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Abstract

Motivation: Biomedical entities, their identifiers and names, are essential in the representation of biomedical facts and
knowledge. In the same way, the complete set of biomedical and chemical terms, i.e. the biomedical ‘‘term space’’ (the
‘‘Lexeome’’), forms a key resource to achieve the full integration of the scientific literature with biomedical data resources:
any identified named entity can immediately be normalized to the correct database entry. This goal does not only require
that we are aware of all existing terms, but would also profit from knowing all their senses and their semantic interpretation
(ambiguities, nestedness).

Result: This study compiles a resource for lexical terms of biomedical interest in a standard format (called ‘‘LexEBI’’),
determines the overall number of terms, their reuse in different resources and the nestedness of terms. LexEBI comprises
references for protein and gene entries and their term variants and chemical entities amongst other terms. In addition,
disease terms have been identified from Medline and PubmedCentral and added to LexEBI. Our analysis demonstrates that
the baseforms of terms from the different semantic types show only little polysemous use. Nonetheless, the term variants of
protein and gene names (PGNs) frequently contain species mentions, which should have been avoided according to protein
annotation guidelines. Furthermore, the protein and gene entities as well as the chemical entities, both do comprise
enzymes leading to hierarchical polysemy, and a large portion of PGNs make reference to a chemical entity. Altogether,
according to our analysis based on the Medline distribution, 401,869 unique PGNs in the documents contain a reference to
25,022 chemical entities, 3,125 disease terms or 1,576 species mentions.

Conclusion: LexEBI delivers the complete biomedical and chemical Lexeome in a standardized representation (http://www.
ebi.ac.uk/Rebholz-srv/LexEBI/). The resource provides the disease terms as open source content, and fully interlinks terms
across resources.
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Introduction

Biomedical research has developed into a data-driven scientific

domain that profits from knowledge discovery methods [1]. Data

interoperability is paramount to make efficient use of the public

distribution of resources and to achieve assessment of proprietary

data against public content with little overhead costs. In the best

case, data integration uses the model of a virtual knowledge broker

which benefits from public standards and would also include the

scientific literature [2].

‘‘Lexeome’’: the Biomedical Term Space
In particular the integration of the scientific literature with the

biomedical data resources requires specific semantic resources that

normalize entity mentions, i.e. protein and gene names (PGNs),

diseases, chemical entities, to database entries [3]. More in detail,

standardized terminological resources such as the BioLexicon

contribute to the integration work, since they give an overview on

the scope of biomedical terminologies and enable the transforma-

tion of the literature into a standardized representation, where the

database content is aligned with the literature semantics [4]. In

other words, the literature conveys database semantics through

referencing of database entries (called ‘‘semantic enrichment of the

scientific literature’’).

The full set of biomedical entities, their baseforms and term

variants would form the term space (the ‘‘Lexeome’’). Certainly

the number of terms should correlate with the number of entities

and the number of names should be limited, if the number of

entities is. On the other side, the proportion of synonyms per entity

is unknown, and also the relevance of terms from one domain to

another has not been explored, although it can be expected that

terms will contain references to other terms where possibly both
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terms may even belong to different semantic domains. For

example, ‘‘4-hydroxybenzoate polyprenyltransferase’’ (UniProt:-

COQ2 YEAST) is an enzyme that requires the substrate ‘‘4-

hydroxybenzoate’’ (ChEBI:17879). Many more such references

can be expected across the Lexeome as has been demonstrated by

the CALBC project [5].

In addition, the researchers in biomedical ontologies have

already acknowledged that the compositional representation of

concept labels would improve the consistency data representations

and the reuse of resources. The decomposition of terms and the

post-compositional representation of concepts has in particular

been acknowledged for the representation of phenotypes in

humans and mice [6]. Studies based on the gene ontology (GO)

have shown that a number of compositional structures are quite

frequent and that the identification of the compositional patterns

can improve the quality of the curation process and the ontological

resource overall [7,8]. At a smaller scale, similar analyses have

been applied to the medical terminology to improve its quality,

and in principle we could generate tree-based compositional

structures to named entities, but would expect a high degree of

complexity for the biomedical scientific domain [9,10].

Nowadays, the baseforms and term variants are provided from

scientific databases and - to a lesser degree - from ontological

resources, but little attention has been put to the development,

description and analysis of the Lexeome. A terminological

resource which is expected to cover the Lexeome will deliver a

number of advantages. First, novel terms can be assessed against

the Lexeome to avoid ambiguity and redundancy; second,

compositional terms can be decomposed and analyzed for their

expressiveness in comparison to existing concept labels just like

post-compositional concept labels; third, terms from the scientific

literature can be referenced to one or many existing terms; and

finally, the information from the Lexeome can be used to

disambiguate existing terms (see Wordnet usage).

Referencing data. Reaching beyond biomedical data inte-

gration including the scientific literature, recent visionary devel-

opments propose to expose results and findings early on as factual

statements in a fixed format (‘‘nanopublications’’, ‘‘proto-ontolo-

gies’’, ‘‘microparadigms’’) and where any data set should have the

potential to be referenced and reused electronically from any

world-wide access point (digital object identifiers, DOIs for data)

[11-14]. The representation of the data either follows data formats

or requires meta-data for the correct annotation of its origins and

experimental settings, but then contributes to the generation and

evaluation of hypotheses [15,16]. These requirements initiated the

development of terminological and ontological resources, for

example the Unified Medical Language System (UMLS) for the

clinical and biomedical domain, the development of ontological

resources such as the Gene Ontology (GO) for the representation

of conceptual knowledge and eventually the generation of

semantic resources that span several domains [4,17,18].

Biomedical Data Resources
The biomedical research community has established primary

data resources serving as a standard for biomedical-chemical

entities and concepts: UniProtKb (http://www.ebi.ac.uk/uniprot)

and EntrezGene (http://www.ncbi.nlm.nih.gov/gquery) for pro-

tein and gene entities, Interpro (http://www.ebi.ac.uk/interpro/)

for protein families, the NCBI (National Center for Biotechnology

Information, http://www.ncbi.nlm.nih.gov) taxonomy for species,

and ChEBI (Chemical Entities of Biological Interest, http://www.

ebi.ac.uk/chebi/) for chemical entities [19-22]. The provided

names serve as a baseform (and term variants) for the data entry

and are frequently reused for alternative data entries within the

database (called ‘‘ambiguity’’) or in other databases (called

‘‘polysemy’’) [23]. The ambiguous use of gene and protein names

(PGNs) for orthologous entities induces confusion, if the species

resolution is required, but improves reuse of scientific data and

literature across species [24-26]. The same is true for the

polysemous use of disease terms with reference to a species, e.g.

HIV (human immunodeficiency virus) for the virus and for AIDS

(acquired immune deficiency syndrome) caused by the virus [5].

The efficient use of terminological resources helps to mimic

Table 1. Sources of baseforms and term variants.

