncertain 
how the layer thickness works to break the principle as it is increased. The unconfirmed transformation 
is revealed analytically and experimentally with the use of MPAs and MHAs of varying thicknesses.

The behavior of electromagnetic waves interacting with objects is broadly classified into two cases. For wave-
lengths significantly larger than the object, the wave’s electric fields are treated as near fields and electromagnetic 
behavior is expressed as a scattering phenomenon. For wavelengths much smaller than the object the wave’s 
electric fields are treated as far fields and the electromagnetic behavior is expressed as propagating waves, either 
transmitted or reflected. However, when the wavelength is of the same order as the object size, the scattering 
phenomena become more complex. In this case, if such objects are perforated periodically, they can be provided 
an interesting medium with properties, otherwise not attainable with naturally occurring materials, such as a 
negative refractive index (NRI)1–6. In general, these artificial structures are called metamaterials.

In 2000, Pendry showed theoretically the concept of a perfect lens with a negative refractive index (NRI) 
medium1, and in 2001, Shelby et al. verified the possibility of an NRI experimentally by using the two artifi-
cial resonators for negative permeability and permittivity media2. Their studies demonstrated the feasibility of 
metamaterials, and accelerated the advances in the field in recent years1–3, 7–12. In such studies, a split ring reso-
nator (SRR) is often used as a negative permeability medium for NRI realization. And the complementary split 
ring resonator (CSRR) is also known as the resonator for negative permittivity realization, based on Babinet’s 
principle12–16. In these two resonators, the essential difference in their resonance is based on the following elec-
tromagnetic radiation mechanisms: SRR radiates the topologically overlaid waves from the infinitesimal electric 
dipoles, and CSRR radiates them from the infinitesimal magnetic dipoles. Based on this principle, the SRR and 
CSRR show band-stop and band-pass characteristics if they are used as planar spatial filters.

A frequency selective surface (FSS) is also a spatial filter which has a two-dimensional structure with a unit 
cell and resonators, and is a metamaterial in a broader definition of the term11,17–22. Its operating principle is often 
expressed by using an equivalent circuit model. For example, a patch-type FSS and a slot-type FSS respectively 
show band-stop and band-pass characteristics, since they have series and parallel resonant circuits in their 
boundaries. Therefore, an FSS’s operation principle is also consistent with Babinet’s principle. On the other hand, 
a spoof surface plasmon polariton (SSPP) is also a feature of metamaterials23–35. It is the collective oscillation 

OPEN

Department of Electronic Systems Engineering, The University of Shiga Prefecture, 2500 Hassaka‑cho, Hikone, 
Shiga 522‑8533, Japan. *email: ot68gitami@ec.usp.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-67923-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:11027  | https://doi.org/10.1038/s41598-020-67923-5

www.nature.com/scientificreports/

of electric fields like a surface wave in the microwave-frequency range. A metal hole array (MHA), which is a 
two dimensional conductive structure with periodic perforations, is often used for SSPP excitations24–29. When 
SSPP modes are excited on the surface, transmittance is up to 100 percent (extraordinary transmission)36,37 in 
an optimal frequency band, since the modes of both sides are coupled to each other.

From a different point of view, an MHA can be considered a spatial filter with band-pass effects. According 
to the SSPP theorem proposed by Pendry et al.23, 29, an MHA can be a macroscopic medium with a controllable 
permittivity of Drude-type frequency response, as is derived by solving a wave equation with microscopic bound-
ary conditions such as waveguide modes taken into consideration. In the theorem, the boundary conditions are 
not limited to specific conditions13,31,33. For example, a metal plate array (MPA), which is the complementary 
structure of an MHA, should also be an SSPP-structure with band-pass effects.

However, an MPA is inversely treated as a band-stop FSS when it is a very thin structure. Although conven-
tional studies have discussed clarifications of the relationship between SSPP modes and the structural parameters 
or the boundary conditions including duality38, the relevant part of an SSPP theory in terms of structural thick-
ness in structure has not been discussed in detail. In other words, an MPA has the potential to provide evidence 
of the breakdown of Babinet’s principle.