Baseforms [#] Variants [#] Total [#] Total/Labels Unique terms [#] Uniq. Terms/Labels

Gene/Prot. GP7 5169113 490059040 495219153 8.76 197269853 3.35

GP6 4889577 393899316 398779893 7.94 195649436 3.20

Interpro 209671 0 209671 1.00 209671 1.00

Enzymes 49905 89082 129987 2.65 129377 2.52

Chemi- cals Jochem 2789578 196919980 199709558 7.07 195279752 5.48

ChEBI 199645 949748 1149393 5.82 1019307 5.16

ChEBI (all) 5499838 191879322 197379160 3.16 8639227 1.57

Other Diseases 569010 1659581 2219591 3.96 1869555 3.33

Species 6439280 1999130 8429410 1.31 8389135 1.30

UMLS Pharmact. 1049201 1239840 2289041 2.19 2279799 2.19

Bioact. 549148 879209 1419357 2.61 1419121 2.61

Enzymes 269065 569332 829397 3.16 829033 3.15

Lipid, Carb. 119518 99770 219288 1.85 219281 1.85

Vit., Horm. 69877 109258 179135 2.49 179007 2.47

Neoplast. 49718 69488 119206 2.38 119196 2.37

The table shows the distribution of terms from LexEBI sorted according to the resource that delivered the terms. The biggest portions of the terms contained in LexEBI
result from BioThesaurus (GP 6 and GP 7), from Jochem and ChEBI and from the NCBI taxonomy. Interpro and species term show a low degree of term variation.
doi:10.1371/journal.pone.0075185.t001

LexEBI
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human understanding through resolving conflicting interpretations

[4].

Available terminological resources. It is a common

approach that a researcher in the text mining domain would

collect terms from the described resource, extract the terminology

and would use it for text mining or any other data analysis [27-31].

A common format to the different resources and the integration of

the terms across the resources would contribute to the interpre-

tation of research results, if the resource has been used in the

research [4,32].

Terminological resources have been proposed for the medical

domain, i.e. resources such as the MetaThesaurus and the

collection of resources in UMLS [17]. The former is geared

towards natural language processing solutions in the medical

domain and provides linguistically relevant information. The latter

collects and distributes a large number of terms from different

resources, but does not integrate them consistently across resources

nor resolves the diversity in the license agreements to a unified

model. In particular, the use of the biggest and most relevant

disease terminology, i.e. Snomed-CT, is limited, since the license

agreement allows broad usage only in selected countries which do

cover the costs of the country-wide license agreement.

Ontological resources are openly available from the Foundry of

Open Biomedical Ontologies, but these resources represent

conceptual knowledge in contrast to entity representation as

delivered from the biomedical data resources [33]. The BioThe-

saurus has been produced to gather all PGNs and has developed

into a comprehensive resource, however other biomedical and

chemical entities are not covered and even the references to

enzyme databases and protein families have not been included

[32]. The BioLexicon collects terms from different resources and

harmonizes the representation, but does not interlink the entities

nor includes statistical information from the term usage across

literature resources [4]. Jochem is a collection of chemical terms

and again the interlinking and cross-comparison with other data

resources has not been performed [34].

Additional semantic and terminological resources have already

been provided for other domains, for example Wordnet for

general English use and Bablenet for multilingual use [35,36].

Both enable researchers to develop information technology that

can deal efficiently with natural language, but neither one is

designed to support biomedical applications. Altogether, several

resources are in place for different tasks, but a comprehensive

standardized terminological resource has not yet been produced in

the biomedical domain that gives insights in the distribution and

usage of the existing terms.

Requirements for a Terminological Resource
A terminological resource in the biomedical domain has to

integrate semantic types such as genes/proteins, chemical entities,

species, diseases and others. Furthermore, it has to cope with

complex constructs, since the scientific language anticipates

Table 2. Distribution of abbreviations.

All occ. in Medline [#] Unique acronyms [#] Occ./acronym .1 occ. [#] .1 occ. [%]

GP7 197059358 659674 26.0 339031 49.7%

Enzymes 2879219 109001 28.7 59184 48.2%

ChEBI 794119169 279776 266.8 149080 49.3%

Disease 990349479 259377 356.0 139610 46.4%

Species 2189964 109373 21.1 49670 55.0%

Total 1399201 709575

The abbreviations extracted from Medline have been attributed to a reference terminological resource, e.g. ChEBI, and the frequency of the abbreviation has been
determined and added to LexEBI. Half of the abbreviations have single occurrences.
doi:10.1371/journal.pone.0075185.t002

Figure 1. Baseform polysemy and nestedness: The diagram shows several comparisons between the different data resources. The
content of the mentioned five resources, i.e. Enzymes, Interpro, Jochem, ChEBI and Species, against the terms contained in GP7 using exact matching
and fuzzy matching that considers morphological variation. All comparisons only use the baseforms of the clusters in LexEBI (left part) or the term
variants from different resources (right part). The measurements have been performed for the identification of complete terms in the resource and for
the nestedness of GP7 terms in the terms of the other resources, i.e. ‘‘Identical’’ versus ‘‘Nestedness’’, respectively. It can be seen, that terms denoting
enzyme entities do not show extensive term variation in GP7 and are nested to only a small extent in other terms of GP7. On the other hand, the
terms for chemical entities are nested to a large extent in the terms of GP7 forming the cause of ambiguity and nestedness. Again the terms from
Jochem and from ChEBI are part of the term variants from GP7 using exact matching and matching based on morphological variation.
doi:10.1371/journal.pone.0075185.g001

LexEBI
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naming for such constructs combining entities of different

semantic types and occasionally uncommon syntactic structures.

For example, the ‘‘Bovine Viral Diarrhea Virus E2 protein’’

(UniProt:A8VM04 BVDV) is a protein that is induced by a virus

(UniProt:POLG BVDVN) that infects the intestinal mucosa of its

host organism, i.e. the bovine. As a response, we postulate, that it

is paramount to gather all relevant biomedical terms (the

‘‘Lexeome’’), decompose their syntax and their complex semantic

structure, i.e. their nestedness and ambiguities, gather information

about their use, and engineer a novel terminological resource that

can serve as a hub for modern language processing techniques and

data integration solutions connecting literature with biomedical

Table 3. Baseforms and term variants of different types contained in GP6 and GP7.

Against baseforms only Against all terms

Nested Matching Nestedness Matching Nestedness

Term Exact M. Fuzzy M. Exact M. Fuzzy M. Exact M. Fuzzy M. Exact M. Fuzzy M.

GP6Enzymes 1509104 30.7% 1579099 32.2% 1789155 36.5% 2009921 41.1% 6119645 15.8% 7119603 18.4% 7399827 19.1% 9759362 25.2%

Interpro 889613 18.1% 1349129 27.5% 1319094 26.8% 2249739 46.0% 929431 2.4% 1939964 5.0% 1779819 4.6% 4779168 12.3%

Jochem 219461 4.4% 289911 5.9% 2539875 52.0% 2849856 58.3% 259033 0.6% 399137 1.0% 191489792 29.6% 190009229 25.8%

ChEBI 109388 2.1% 139090 2.7% 4119622 84.2% 4319645 88.3% 109950 0.3% 169708 0.4% 191489792 29.6% 195309209 39.5%

Species 79823 1.6% 89820 1.8% 369043 7.4% 449454 9.1% 79871 0.2% 99087 0.2% 519581 1.3% 729848 1.9%

GP7Enzymes 1739994 33.7% 1809829 35.0% 2029484 39.2% 2249877 43.6% 7549229 16.7% 8729211 19.3% 9189263 20.3% 192149663 26.9%

Interpro 939979 18.2% 1519797 29.4% 1389979 26.9% 2509599 48.6% 1009087 2.2% 2179898 4.8% 1979252 4.4% 5739201 12.7%

Jochem 239402 4.5% 319418 6.1% 2889062 55.8% 3199561 61.9% 279478 0.6% 439214 1.0% 190239729 22.6% 192739755 28.2%

ChEBI 119053 2.1% 149124 2.7% 4479812 86.8% 4689723 90.8% 119724 0.3% 189128 0.4% 193819545 30.6% 198479750 40.9%

Species 79884 1.5% 99071 1.8% 389356 7.4% 489419 9.4% 79938 0.2% 99294 0.2% 579469 1.3% 839237 1.8%

The reference data resource (‘‘tagged term’’) is either GP6 or GP7 and the alternative data resources (‘‘nested term’’) are ChEBI, Enzyme, Interpro and other resources.
The percentage indicates, which portion of the terms has been tagged.
doi:10.1371/journal.pone.0075185.t003

Table 4. Baseforms and term variants of different types contained chemical term resources.

Against baseforms only Against all terms

Tagged
Terms

Nested
Terms Matching Nestedness Matching Nestedness

Exact M. Fuzzy M. Exact M. Fuzzy M. Exact M. Fuzzy M. Exact M. Fuzzy M.

ChEBI Jochem 139694 69.7% 149683 74.7% 159929 81.1% 179199 87.5% 569155 3.2% 609332 3.5% 769885 4.4% 869470 5.0%

GP6 19019 5.2% 19258 6.4% 119148 56.7% 129442 63.3% 19264 0.1% 19711 0.1% 259017 1.4% 319356 1.8%

GP7 19119 5.7% 19366 7.0% 119690 59.5% 129843 65.4% 19416 0.1% 19879 0.1% 279461 1.6% 339565 1.9%

Enzymes 17 0.1% 22 0.1% 94 0.5% 130 0.7% 17 0.0% 25 0.0% 98 0.0% 165 0.0%

Bioact. 479 2.4% 669 3.4% 19895 9.6% 29569 13.1% 667 0.0% 19218 0.1% 39213 0.2% 49960 0.3%

Enzymes 27 0.1% 35 0.2% 163 0.8% 435 2.2% 31 0.0% 45 0.0% 260 0.0% 19147 0.1%

Pharmact. 29043 10.4% 29569 13.1% 59648 28.8% 79580 38.6% 49096 0.2% 69096 0.4% 129256 0.7% 189454 1.1%

Jochem ChEBI 159511 5.6% 179104 6.1% 2159072 77.2% 2569468 92.1% 679030 3.4% 869499 4.4% 6689716 33.9% 191429849 58.0%

Enzymes 114 0.0% 125 0.0% 373 0.1% 474 0.2% 143 0.0% 169 0.0% 607 0.0% 930 0.0%

Interpro GP6 29542 12.3% 39488 16.9% 159946 77.1% 199888 96.2% 29542 12.3% 39488 16.9% 159946 77.1% 199888 96.2%

GP7 29565 12.4% 39709 17.9% 159508 75.0% 209108 97.3% 29565 12.4% 39709 17.9% 159508 75.0% 209108 97.3%

Enzyme GP6 29514 51.3% 29604 53.1% 49334 88.4% 49517 92.1% 89400 10.2% 89690 10.5% 119547 14.0% 129280 14.9%

GP7 29561 52.2% 29657 54.2% 49391 89.5% 49576 93.3% 89601 10.4% 89872 10.8% 119674 14.2% 129383 15.0%

ChEBI 13 0.3% 13 0.3% 19732 35.3% 3’270 66.7% 13 0.0% 13 0.0% 39166 3.8% 79386 9.0%

Jochem 91 1.9% 102 2.1% 39042 62.0% 39391 69.1% 106 0.1% 122 0.1% 69392 7.8% 79744 9.4%

Bioact. ChEBI 432 0.8% 579 1.1% 419221 76.1% 439864 81.0% 553 0.4% 19295 0.9% 859412 60.4% 989536 69.7%

Enzymes ChEBI 21 0.1% 28 0.1% 169834 64.6% 189985 72.8% 21 0.0% 42 0.1% 359223 42.7% 499917 60.6%

Pharmact. ChEBI 29342 2.2% 29867 2.8% 379373 35.9% 479049 45.2% 39361 1.5% 69559 2.9% 589178 25.5% 869264 37.8%

The table gives an overview on the number of terms from the reference data resource (‘‘tagged term’’), e.g. ChEBI, Jochem, that contain the term from the alternative
data resource (‘‘nested term’’). The percentage indicates the portion of the reference data resource.
doi:10.1371/journal.pone.0075185.t004

LexEBI
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data. LexEBI is the first solution that would serve this purpose in

the biomedical domain.

A terminological resource should not only deliver the known

terms and the term variants but also additional information, for

example information about the usage of terms in the literature or

references to related terms, such as different meanings to the same

term or the occurrence of a term as part of another term. The

BioLexicon is a terminological resource that does deliver a wide

range of terms, but is not complete, i.e. lacking medical terms and

a significant portion of the chemical terms, and also not cross-

referenced between all resources, whereas the BioThesaurus only

contributes PGNs [4].

LexEBI contains (1) the full scope of biomedical-chemical

relevant terms, (2) abbreviations and their long forms from the

scientific literature, and (3) frequency information from the

scientific literature. All terms have been cross-compared across

the different resources and cross-references are provided as part of

the terminological resource.

The terminological resource provides valuable services to the

text mining and data integration community.

Table 5. Nestedness of terms.

Nested Term Chemical Species Diso PGN

Tagged Total Unique Total Unique Total Unique Total Unique Total Unique

Term 179311 926 19895 307 727 131 169 98

PGN 179728 159538 169328 774 19109 119 291 55

Diso 19894 19824 983 285 786 195 125 70

Species 435 435 435 82 0

Chemical 45 45 1 1 44 31

The terms from LexEBI have been cross-compared for the identification of nested terms. The figures in the table have been reduced to the number of those terms that
do contain a nested term of a different type. The rows represent the terms that have been hosting other terms (‘‘tagged term’’) and the columns indicate the tagging
terms that nest inside of the hosting terms (‘‘nested term’’). Non-redundant counts (‘‘Unique’’) are presented in addition to several mentions of the same term, if it
contains different nested terms (‘‘Total’’). Please note that table 3 counts a cluster as a single entry even if two clusters share the same baseform whereas this table takes
a single term as a single count.
doi:10.1371/journal.pone.0075185.t005

Table 6. List of nested terms.