In this study, an example of such a breakdown of Babinet’s principle is demonstrated by using an MPA 
and an MHA with thicknesses nearly the size of the interacting wavelength. First, changes in the relationships 
between electromagnetic behavior at the boundary conditions and the transmission or reflection properties 
of the two complementary structures, with the variations in their thickness, are discussed theoretically and 
analytically. The theoretical wave propagation model and the analytical study of MPAs indicated the possibility 
of a Babinet’s principle exception. And experimental results verified the theoretical assumption and analytical 
results using fabricated MPAs and MHAs with their wavelength-size thickness. This fact gives us more detailed 
physical insight into electromagnetic wave-propagations, and is useful for designing spatial filters, antennas and 
artificial lenses20,39–42.

In Section "Basis of spoof surface plasmon polaritons generations on a metal plate array", SSPP mode gen-
eration on an MPA is discussed by introducing a theoretical wave propagation model, and the effective relative 
permittivity and the dispersion relation are derived. In Section “Discussion of numerical results comparing metal 
plate array with metal hole array in frequency dependencies”, the changes in transmission and reflection proper-
ties and the angular dependencies of transmission characteristics of MPAs and MHAs are examined by varying 
their thickness analytically with the use of an electromagnetic simulator (HFSS, Ansys). In Section “Experimental 
demonstration of the breakdown of Babinet’s principle using metal plate arrays and metal hole arrays”, the trans-
mission characteristics of the two structures in their thin and thick cases are examined experimentally. Finally, we 
summarize our study, which theoretically and experimentally demonstrates the breakdown of Babinet’s principle.

Basis of spoof surface plasmon polaritons generations on a metal plate array
In this study, the breakdown of Babinet’s principle is discussed based on the physical insights of SSPP mode 
generation and FSS’s operating principles (equivalent circuit model) 17–19,21. The phenomenon can be observed 
in an MPA by increasing its thickness, since the theoretical model of electromagnetic behavior on the boundary 
is changed from the latter to the former. If the MPA is a thin structure like a surface, its frequency characteristics 
can be expressed by using its equivalent circuit model, which shows a series resonant circuit in the admittance of 
an MPA. Also, if the MPA is a thick structure, its frequency characteristics can be expressed by using the SSPP 
theory proposed by Pendry et al.23,29, as shown in Fig. 1.

Figure 1.   Physical concept of changing a propagation model in accordance with the boundary shift from an 
FSS-boundary to an SSPP-boundary in the case of a metal plate array.
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Therefore, as well as SSPP mode generation on an MHA, an MPA can also generate SSPP modes on itself. 
The theoretical derivation can be described using the same framework. Here, TM-polarized waves entered 
an MPA at an oblique incidence as shown in Fig. 2, and each conductive plate in the MPA is assumed to be a 
perfect electric conductor. In this case, since an incident magnetic field H has only a y-component, the vector 
is expressed as H = [0,Hy, 0] . And the incident electric field vector must also have only x - and z-components, 
and E = [Ex , 0, Ez] . The conductive plates are arranged two-dimensionally with a period d , and the size of each 
plate is a× a , with depth w. It is assumed that the values of a , d and w are of the same order as the incident 
wavelength, and a unit cell is defined as a space d × d so as to satisfy the condition that an conductive plate is 
centered in it, as shown in Fig. 3. Assuming the propagation is from Region 1 to Region 2 in Fig. 2, the waves 
should propagate with parallel plate-waveguide modes around the boundary z = 0 . Note that the permittivity 
and permeability in Region 1 are ǫ = ǫ0,µ = µ0 , respectively and the two values in Region 2 are also expressed 
as ǫ = ǫrǫ0,µ = µrµ0 . Here ǫr and µr are effective relative permittivity and permeability in Region 2; those also 
represent the macroscopic electromagnetic profiles of an MPA.

Considering the boundary conditions, energy flow around the boundary, and an SSPP generation condition, 
macroscopic permittivity and permeability of an MPA are obtained, and an SSPP-dispersion relation in an MPA 
can be derived by using the two parameters. In the derivations, it is specified that j =

√
−1 and it is assumed 

that the incident wave is a plane wave; therefore the time operator is expressed as ∂/∂t replaced by jω . Here, the 
x - and z-components of the incident electric field Ex and Ez in Region 1 are expressed as

(1)Ex =Ex0 exp j(kxx + kzz),

(2)Ez =Ez0 exp j(kxx − kzz).

Figure 2.   Schematic view of electromagnetic propagation on a metal plate array.