ChEBI

PGN 1434/ATP, 1026/threonine, 677/nucleotide, 673/serine, 515/peptide, 472/zinc, 445/inhibitor, 392/phosphate, 380/toxin, 292/glycoprotein, 280/NADH, 265/
metal, 250/GTP, 184/UDP, 182/S-adenosyl-L-methionine, 179/amine, 168/leucine, 167/acid, 166/hormone, 157/ADP, 149/quinone, 148/tyrosine, 146/
cytochrome P450, 143/amino acid, 138/NAD(P)H

Diso 157/drug, 83/retinal, 42/alcohol, 23/steroid, 20/hormone, 14/acid, 13/hemoglobin, 13/glucose, 12/iron, 12/growth hormone, 11/pyruvate, 11/lipid, 11/
inhibitor, 11/glycogen, 11/cocaine, 10/potassium, 10/group, 10/cholesterol

Species

PGN 469/Beta, 87/Glycine, 86/cis, 45/helix, 39/cancer, 28/glycine, 25/Spea, 24/ammonia, 23/Scolopendra, 20/Squamosa, 18/root, 13/Cancer, 12/iso, 11/anemia,
10/Helix, 8/Paes, 8/mago, 7/transposon Tn4556, 6/prion, 6/Ammonia, 5/Transposon Tn7, 5/codon, 5/Cis

Diso 224/cancer, 86/anemia, 44/ataxia, 41/glaucoma, 36/bovine, 29/purpura, 23/root, 14/vertigo, 9/trichophyton, 8/salmonella, 8/agnosia, 7/scleroderma, 7/
rosacea, 7/Escherichia coli, 6/trichophyton rubrum, 6/microsporum, 5/fossa, 3/trichophyton verrucosum, 3/trichophyton soudanense, 3/patella, 3/
nephroma

Diso

PGN 81/Sperm, 44/sperm, 18/Mpe, 17/Neuroblastoma, 14/dissociation, 9/anterior, 7/Wiskott-Aldrich syndrome, 7/Anterior, 6/azoospermia, 5/Epstein, 5/Cat eye
syndrome, 4/Ten, 4/sma, 4/ns4, 4/Ifi, 4/homocystinuria, 4/ganglion, 4/defect, 3/Nod, 2/Water stress, 2/Tubulointerstitial nephritis, 2/Teratocarcinoma

Species 99/Myrmecia, 55/parvovirus, 31/Sheeppox, 23/dgi1, 22/Vaccinia, 21/E11, 15/Yellow fever, 15/Vesicular stomatitis, 13/Erysipelothrix, 13/Avian sarcoma, 10/
melas, 9/Hydrometra, 7/Camelpox, 5/Epstein, 5/Caprine arthritis encephalitis, 5/Canine distemper, 5/Budgerigar fledgling disease

ChEBI 1/sympathomimetic

PGN

Diso 18/insulin, 16/hip, 8/itch, 4/prolactin, 3/angiotensin converting enzyme inhibitor, 3/agglutinin, 2/trypsin, 2/robin, 2/methylmalonyl coA mutase, 2/gastrin,
2/fibrinogen, 2/beta galactosidase, 2/arylsulfatase, 2/androgen receptor, 2/actin, 1/ubiquitin, 1/tyrosinase

ChEBI 4/PAP, 3/thioredoxin, 3/ferredoxin, 2/Trp, 2/L-4, 2/IMP, 2/cholinesterase, 2/adrenodoxin, 2/A14, 1/urease, 1/serine proteinase inhibitor, 1/PNP, 1/
phospholipase A2 inhibitor, 1/P2Y2, 1/oxytocin, 1/neuraminidase, 1/NAD(P)H, 1/myoglobin, 1/lipoxygenase, 1/lipopeptide

The table shows the most frequent terms from one type (column labels) that are included in the terms of another type (row labels). Note that disease terms appear as
part of a species term, since a disease term with the extension ‘‘virus’’ forms the species term.
doi:10.1371/journal.pone.0075185.t006

LexEBI
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Methods

Publicly Available Resources
LexEBI has been generated from a number of resources that

deliver terms or literature content. Two different versions of

LexEBI are available that exploit Biothesaurus 6.0 ‘‘GP6’’;

distribution from June 1, 2009) and Biothesaurus 7.0 (‘‘GP7’’;

June 29, 2010) [32]. We took both versions of the Biothesaurus

into consideration, since they differ in their content. Our

comparison leads to an improved understanding how complete

the compiled resources such as the Biothesaurus are with regards

to the contained entities: the smaller resource may be more concise

and the larger resource may contribute more term variants of

lesser importance. For example, GP7 is larger than GP6 but the

increase in size is mainly due to a larger number of term variants

which even decreases the performance of PGN tagging solutions

[37].

For UniProtKb the release 2010 06 (from June 15, 2010) has

been used [19]. Table 1 gives an overview on the overall number

of extracted terms. For the literature resources, the British

National Corpus (BNC) version 1.0 (released on May 1995) and

the PubMed distribution (from Oct 11, 2010) has been used.

Interpro version 27, Jochem version 1.0, ChEBI in its release 64

and the release 2010AA of UMLS have been exploited for the

presented analyses [34,38].

Extraction of Terms from the Primary Database Resource
The primary resource was processed for the extraction of the

contained terms. For the BioThesaurus, the clusters of terms and

the term variants were extracted [32]. Terms representing less

meaningful names such as ‘‘hypothetical gene’’, ‘‘putative gene’’,

‘‘probable gene’’, ‘‘possible gene’’ and single numbers have been

removed, since these terms do not convey any characteristics

describing a specific gene or protein entity; they denote sequence

similarity between a potentially novel gene and an existing gene.

For a detailed description of the morphological features and the

semantics of PGNs please refer to [37].

The concept identifiers of each term from each resource have

been kept for later reference purposes. The species reference was

as well maintained and integrated as a reference to the species

mention. All term variants for a given concept have been

organised in a single cluster, where the preferred term gives the

baseform of the cluster. In the same way, the terms from ChEBI,

Jochem, IntEnz, and the NCBI taxonomy have been extracted

and processed (see the following example) [39]:

,Cluster clsId = "CHEBI-CHEBI:32" semType= "CHEBI".

,Entry entryId = "CHEBI-CHEBI:32-1" baseForm= "(+)-N-

methylconiine" type = "PREFERRED".

,PosDC posName= "POS" pos = "N"/.

,SourceDC sourceName= "CHEBI" sourceId= "-

CHEBI:32"/.

Figure 2. Graphs of nestedness for chemical entity terms: The figure gives an overview on the graphs based on those terms for
chemical entities that are composed of a term of a different type. An edge exists between two nodes, if the term from one node is nested in
the term of the other node. The color encoding is green for PGNs, red for species, yellow for diseases and blue for chemical entities. Only few terms
from ChEBI make use of generalised PGNs in contrast to the nestedness of terms for PGNs.
doi:10.1371/journal.pone.0075185.g002
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,Variant WRITTENFORM="(+)-N-Methylconiine"

type = "orthographic"/.

,Variant WRITTENFORM="(2S)-1-methyl-2-propylpiperi-

dine" type = "orthographic"/.

,Variant WRITTENFORM="Methylconiine" type = "ortho-

graphic"/.

,Variant WRITTENFORM="C9H19N" type= "ortho-

graphic"/.

,Variant WRITTENFORM="CCC[C@H]1CCCCN1C"

type = "orthographic"/.

,Variant WRITTENFORM="InChI= 1/C9H19N/c1-3-6-

9-7-4-5-8-10(9)2/h9H,3-8H2,1-2H3/t92/m0/s1"

type = "orthographic"/.

,DC att = "KEGG COMPOUND accession (KEGG COM-

POUND" val = "C10159)"/.

,DC att = "CAS Registry Number (KEGG COMPOUND"

val = "35305-13-6)"/.

,DC att = "CAS Registry Number (ChemIDplus"

val = "35305-13-6)"/.

,DC att = "Beilstein Registry Number (Beilstein"

val = "79936)"/.

,Relation type = "has-parent-hydride" target = "CHEBI-

CHEBI:28322"/.

,/Entry.

,/Cluster.

Furthermore, the UMLS terminological resource has been

processed to extract relevant terms characterizing protein, gene

and chemical entities. The terms have been filtered using their

type assignments and terms from the following categories have

been extracted: (1) antibiotic and neuroreactive substances, (2)

biologically active substances, (3) enzymes, (4) lipids and carbo-

hydrates, (5) pharmacological active substances, and (6) vitamins

and hormones. Other categories such as disease and disorder and

immunological factors have been ignored. The order of categories

has been applied, if one category had to be selected from a dual

assignment. Our manual evaluation ensured coherence across the

selected categories. The cross-comparison of chemical entities and

proteins/genes against these categories gives a categorization of

terms according to UMLS and can be exploited whenever named

entities have to be interpreted for a particular biomedical reason,

e.g. as a lipid or a hormone.

Extraction of Disease Terms from Medline
Medline is a rich source of disease terminology that can be

made publicly available in contrast to standard resources that are

only available upon proper licensing. Alternative resources are

either not freely available, such as Snomed-CT, or are very limited

in their content, such as the disease ontology [40,41]. To extract

the disease terminology from the Medline distribution, the text has

been processed to identify stretches of text that contain words that

have been identified in a disease terminology. All chunks have

been stemmed, normalized and indexed using Lucene [42]. For a

given term, the chunk has been processed with MetaMap to assign

the concept identifier and compared against the UMLS resource

[43].

Terms from Medline that do not appear in the primary

terminological resource have been normalized. Different ortho-

graphic variants have been identified and then normalized to a

single base form, i.e. to the same concept unique identifier (CUI)

for a single cluster that has been automatically derived from an

UMLS term; but not necessarily representing any exact string in

UMLS. Orthographic variation includes variation in upper and

lower case in particular in capitalizations, minor changes to the

punctuation such as the use or lack of hyphens, the identification

Figure 3. Graphs of nestedness for species terms: Terms for living beings (LIVB) contain terms of diseases but no terms of other
types.
doi:10.1371/journal.pone.0075185.g003
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and normalization of plural forms, and the different variants of

Greek letters.

WordNet has been used to accept chunks that could represent

synonyms of terms, i.e. ‘‘liver sarcoma’’ was accepted as a

synonym for liver cancer and assigned an UMLS identifier since

‘‘sarcoma’’ is a synonym to ‘‘cancer’’ according to WordNet and

‘‘liver cancer’’ has been retrieved from UMLS. Note that

‘‘sarcoma’’ is a more specific type of a cancer and therefore

‘‘sarcoma’’ is a narrower synonym for ‘‘cancer’’. As a result,

LexEBI delivers term variants to disease terms where the term

variant stems from Medline and is fully referenced to UMLS.

Identification of Acronyms and Long-forms from the
Scientific Literature
Acronyms are a very interesting set of terms from the scientific

literature: they represent terms with high relevance for a given

document and - for a smaller number of established acronyms -

expose standardized semantics across the whole scientific litera-

ture, e.g. DNA (deoxyribonucleic acid) and HIV. They form a set

of terms that is not a priori linked to a predefined semantic type -

other than chemical entities which can be identified by their

syntactical structure or PGNs which have an overrepresentation of

specific terms - but they still enable the attribution of a semantic

type through the long form of the acronym definition. We use this

resource as a means to determine the representation of the

different semantic types across the scientific literature.

For our analyses we have extracted acronyms that have been

referenced together with their long form in the scientific literature,

i.e. in Medline abstracts and in PubmedCentral full text

documents [44]. We identified the following two syntactical

structures ’’abbreviation (long form)‘‘ or’’ ‘‘long form (abbrevia-

tion)’’ using Schwartz-Hearst language patterns which have been

evaluated and shown to reach an F1-measure of about 89% [45].

Nonetheless, further research has shown that higher performances

can be reached by applying machine-learning solutions either for

the acronyms alone (BioADI, up to 90%) or the pairs composed of

the abbreviation and its long-form (up to 91% for Ab3P; 91.4%

from Yeganova et. al), which was not relevant for our rather

limited experiments [46-48].

Figure 4. Graphs of nestedness for disease terms: Disease terms are again compositional and make use of species terms, chemical
entities and protein named entities. Only a few disease terms are composed of terms of different types.
doi:10.1371/journal.pone.0075185.g004
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In total we collected 2,016,822 unique abbreviations from

9,969,109 occurrences in overall 11,187,291 Medline abstracts.

Note, that a single unique abbreviation can be categorized to two

or more different semantic types. For example, LPS is an

abbreviation representing the baseform ‘‘lipopolysaccharide’’,

and is linked to entries in ChEBI as well as to entries in GP6 or

GP7. The distribution of the abbreviations across the different

data resources is shown in table 2. All abbreviations have been

matched to the term entries from the different term repositories,

i.e. to ChEBI entries or to UniProtKb entries, according to their

long-form (LF) that has been mentioned in combination with the

short-form in the literature. The frequency of the identified

abbreviation-LF pairs has been identified across the whole

literature resources, i.e. across BNC and Medline. The abbrevi-

ations have been matched against the term variants from the other

data resources to identify their terminological counter-parts and

interlink them with the other data types. An acronym cluster in

LexEBI refers to the long form representation and carries the

ACRO tag for identification.

Cross-comparison and Statistics
The terminological resources have undergone cross-comparison

using different comparison methods. First, the terms have been

compared using exact matching. As an alternative, morphological

variation was included (called ‘‘fuzzy match’’) that ignored the

following variants: First, in the case of a mixed-case term

representation with the initial letter in upper-case, the initial letter

is also matched against the lower-case variant and vice versa (e.g.

Raf vs. raf). Second, a gene or locus named after its associated

phenotype may contain the characters of a dash or slash to

indicate the wild type or mutant allele, and hence both characters

are biologically meaningful, but in other cases they are used

synonymously for white space and thus have been ignored during

the matching.

Last, for nested tagging, one terminological resource contrib-

uted the nested terms and the other one was used for being tagged,

i.e. the nested terms have been tagged inside of the tagged terms -

again applying either exact or fuzzy matching. The nestedness of a

term gives an indication to which extent one terminological

resource has a compositional structure that relies on another

resources, and possibly even another semantic type. Fig. 1 displays

Figure 5. Graphs of nestedness for PGNs: The diagram gives an overview on the graphs based on those PGNs that are composed of
a term of a different type. The diagram shows that a large portion of protein/gene terms contain nested terms of a chemical entity, but also
species terms.
doi:10.1371/journal.pone.0075185.g005
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the tagging of terms from different resources, e.g. enzymes,

Interpro and chemical entities against GP7 using either the PGN

baseforms (left diagram) or the term variants (right diagram).