Figure 3.   Microscopic view of the propagation on a metal plate array per unit cell.
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In the above expressions, the time vibrational term exp (jωt) is omitted for simplicity. Note that Ex0 and Ez0 are 
the amplitudes values of Ex and Ez , and that kx and kz are the x - and z-components of the incident wave vector 
k . On the other hand, considering the propagation modes inside an MPA, the waves should have parallel-plate 
waveguide modes. Here, if the incident wavelength satisfies � > a and a miniaturized unit cell is used ( a > d/2 ), 
the fundamental waveguide mode is dominant23,29. And in a unit cell of an MPA, the propagation modes can be 
formed, as shown in Fig. 4. Thus, the x-components of the electric field Ex can take the form

Here, β is a propagation constant, and Ex shows the electric field of the waveguide mode. Note that the cor-
respondence between the E-component (x) and the waveguide mode (y) is inversed if the incident condition 
rotates 90 degrees, and the wave does not depend on the propagation direction. The mode is excited on an MPA 
per unit cell as shown in Fig. 4. And other modes are cut off due to the two narrow boundaries. When an MPA 
is treated as a macroscopic medium, the average electric field intensity per unit cell can be derived as

Where E0 is the average electric field intensity. Considering an energy flow across the boundary z = 0 , the 
inflow from the upper side and the outflow to lower side must take the same value. Here, if an MPA is treated as 
a microscopic structure or macroscopic uniform medium, the energy flow can be expressed in two ways, that is

And considering the equation (E ×H)z,micro = (E ×H)z,macro , the macroscopic relative permeability µr is 
obtained as

(3)Ex =E0 sin
(πy

a

)
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Figure 4.   Electric distributions on a metal plate array following the microscopic boundary conditions.
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The macroscopic relative permittivity ǫr also can be obtained by considering the propagation constant, as 
well as the energy flow. If treating an MPA as a macroscopic medium, the waves in Region 2 cannot propagate 
in x- and y-directions. Therefore, the incident wave vector in the macroscopic medium should have only a 
z-component. In other words, the wave vector k′ can be expressed as k′ = [0, 0, k′z] , and k′z is

Here, k0 is the wavenumber in free space, and it satisfies k0 = ω
√
ǫ0µ0 . Therefore the macroscopic relative 

permittivity ǫr can be derived by using the following equation if considered that the propagation constant inside 
an MPA is treated as a microscopic or a macroscopic medium,

Then, by substituting (4) and (8) into (10) and squaring the equation, the values of ǫr are obtained as

Note that c0 is the velocity of light in free space, and the equation (11) is usually expressed the following 
formula,

Here, ωp is the cut-off frequency of an MPA. As shown in Equation (12), an MPA also has a relative permit-
tivity with the same frequency response as an MHA23. This frequency-responsive dielectric medium is known as 
a Drude model, which implies the oscillation of free electrons in a good conductor. Therefore, the fact indicates 
that electric field vibrations in an MPA simulate plasmonic oscillations, so an MPA is also considered to be an 
SSPP-structure as well as an MHA. Based on the above discussion, the dispersion relation in an MPA is derived 
by assuming a surface wave formation on the boundary of an MPA, treated as a macroscopic medium. Since 
TM-polarized incident waves have only a y-component in the model, an amplitude with a z-dependency of Hy 
on the boundary between Region 1 and Region 2 can be expressed by the following formula, with attenuation 
characteristics in each condition,

Here h1 and h2 are amplitudes of h(z), and K1 and K2 are macroscopic propagation constants on the 
boundary. And by considering the wave equation of Hy , K1 and K2 can be derived as K1 =

√

k′x
2 − ω2ǫ0µ0  , 

K2 =
√

−ω2ǫrµrǫ0µ0 . In this derivation, it should be noted that since the waves cannot propagate in the x-direc-
tion when an MPA is treated as a macroscopic medium, the x-component of the wavenumber in Region 2 must 
be zero. And considering the boundary condition between Region 1 and Region 2, both tangential components 
of the magnetic fields take the same value at z = 0 , and the same is true for the electric field. That is

Equation (14) is often called the generation condition of surface plasmon polariton. With the use of the above 
definitions of K1 and K2 and the expressions (12) and (8), an SSPP-dispersion relation in an MPA is obtained by 
squaring Eq. (14),