Calculating Statistical Parameters Across Medline and
BNC
The terminological resources have been used to annotate

entities across the whole content of Medline to identify the term

frequencies; the same approach has been applied to BNC as well.

The availability of term frequencies in the different corpora offer

the opportunity to disambiguate terms based on their frequencies

in a medical and a general English corpus and - at a later stage -

the frequency parameters can be integrated as a discriminatory

feature into basic disambiguation techniques or into machine-

based classification methods [37]. For example, ‘‘water’’ is a

chemical entity (CHEBI:15377) and an unspecific term, i.e. it

would show high frequencies in Medline and in BNC, whereas

Oxytocin (CHEBI:7872, UniProtKb:NEU1 HUMAN,

HGNC:8529) is a very specific term and would only show in the

medical literature a high term frequency.

Term Representations in the Terminological Resource
LexEBI uses an XML format for the representation and storage

of the terminological resource (see method section). Explicit

reference are implemented to the preferred term, the term

variants, concept identifiers, term frequency in the BNC, in

Medline, and the frequency of the term variants. An additional

table makes reference to the nestedness of the terms in the

resources.

Figure 6. Occurrence of terms in LexEBI according to their length: The terms (baseforms and term variants) from the different
resources have been matched against the GP7 terms in LexEBI. The results have been sorted according to the term length (x = 1 to 89) and
the frequencies are presented in logarithmic scale (y = 0 to 6.0). After sorting, the results for the terms have been grouped into bins where each bin
represents terms of a given length +/21. For GP7 the overall occurrence is given, for the other resources the numbers indicate how many
occurrences of a GP7 term contain a term of the alternative resource, e.g. ChEBI. A large portion of GP7 terms do contain ChEBI terms, and - to a lower
rate - a disease or a species term. It is obvious that longer terms are more likely to be composed of terms of a different semantic type. According to
the annotation guidelines, species terms should not be part of the PGN.
doi:10.1371/journal.pone.0075185.g006

Table 7. Use of baseforms in Medline and BNC.

Medline
(2,180,887,571 tokens)

BNC
(91,852,411 tokens)

Exact M. Fuzzy M. Ratio Exact M. Fuzzy M. Ratio

GP 7.0 2129114 4039452 1.90 109706 179300 1.62

GP 6.0 1969390 3819665 1.94 109073 169455 1.63

InterPro 29626 159558 5.92 119 232 1.95

Enzymes 49856 239072 4.75 122 170 1.39

ChEBI 279750 709287 2.53 29014 39734 1.85

Species 1079797 1479106 1.36 59374 109181 1.89

The table gives an overview on the identification of unique terms from the
different resources across the two literature repositories: Medline abstracts and
the British National Corpus. The statistics counts unique terms that have been
identified at least once in the two corpora.
doi:10.1371/journal.pone.0075185.t007
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Results

LexEBI collects terms from different public resources and

combines them with the help of a standardized format. Further-

more, cross-references have been established between related data

entries to support identification of polysemous terms and to make

use of different interpretations of a given term. Statistical

information about the use of terms in different public literature

resources has been added to the data entries. This information can

be used to distinguish specialized terms from common English

terms [37]. Last, the references to biomedical data resources are

kept to enable exploration of additional information linked to the

data entries.

In the following sections we will explore the distribution of terms

to derive key parameters from the terminological resources

describing the Lexeome.

Distribution of PGNs in LexEBI
The terminological resource LexEBI contains 2,729,134 clusters

that make reference to a baseform, 13,598,649 term variants and

5,791,531 unique terms in total, where double mentions of the

same term (‘‘redundancy’’) have not been removed between the

different resources (cf. table 1).

For the terminology linked to genes and proteins, two different

resources of the same origin have been analyzed, i.e. Biothesaurus

6.0 (called ‘‘GP6’’ for Gene/Protein-6) and the next version, i.e.

Biothesaurus 7.0 (called ‘‘GP7’’). The reason for this comparison is

the assumption that the evolution of such semantic resources show

growth only to a very limited extent, since the number of entities

represented by a term and relevant to the biomedical domain is

limited, and it takes time to explore and find novel entities through

basic research.

In addition, it is important to characterize the differences

between terminological resources, e.g. between GP6 and GP7 and

between ChEBI and Jochem, since we do know that a larger

terminological resource, e.g. for PGNs, will not necessarily

improve the F1-measure of PGN-tagging solutions [37], which is

explained by the fact that a conserved portion of PGNs is already

included in smaller PGN terminological resources and this part

forms - in contrast to a larger number of term variants - the core of

the terminological space for PGNs.

GP6 gives access to 1,564,436 terms and GP7 to 1,726,853

terms. 1,444,247 are shared between both resources using exact

matching. This results to 92.3% of the unique terms in GP6 and to

83.6% in GP7, showing that the new version contains a larger

number of terms and some terms from the older version have been

removed (overall growth rate less than 10%).

PGN variation. When using terminological variation in the

comparison, we determine that 1,549,890 (99.1%) of the terms in

GP6 can already be matched with the content of GP7, whereas

only 1,641,926 (95.1%) of the terms in GP7 can be matched using

the content of GP6. This shows that additional term variants have

been added to GP7 that show greater morphological variation

than the usual morphological variation of genes and proteins. In

other words, GP6 covers already a complete version of the

terminology related to gene and protein mentions: in total, GP7

contains 27,536 additional clusters or baseforms that account for

162,417 additional unique terms and 643,260 overall term

variants (including redundancy).

The terminological resources for genes and proteins show a high

number of term variants per cluster, i.e. 8.76 and 7.94 for GP7

and GP6, respectively, and also high numbers of term variants for

chemical entities, i.e. 7.07 and 5.82 for Jochem and for ChEBI.

Term variation is only of minor importance for species terms

(1.31) and for the other resources.

Cross-comparison of Semantic Types Across LexEBI
The content from LexEBI has been analyzed in several forms:

(1) the terminological resources have been evaluated against each

Figure 7. Occurrence of terms in Medline, sorted by term length: The terms (baseforms and term variants) from the different
resources have been matched against Medline. The results have been sorted according to the term length and are presented in logarithmic
scale (cf. fig. 6). The left diagram counts all occurrences of a GP7 term in Medline. The term lists has been manually curated to remove senseless terms
with high frequencies and all occurrences of a term in a single abstract has only been counted once (‘‘unique terms’’). A large portion of GP7 terms do
contain ChEBI terms, and to a lower rate a disease or a species term. For the right diagram, every GP7 term has only be counted once across all
Medline. It becomes clear that longer PGNs contain mentions of chemical entities, and also species and disease terms, which both may have shared
polysemous terms (very similar distribution values).
doi:10.1371/journal.pone.0075185.g007
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other to quantify polysemous and nested use of terms across

terminological resources, and (2) the terms have been extracted

from the public scientific biomedical literature to determine the

use and distribution of terms in written text.