Note that k′x is replaced by k|| in the derivation of Equation (15). The curve is shown in Figure 5, and it con-
firms the similarity of this curve and that of an MHA23,29. Therefore, an MPA has an ability of conserving SSPP-
modes and shows the phenomenon of an extraordinary transmission as well as an MHA. Here, it is also known 
that this curve does not intersect with a light line since lattice scattering effects are not taken into account for the 
curve. If the effects are introduced into the curve, the wavenumber of k|| in it has to be replaced with

Note that k′|| is the wavenumber of an SSPP with scattering effects, n and m are positive integers, and Gx and 
Gy are the reciprocal lattice vectors in x-direction and y-direction respectively. The SSPP-dispersion relation in 
an MPA with the scattering effects is shown in Fig. 6, which shows that the curve intersects a light line at several 
points. SSPP-modes are formed at those points, and the frequencies are considered to be resonant frequencies of 
SSPPs. The dispersion relation also shows that the MPA has band-pass effects caused by extraordinary transmis-
sion as in the case of an MHA. Thus, an MPA acts as a band-pass filter if it is thick enough to be regarded as an 
SSPP-structure, and also acts as a band-stop filter, if the MPA is thin enough to be regarded as a kind of FSS. The 
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above discussion supports the possibility that an MPA can be changed from a band-stop filter to a band-pass 
filter as its thickness is increased. This indicates that the breakdown of Babinet’s principle, since an MHA shows 
band-pass effects regardless of its thickness and an MPA is a complementary structure to an MHA.

Discussion of numerical results comparing metal plate array with metal hole array 
in frequency dependencies
In this section, the breakdown of Babinet’s principle is confirmed by using MPAs and MHAs in electromagnetic 
numerical analyses. According to the discussion in the previous section, the two complementary structures, 
MPAs and MHAs should show different tendencies in their electromagnetic profiles such as transmittance of 
incident waves if their thicknesses are varied sufficiently. That is, an MPA should show a change from band-
stop effects to band-pass effects as its thickness increases; on the other hand, an MHA should consistently show 
band-pass effects regardless of its thickness. To examine the above conclusions, the two models of an MPA and 
an MHA are provided as shown in Fig. 7. Note that the size of the MPA’s unit cell is a× a× w and the MPA unit 
cell is two-dimensionally arranged infinitely with a period d, and an MHA’s holes are centered in an unit cell 
with of size of a× a× w , and the MHA unit cell is two-dimensionally arranged infinitely with a period d. Based 
on the previous studies of MHA under the cut-off frequency23,29,35, waves of 60 - 100 GHz are introduced in the 
two models in a y-z direction, which has an incident angle θ . Transmission characteristics of the two models are 
analyzed with variations of their thickness w in a range of 0.01 mm - 3 mm. Here, the analyses are conducted 
by using an electromagnetic simulator (HFSS R19, Ansys, Canonsburg, PA, USA) and the values of a and d are 
fixed as (a, d) = (2 mm, 3 mm) in the analyses. The transmittance results and electric distribution results at each 
resonant frequency for the MPA and the MHA are shown in Figs. 8, 9, 10, and 11, respectively.

The results in Fig. 8 confirm the change of transmission characteristics in the MPA from band-stop effects 
to band-pass effects. In the cases of 0.01 mm and 0.1 mm, the results show that the MPA possesses band-stop 
effects because the structure is much thinner than the incident wavelengths, and the MPA is considered to act as 
an FSS. On the other hand, in the case of 1 mm and 3 mm, the MPA possesses band-pass effects since the MPA 
has a thickness similar to the incident wavelengths and is considered to act as an SSPP-structure. The results in 
Fig. 9 also supports the difference of propagation models between the thin case (a) 0.01 mm and the thick case 
(b) 3 mm. Although the electric distribution spreads around the conductor part in the case (a), the distribution 

Figure 5.   Ideal SSPP-dispersion relation in metal plate array.

Figure 6.   An actual SSPP-dispersion relation in a metal plate array and light line including the case of oblique 
incidence.
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Figure 7.   Analytical model of metal plate array and metal hole array for comparing their transmittances.

Figure 8.   Thickness dependency of transmission characteristics in the case of the metal plate array.

Figure 9.   Electric distributions on MPAs at resonant frequencies in the cases of thickness 0.01 mm and 3 
mm; (a) thickness is 0.01 mm and the resonant frequency is 92 GHz, (b) thickness is 3 mm and the resonant 
frequency is 81 GHz. In both cases, distributions are measured on the surface of the plates.
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Figure 10.   Thickness dependency of transmission characteristics in the case of the metal hole array.

Figure 11.   Electric distributions on MHAs at resonant frequencies in the cases of thickness 0.01 mm and 3 
mm; (a) thickness is 0.01 mm and the resonant frequency is 84 GHz, (b) thickness is 3 mm and the resonant 
frequency is 80 GHz, (c): thickness is 3 mm and the resonant frequency is 90 GHz. In all the cases, distributions 
are measured on the surface of the plates.
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in the case (b) are concentrated only on the horizontal edges of the conductor. The distribution shows parallel 
plate-waveguide modes as proposed in Fig. 4. The results in Fig. 8 also show the shift of resonant frequencies 
in all the cases, with the reason considered to be related to the change of propagation models. Specifically, the 
shift in the two thick cases is larger than that in the thin cases, although the ratio of the increase in thickness in 
the thick cases is smaller than that in the thin cases, thus indicating that the frequency-shift is sensitive to the 
ratio of the thickness and the wavelength. From the discussion, the facts support the above assumption, since 
the shift is related to the MPA-thickness.

On the other hand, the results in Fig. 10 confirm that the MHA consistently shows the same transmission 
characteristics, with band-pass effects in all the cases. In the thin cases of 0.01 mm and 0.1 mm, the MHA shows 
band-pass effects, as it is considered to act as an FSS with parallel resonant circuits19,21. Also, in the thick cases of 
1 mm and 3 mm, the MHA shows band-pass effects, as it is considered to act as an SSPP-structure. Specifically, 
the result in the thick case of 3 mm shows almost perfect transmittance in the two bands, while other results do 
not show this phenomenon. The reason is considered to be related to the change of the propagation model in 
the MHA because if it acts as an FSS, its geometric configuration cannot have such characteristics in the adja-
cent frequency bands. In contrast, if it acts as an SSPP-structure, its geometric configuration can possess such 
characteristics in the adjacent frequency bands because the intersection of the light line and the SSPP-dispersion 
relation appears at multiple points, which indicate resonant conditions. Although these points are not certain 
to be observed in real events, the SSPP structure has the potential of having multiple resonant frequencies. The 
results of electric distributions in Fig. 11 also shows the differences of resonant mechanisms between FSS and 
SSPP modes. In the thin case (a) 0.01 mm, it finds that the distributions spread around the two horizontal edges 
which is considered to work as a capacitor. On the other hand, the distributions in the thick cases (b) and (c) 3 
mm are concentrated on the center of the two edges since they form parallel plate-waveguide modes. From the 
discussions, the facts support the above assumption since the thin cases show capacitor effects and one of the 
thick cases shows SSPP modes. And in a viewpoint of the breakpoint of Babinet’s principle, the two results of 
the thickness 0.01 mm do not break the principle since the results show the same resonant frequency of 92 GHz 
with different band effects. However, in the cases of 0.1 mm, the resonant frequency of the MPA is shifted from 
that in the case of 0.01 mm and the resonant frequency of MPA differs from that of the MHA. Therefore, the 
principle is considered to be broken around the thickness 0.1 mm in the models.This thickness corresponds to 
the thickness-wavelength ratio of 0.03 and the phase shift of 0.19 rad.

Next, the angular dependency of their transmission characteristics is investigated by varying values of θ and 
their thickness, in the thin (0.01 mm )and thick (3 mm) cases. The results in the four cases are shown in Figs. 12, 
13, 14, and 15, respectively.

In Figs. 12 and 13, the two results confirm that both MPAs have several band-gap modes that vary in accord-
ance with incident angles. However, the behavior of these modes differs; for example, there is no frequency 
distribution of the transmittance between the adjacent band gaps in the thin case (Fig. 12). On the other hand, 
there are frequency distributions of the transmittance between the adjacent band gaps in the thick case (Fig. 13). 
These facts indicate different propagation modes in the two cases. Furthermore, comparing the two frequency 
characteristics at around 90 degrees, it is found that there are strong transmission regions in the thin cases although 
there are almost no strong transmission regions in the thick case. The reason is considered to be that in the thin 
case, propagation waves treat the MPA as a boundary so that transmission waves are formed by each scattered 
wave from each unit cell though incident waves have no vertical components of the wave vector. In contrast, in the 
thick case, since propagation waves treat the MPA as periodically arranged waveguides, transmission waves are 
considered effectively not to be formed, as incident waves hardly have any vertical components of their wave vector.