The degree of polysemous use of terms helps to disambiguate

terms at a later stage and in the case of nestedness of terms; we can

identify the compositional structure of terms and exploit it for the

identification of terms. It can be expected that nestedness occurs

more frequently between chemical entities and PGNs and between

species and PGNs, but at a lower rate between diseases and

chemical entities. The resolution of such nested terms offers new

ways of interpreting the terms. More in detail, we would expect

that we do not only assign a single label to a term, but would be

able to assign labels to its components and eventually read terms

similarly to event representations. After all, such an interpretation

of terms could mimic the ways how humans read composite terms

and would lead to novel indexing approaches that handle complex

semantics (see also MedEvi [49]).

Analysing PGNs. Several resources have been compared

against GP6 and GP7. For a complete overview please refer to

table 3. The table gives an overview on the terms that are shared

between different resources. For example, 150,104 enzyme

baseforms from the IntEnz database are already covered in GP6

and this number increases to 173,994 for the GP7. Morphological

variation only adds little to the identification of terms (157,099 and

180,829), whereas nestedness adds a bigger portion to the number

of matched terms leading to now 178,155 and 202,484 terms for

exact matching and 200,921 and 224,877 terms for fuzzy

matching of contained terms. By contrast, terms from Interpro

occur in the GP6 and GP7 at lower numbers, 88,613 and 93,979

for both resources respectively, but the number increases to a

considerable degree, if fuzzy matching or nestedness is considered

(cf. fig. 1). This shows that the generic terms from Interpro form

parts of the terms in GP6 and GP7 in contrast to the terms

denoting enzymes.

The increase in matched terms is even stronger, when matching

chemical entity terms from Jochem or ChEBI against the PGNs in

GP6 and GP7. This shows that the terms from chemical entities

have to be considered as compositional components to the gene

and protein names. The same observations are even more

prominent, if the term variants have been included into the

analysis (cf. fig. 1). Now the number of term variants identified in

GP7 increases beyond 600,000 terms for the exact matching, but

stays below the full number of term variants linked to GP7; the

absolute numbers for the matched term increases but the relative

numbers are below the figures achieved against the baseforms

only.

This shows that the added variants have a higher diversity than

the labels only.

Analysing chemical entities. Finally, the inverse compari-

son has been performed, where terms from LexEBI have been

tested for their inclusion as nested terms into the terms denoting

for example chemical entities and other types (see table 4). It

becomes clear that ChEBI forms a central role in the composition

of terms since chemical entities form part of the baseforms of the

Interpro terms and the baseforms from the UMLS terminologies.

The overlap between the resources, i.e. the matching of

baseforms and the induced semantic polysemy, remains low. Only

enzyme terms are covered from GP7 and GP6 as well as from

ChEBI and Jochem. The overlap between ChEBI and Jochem is

high by the nature of both resources and remains high when the

term variants of both resources are compared (right side of the

table).

In total, the content ChEBI is disjoint from the other resources,

but also ChEBI terms from part of terms from the other

terminological which leads into a good compositional structure

of the terminological resources. Enzyme terms form also a unique

resource and show little morphological variation. The reuse of

enzyme entities in the other terminological resources could be

reduced, but does not induce major problems. For Interpro we can

identify that it does show significant overlap with GP6 and GP7,

which is not unexpected, but it would be advantageous if general

Interpro terms, i.e. the protein family terms, would be clearly

separate from specific PGNs to reduce hierarchical polysemy.

Nestedness of unique terms according to their type. In

the previous studies, we ignored the fact that terms, e.g. for protein

and gene entities, have been reused for different entities, i.e.

ambiguous terms specifying two different entities are redundant in

a terminological resource, but redundancy has to be kept to

reference all entities through all their synonyms. In this next step,

we have reduced redundancy and have again analyzed which

terms of a given type are included in terms of other types, e.g.

terms for chemical entities form frequently part of a PGN. Initially

we compared only the baseforms of the terms from different

resources (cf. table 5). From an ideal perspective, we would expect

that baseforms are not shared between semantic types to avoid

ambiguity in the concept labels. But, this assumption has to be

validated and a different result cannot be excluded, since the

resources have been developed independently from each other and

ambiguity can only be avoided due to interactions between the

different development teams.

We identified that the baseforms do not suffer from polysemy,

i.e. the different terminological resources are disjoint with a few

exceptions. This is not anymore true, when taking all the term

variants into consideration, and - in addition - we find terms of

different types contained in other terms. Table 5 gives an overview

of the results.

In total only 774 unique chemical entity terms are nested in

16,328 protein/gene terms whereas only 285 chemical entity

terms are contained in only 983 disease terms. Species terms are

contained as well in PGNs, although the annotation guidelines

suggest that species should not be part of the protein name.

Disease terms can be part of PGNs as well as species names

indicating that a few terms are ambiguous, i.e. belong to the

semantic types of species and disease alike.

Table 6 lists the most frequent nested terms and their

frequencies. In general, the semantics of the nested terms is

correctly attributed. The chemical entity terms and the PGNs are

specific with a few exceptions, i.e. ‘‘retinal’’ and ‘‘group’’ for a

chemical entity. The disease terms include a few false positive

results (‘‘anterior’’, ‘‘ganglion’’, ‘‘sympathomimetic’’) and polyse-

mous acronyms (‘‘hip’’). The list of species terms shows a high

variety including hypothetical false positive results (‘‘Beta’’, ‘‘cis’’,

‘‘glycine’’, ‘‘helix’’) which could all be verified as true positive

results for a species. Altogether, any solution that would consider

the ambiguous or nested use of the presented terms should be able

to improve its annotation results, and would produce a term

representation that complies with the interpretation of a term by

an expert.

Visualisation of Term Nestedness Per Semantic Type
According to the presented analyses, only a small portion of

terms of one type is nested in a larger number of terms of another

type. Chemical entities form core elements, PGNs show a high

variety and a number of terms are poysemous (or ambiguous)

between the species and diseases. To visualize better these results,

we have generated graphs for the different semantic types, where
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the semantic type is color encoded and the inclusion of a term is

represented by the ‘‘nested-in’’ relation giving the ‘‘graphs of

nestedness’’.

As expected the smallest number of graphs of nestedness are

produced for the chemical entities (cf. fig. 2; in total 30; 21 pairs, 6

triplets), i.e. this set of graphs is very sparse. For species (cf. fig. 3)

there is also a rather small number of graphs and mainly disease

terms are nested in the species terms (in total 53; 24 pairs, 6

triplets, 11 with more than 10 nodes). A significantly larger

number of graphs have been produced for diseases (cf. fig. 4; 520

in total; 320 pairs, 85 triplets, 15 with more than 10 nodes) and the

semantic types of the nested terms are either species as well as

chemical entities. The largest number graphs and the biggest

graphs have been generated for PGNs (cf. fig. 5; in total 629, 291

pairs, 104 triplets, 46 with more than 10 nodes). The overview

shows that different types of terms are contained and that the

complexity of the PGN terminology allows for the inclusion of

several nested terms leading to a complex and large graph of

nestedness.

Considering term length of PGNs. Fig. 6 gives an overview

of the nestedness of terms according to their length in LexEBI.

The diagram demonstrates the distribution of terms according to

their length and the number of included terms of a different type.

These figures demonstrate the amount of terms that would require

special treatment in the use of Medline in any information

extraction solution. A similar approach has already been tested for

GO terms and has also measured the frequency of term inclusions

[50].