In Figs. 14 and 15, as well as the results for the MPAs, these results also confirm the difference of frequency 
distribution of the transmittance between the adjacent modes of the two angular dependencies. This fact shows 
the difference of the propagation modes between the thin case (Fig. 14) and thick case (Fig. 15). However, it 
can be seen that the modes in the thick case are band-pass modes, while the modes in the thin case are band-
gap modes. This result shows the characteristics of propagation modes in a square waveguide which has lim-
ited higher-order modes, although a parallel plate waveguide has unlimited higher modes. In other words, the 

Figure 12.   Angular dependency of transmission characteristics in the case of the metal plate array with a 
thickness of 0.01 mm.
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difference of the modes between the thick MPA and the thick MHA originates in the difference of transmission-
band percentage in the entire frequency band. In the discussions, the differences of the propagation modes 
between the thin and thick cases in both structures are confirmed for the two structures. These results indicate 
that the modes in the thin cases are determined by the boundary with frequency responses and that those in the 
thick cases are supported by the waveguide modes of MPAs and MHAs.

Figure 13.   Angular dependency of transmission characteristics in the case of the metal plate array with a 
thickness of 3 mm.

Figure 14.   Angular dependency of transmission characteristics in the case of the metal hole array with a 
thickness of 0.01 mm.

Figure 15.   Angular dependency of transmission characteristics in the case of the metal hole array with a 
thickness of 3 mm.
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Experimental demonstration of the breakdown of Babinet’s principle using metal 
plate arrays and metal hole arrays
To experimentally validate the situations described in Section “Basis of spoof surface plasmon polaritons genera-
tions on a metal plate array” experimentally, the measurement system shown in Fig. 16 was used. In this system, 
MPAs and MHAs, the pair of complimentary SSPP structures, are used as samples to show the breakdown of 
Babinet’s principle by comparing the transmission characteristics of the complementary structures. The experi-
mental setup is very similar to that in our previous report34,35, which is briefly reviewed below. The horn antennae 
are used as a transmitter and a receiver. The transmitted signals, the frequencies of which vary from 60 GHz to 
95 GHz continuously in time are detected by the oscilloscope as a time waveform which shows the frequency 
characteristics of the transmitted waves. By comparing the measured results in the cases with and without the 
sample, the transmission characteristics are obtained.

The samples used in the experiments are shown in Fig. 17. Samples of (a) and (b) are the thin and thick 
MPAs on PET substrates, and the conducive parts of sample (a) are silver ink which is printed on the substrate. 
The thickness of the ink and the substrate are 1.3µm and 0.125 mm. The unit cell of the conductor parts is a 
square ( 2mm× 2mm ) with a period of 3 mm. The unit cell of (b) has rectangular-shaped copper conductors 
( 2mm× 2mm× 3mm ) that are arranged two-dimensionally with a period 3 mm, and the frame is made of 
the silver ink. Samples (c) and (d) are the thin and thick MHAs; (c) is also made of the silver ink, and its unit 
cell has a square aperture ( 2mm× 2mm ) with a period of 3mm. Sample (d) is made of a stainless steel 3 mm 
thick, and its unit cell has a square aperture ( 2mm× 2mm ) with period 3 mm. The experimental results with 
these MPAs and the MHAs are shown in Figures 18 and 19, respectively.

Figure 16.   Measurement system.

Figure 17.   Experimental samples of MPAs and MHAs; (a) a sample of MPA with a thickness of 1.3µm made 
of silver ink, (b) a sample of MPA with a thickness of 3 mm made of copper blocks, (c) a sample of MHA with a 
thickness of 1.3µm made of silver ink, (d) a sample of MHA with a thickness of 3 mm made of stainless steel.