Distribution of Terms in Medline and BNC
In the last step of the analysis we have measured the number of

terms that can be identified in Medline and the BNC. We expect

that biomedical terms appear in the biomedical literature at a

higher frequency and more comprehensively than in corpora for

general English. Table 7 gives an overview on the distribution of

the GP6 and GP7 terms across Medline and the BNC. A large

portion of the enzyme terms can be identified from Medline,

whereas only a small portion of the Interpro terms have been

found. For the whole collection of GP6 and -7, about half of the

baseforms can be extracted from the scientific literature. As

expected, the same numbers are smaller when identifying the

terms across the BleNC, since the BNC corpus is smaller in size.

On the other side, the ratio of term variants related to Interpro

and enzymes baseforms is considerably larger than on the BNC,

which indicates that BNC covers different domain knowledge than

Medline.

Distribution of acronyms. LexEBI also provides abbrevia-

tions that have been extracted from Medline and PubmedCentral.

All abbreviations have been classified to a given type and the long

form of the abbreviation serves as baseform. Ta 3 gives an

overview to all abbreviations.

It is expected but still remarkable, that disease acronyms, for

example ‘‘AD’’ and ‘‘CD’’ for Alzheimer’s and Crohn’s Disease,

respectively, and acronyms for chemical entities, for example

‘‘LPS’’ for Lipopolysaccharide, have the highest occurrence rates,

whereas the acronyms of other semantic types have lower

occurrence rates. Still the highest number of acronyms is

encountered for PGNs, whereas for species only a small number

of acronyms are known. For enzymes also a small number can be

identified, but this small number covers almost the full domain of

enzyme mentions after all.

The distribution of acronyms shows that the high diversity of

entities for PGNs and species terms seems to be underrepresented

and a core of chemical entity terms, enzyme terms and disease

terms play an important role.

Distribution of nested terms across Medline. In the next

step, we extracted the GP7 terms from Medline and analyzed the

inclusion of terms of different semantic types in the PGNs. This

approach should give new insights, how the distribution of

compositional terms is across Medline, whether a minimum

length to this phenomenon exists and what semantic types are

more prone to form part of the PGNs. Similar information can

already be derived from the cross-comparison of terms in LexEBI

alone (cf. fig. 6), but we tried to identify whether the compositional

terms show a different distribution than over LexEBI alone.

We distinguished the baseforms and term variants according to

their length and sorted them into bins that collect terms of a given

length +/21 character difference length. We then measured the

distribution of the terms across Medline and the inclusion of terms

of a different type into the identified terms. In the first analysis we

measured the number of occurrences of a term across Medline. As

expected, the frequency of a term declines with the length of a

term. The number of terms that make reference to a chemical

entity is 0.5 to 1 log scale smaller than the overall number of

encountered terms, i.e. at least one term out of 10 contains a term

of a chemical entity. Disease and species terms can be found at a

lower rate (1-2 log scales) as part of the GP7 terms along all bins

containing terms of different lengths.

Distribution of unique terms across medline. In the next

step, we removed the most frequent uninformative or polysemous

terms, i.e. terms with attribution to two different semantic types,

from the term sets, which are mainly the terms ‘‘protein’’, ‘‘ATP’’

and ‘‘RNA’’ in ChEBI and ‘‘Beta’’ for a species, which are

frequently repeated as part of GP7 terms, but not relevant for this

analysis. After removal, we again counted all occurrences, but

normalized repeated occurrences in a single Medline abstract to a

single count, i.e. we count Medline abstracts containing the given

term (called ‘‘unique term’’). This solution reduces redundancy,

but still gives a representative figure for the distribution of terms

across all Medline (cf. fig. 7, left diagram). We find a distribution

that is similar to the previous one, but shows a more even

distribution of terms across the different lengths of the terms,

indicating that shorter and longer terms are used at similar

frequencies, but shorter terms are used more repetitive in single

Medline abstracts. Terms with a length bigger than 20 characters

show higher degrees of nestedness containing chemical entities,

disease or species terms, and terms with a length of less than 50

characters form the biggest portion of terms containing nested

other terms.

In the next analysis, we have again normalized the results in

such a way that we count an occurring term only once at all, giving

an overview on the distribution of terms used in Medline that have

included alternative terms (cf. fig. 7, right diagram). The diagram

shows a similar distribution of terms as can be seen in the analysis

across LexEBI (cf. fig. 7).

Discussion

The Lexeome covers the terms used in the biomedical domain

to describe entities. Our study gives an overview on the full set of

terms from existing resources and also provides the extracted term

set in a standardized format (LexEBI). The analysis illustrates how

the composition of biomedical terms reflects the researchers’ ways

to conceptualize their findings, in particular concerning biomed-

ical entities. These entities play an important role, since they

convey the notion of an object with some kind of existence,
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appearance and well-defined roles and functions and eventually

serve as elements for ongoing research.

According to our findings, the baseform of PGNs from the

primary data resources are less ambiguous than the term variants,

which can be expected. Enzyme terms are hosted in different

repositories and are popular term variants leading to the result that

normalization requires additional assumptions and input for their

disambiguation. PGN family terms are provided from Interpro but

the differentiation to PGNs from other resources is not clear-cut

inducing ambiguity between different abstraction levels (‘‘vertical

ambiguity’’).

The literature analysis shows that a small portion of terms, i.e.

less than 1,000, form the core of nestedness across a large number

terms and that specific patterns of ambiguity can be observed, i.e.

ambiguous use of species and disease terms, nestedness of chemical

entities in PGNs, and vertical ambiguity. Our graph visualization

based on the nestedness relation demonstrates the same result and

gives an overview on the complexity of term forms for PGNs. In

the case of complex text mining tasks, this complexity has to be

resolved to correctly distinguish the different entity types [51]. The

evaluation of terms against the scientific literature (Medline) leads

to the result that only a small portion of terms are frequently used.

This amount may increase when analysing the full-text literature,

but large portions of the terminology may still be limited to

selective and specialized use [52]. This finding partially reflects our

observations that uncommon terms are included in the scientific

databases, e.g. hypothetical terms, and on the other side, that term

usage varies over time following the topics of the research

questions under scrutiny [53,54].

The compositional structure of GO labels has been well studied

and led to the result that better term representations for the

concept labels improve the quality of the ontology [8,50]. In the

case of GO, these considerations have been successful and

nowadays GO includes a ‘regulate’-relation to better support

compositional structures. Further research is making use of these

results to improve the extraction of regulatory events from the

scientific literature making use of deep semantics from the

ontology [55,56]. We can expect for the future that terminological

and ontological resources will provide similar features and similar

benefits to the scientific community.

In recent years, the use of ontological resources has gained

importance and the amount of available ontological resources has

grown to a remarkable level [57]. Often ontologies are exploited as

terminological resources, but there is no doubt that ontologies

serve the purpose of conceptualizing the scientific domain

knowledge whereas scientific databases and terminological re-

sources have more modest objectives [58,59].

Ontologies are used to implement the logical framework of the

domain knowledge in a formal way, whereas a terminology (or a

lexicon) will only index and reference entities and - according to

our analysis - define the scope of features representing entities in

the biomedical scientific domain (the Lexeome), but fall short to

explain the semantics.
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