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:11027  | https://doi.org/10.1038/s41598-020-67923-5

www.nature.com/scientificreports/

In Fig. 18, the result confirms the difference of the transmission characteristics between the thin and thick 
MPAs. Consideration together with the analytical results shown in Fig. 9 shows that the thin MPA has a band-
stop effect around 88 GHz, which originates in a functional impedance surface based on its equivalent circuit 
model. In contrast, the thick MPA has a band-pass effect around 77 GHz caused by the excitation of the SSPP 
modes. Here, since the analytical results are obtained by simulating the thin model with the corresponding 
substrate (PET), the experimental results are in good agreements with the analytical results in the tendency of 
frequency responses and the resonant frequencies and have high validities in terms of reproducibility. The overall 
transmittance values of the experimental results are considered to be lower than those of the analytical results 
due to the losses of the actual substrate.

In Fig. 19, as opposed to the MPA cases, the results show the invariance of the transmission characteristics 
with the band-pass effect between the thin and thick MHAs around 88 GHz in both cases. And they are also 
consistent with the corresponding analytical results including the electric distributions in Fig. 11 from the view-
point of the tendency of the frequency responses and the resonant frequencies since the analytical results are 
obtained by using the MHA models with PET substrates as well as the above MPA cases. And the experimental 
results also have high validities in terms of reproducibility. Due to the same reason as the MPA case, the overall 
transmittance values of the experimental results become lower than those of the analytical results. Since the result 
of the thin case shows a band-pass effect, considered together with the above MPA results, this fact also supports 
the idea that the two thin models can be considered to be based on the impedance surface theory with lumped 
elements, and they follow Babinet’s principle. Also, as well as the above discussion of the thin case, the fact that 
the results of the two thick cases confirm band-pass effects also supports the idea that the two thick structures 
excite the resonant modes originating from each SSPP mode.

Finally, the breakdown of Babinet’s principle is demonstrated by the analytical and experimental results of 
the thick cases in Fig. 20. The results confirm that the complimentary structures (with the same 3 mm thickness) 
show the same transmission characteristics of band-pass effects. If the results are in accordance with the prin-
ciple, the MPA results and the MHA results must respectively show opposite characteristics, such as band-pass 
and band-stop effects. This study provides the new physical insight that the principle, based on the symmetry 

Figure 18.   Thickness dependency of transmission characteristics in the thin and thick cases of the metal plate 
array (solid lines), compared to the corresponding analytical results (dotted lines).

Figure 19.   Thickness dependency of transmission characteristics in the thin and thick cases of the metal hole 
array (solid lines), compared to the corresponding analytical results (dotted lines).
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of the physical behaviors of electric fields and magnetic fields, can be applied to the electromagnetic structure 
only when the complimentary structures used can be treated as boundaries. Furthermore, the breakdown indi-
cates that SSPP modes can be more controllable than conventional since arranged conductive structures such 
as MPAs also can be excited the mode. And if the arranged structure is used, its band-pass feature of waves can 
be tuned flexibly by thickness so that required accuracy of the cross section-design becomes more relaxed. The 
fact has an important significance in industrial fabrication processes such as an artificial lens, an antenna, and 
a reflector based SSPP excitations.

Conclusion
The breakdown of Babinet’s principle was discussed and examined with the use of complementary SSPP struc-
tures, MPAs and MHAs. First, SSPP mode formation on an MPA was introduced by theoretically deriving the 
effective relative permittivity with a Drude-type frequency response and the SSPP dispersion relation on an 
MPA following Pendry’s theory of SSPPs in the case of an MHA. In the electromagnetic numerical analyses, 
the thickness dependencies of the transmission characteristics in the case of MPAs and MHAs were discussed. 
The analytical results confirmed that the characteristics of the MPA changed from band-stop to band-pass as 
its thickness increased. On the other hand, with MHAs, all the cases showed band-pass features regardless of 
thickness. From the angular dependencies of the MPAs and the MHAs, the their resonant mechanisms in the 
thin and thick cases were considered to be based on an impedance surface model with lumped elements used 
for frequency selective surfaces (FSSs) and the SSPP theory, respectively. In the experiments, thin and thick 
models of MPAs and MHAs with the same size as the analytical models were provided and their transmission 
characteristics investigated. The results also showed the same tendencies as the analytical results. Finally, the 
breakdown of Babinet’s principle was demonstrated experimentally by using the thick models of the MPA and 
the MHA, and this fact gives us the new physical insight that the principle can be applied to the electromagnetic 
structure only on the premise that the complimentary structures used can be treated as boundaries.
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